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Abstract 
With the explosive growth of the digital visual information, content based image 

retrieval (CBIR) became an important and active research topic. Many CBIR 

systems have been developed over the years based on the low-level visual features. 

However, the gap between the low-level visual feature and the high-level 

semantic content always degrades the retrieval performance. Relevance feedback 

(RF) is an important tool to improve the performance of CBIR. In a RF process, 

the user first labels a number of relevant retrieval results as positive feedbacks and 

some irrelevant retrieval results as negative feedbacks. Then the system refines all 

retrieval results based on these feedbacks. The two steps are carried out iteratively 

to improve the performance of image retrieval system by gradually learning the 

user's perception. 

Many RF methods have been developed in recent years and small sample learning 

based methods achieved the state-of-the-art performance. In this thesis, we focus 

on two popular small sample learning algorithms, the Support Vector Machine 

(SVM) and the Biased Discriminant Analysis (BDA). 

S V M classifies the relevant samples and irrelevant samples based on the support 

vectors, which are automatically determined by S V M learning algorithm. 

However, the performance of SVM-based RF is often poor when the number of 

labeled positive feedback samples is small. This is mainly due to three reasons: 1. 

S V M classifier is unstable on small size training sets; 2. SVM's optimal hyper-

plane may be biased when the positive feedback samples are much less than the 

negative feedback samples; 3. Over-fitting due to the fact that the feature 

dimension is much higher than the size of the training set. In this thesis, we try to 

use random sampling techniques to overcome these problems. To address the first 

two problems, we propose an asymmetric bagging based S V M . For the third 

problem, we combine the random subspace method with S V M . Finally, by 

integrating bagging and R S M , we solve all the three problems and further 

improve the RF performance. 

B D A is another small sample learning model in CBIR RF. In B D A model, the 

negative feedbacks are required to stay away from the center of positive feedbacks. 

Although B D A achieved satisfactory results, it also meets many problems: 1. To 

solve the B D A , the regularization method is used. It is well known that the 
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method often encounters the Matrix Singular Problem (MSP) or the Small Sample 

Size (SSS) problem; 2. B D A assumes all positive feedbacks form a single 

Gaussian distribution which may not be the case for CBIR; 3. Although kernel 

B D A ( K B D A ) can overcome the single Gaussian distribution assumption to some 

extent, the kernel parameter tuning makes the online learning unfeasible. 

Motivated by the successful direct method and null-space method used in linear 

discriminant analysis to solve the SSS problem, we generalize them into the 

kernel Hilbert space to over come the SSS problem in K B D A . Because direct 

method and null-space method may lose some discriminant information, we 

propose a new full-space method to contain all discriminant information both in 

linear space and in kernel Hilbert Space. To avoid the parameter tuning problem 

and the single Gaussian distribution assumption in B D A , we construct a new 

nonparametric discriminant analysis (NDA) for R F in CBIR. W e then generalize 

the regularization method, the direct method，the null-space method, and the full-

space method lo address the SSS problem in N D A . 

At the end of the thesis, we conduct the first study on S A R S radiographic image 

processing as an application of CBIR. In order to distinguish S A R S infected 

regions from normal lung regions using texture features, w e propose several 

improvements to the traditional gray-level co-occurrence texture features. W e use 

a multi-level feature selection approach to extract texture features from a multi-

resolution region based co-occurrence matrix directly for texture classification. 

The selected texture features can preserve most of the discriminant information in 

the texture image. Satisfactory results are obtained on a large set of chest 

radiographic images of S A R S patients. 
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摘要 

隨著因特网和数据庫上可視化信息的爆炸式增長，基于内容的圖像檢索已經 

成為一個非常重要的研究方向。在過去的許多年里，大量的基于底層視覺特 

征的圖像檢索系統已經問世。 

但是，由于底層視覺特征和高層語義特征之間的鴻溝，使得圖像檢索的效果 

并不理想。而相關反鎖正是架构在這個鴻溝上的橋梁，大大的提高了圖像檢 

索的效架。在一次反饋過程中，用广首相標記一定數量的和查詢圖像相關以 

及不相關的_像分別作為正反饋和負反饋。然后檢索系統根据反饋的信息來 

重新調整圆像数据的排序。這兩個少驟被重复的執行，直到用广得到了一個 

滿意的結果。 

近來出現了大量的相關反饋的方法，其中基于小樣本學習的方法取得了令人 

滿意的效衆。在本論文中，我們主要研究兩個最為普遍的基于小樣本學習的 

反饋方法，他們分別是基于支撑向量机的反饋和基于有偏璧別矢量分析的反 

饋。 

支摸向量机通過自動學丨肖得到的支撑向量來區分相關樣本与不相關樣本。但 

是，如果正反餓的樣本很少的時候基于支捲向量机的反饋方法的效果會不理 

想，這主要是因為下面三個原因：1.支撑向量机對于小樣本的訓練集合是 

不穩定的；2.如果正反饋和負反饋的數丨：弓相差比較多，那么支撐向量机的 

最优化分類、F面是有偏的；3.當底層特征的維败遠遠高于訓練樣本的數量 

的時候，過沾應總會發生。在這篇論文里，我們使用隨机釆樣的方法去克服 

這些問題。為了解決前兩個問題，我們提出了基于不對稱Bagging的支撑向 

量机。為了解決最后一個問題，我們提出了基于特征子空問隨机釆樣的支撐 

向量机。最后，通過合并這兩個方法，我們提出了基于不對稱Bagging特征 

子空問隨机釆樣的支撐向量机解決了所有問題。我們在論文中給出了败學上 

的解釋。大量的試驗証明所提出的方法是行之有效的。 

基于有偏璧別矢量分析的反饋是另外一种基于小樣本學習的反饋方法。在基 

于有偏璧別矢量分析的反饋模型中，負反饋樣本被要求遠离正反饋樣本的中 

心。盡管基于有偏璧別矢量分析的反饋取得了非常好的效果，但是它依然存 

在很多問题：1.為了得到有偏璧別矢量分析的最优解總會遇到矩陣奇异值 
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問題或者說是小樣本問題；2.有偏璧別矢量分析假定正反饋是服從單高斯 

分布的，但是這樣的假定對于圖像檢索來說并不合适；3.盡管基于核空間 

的有偏璧別矢量分析能夠避免單高斯分布的假定，但是這個方法又需要進行 

在線核空問參败的調整。近年來，直接方法和零空問方法成功的解決了線性 

聽別矢量分析中矩陣奇异值問題。我們首先把這兩個方法推廣到了核空問的 

有偏聽別矢量分析。因為直接方法和零空間方法都會丟失一些璧別信息，我 

們提出了一种新的全空問分析方法。新的方法可以保留全部的璧別信息。為 

了避免核空:|i'ij有偏II別矢量分析的在線參數調整的問題，我們提出了非參數 

有偏觀別矢:(t分析。最后我們也分別采用了直接方法，零空間方法，和全空 

間方法去解決非參败有偏•別矢量分析中的矩陣奇异值問題。試驗証明，非 

參败全空問有偏聽別矢量分析能夠非常好的解決原來面臨的問題，它有效的 

提高了相關反饋的效架。 

在諭文的最后，我們研究了 SARS醫學圖像的分類問題，作為一個圖像檢索 

的應用，同時它也是SARS計算机輔助治療的初少研究。為了璧別SARS感染 

的W部區域和rn常的肺部區域，我們提出了兩种方法去改進原有的灰度級共 

發矩陳特征。我們釆用了多層特征選擇方法去提取多分辨率的基于區域的灰 

度級共發矩 I冲進行紋理分類。大量的試驗証明，所選擇的特征能夠极大的保 

留具有分類能力的特征。 
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Chapter 1 

Introduction 

1.1 Content-based Image Retrieval 

With the explosive growth of image databases in terms of both size and variety, 

effective indexing and searching images from a large-scale database or the 

Internet are becoming more and more important in recent years 

[1][7][50][59]|62][66][70]. 

(a) (b) (c) 

Figure 1-1. (a) Picasso's “Bathers with Crab", (b) Picasso's "Girl Asleep at a 

Table", and (c) Munch's “The Scream" 

Conventional approach relies on the key words or text description of an image to 

retrieve and index image data [40][60][62][70][88]. However to give all images 

text annotation is very difficult, because automatic annotation of an image cannot 

be done by the current image processing and pattern recognition techniques yet 

[3][6]. Moreover, an image says more than a thousand words and many images 

even cannot be described by text information, such as the Picasso's "Bathers with 

Crab", the Picasso's "Girl Asleep at a Table", and the Munch's "The Scream", 

which are shown in Figure 1-1. There, using the visual information of the image 

data to retrieve images is a reasonable approach for the nonce [35] [36][45][65]. 

Content-based Image Retrieval (CBIR) is the techniques that retrieve semantically 

relevant images from an image database through the automatically extracted 

image features based on the color [3][8][28][39][40][60][74][103], texture 

[4][9][30][46)|49][77][93], or shape [2][48][71][72][78] information of the 

images. In the past twenty years, a great deal of low-level visual features have be 
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used for CBIR, such as the color histogram[60], color coherence vector[28]， 

wavelet texture[4], Gabor texture[9], edge direction histogram[2], etc. 

H h S i ^ ^ m 

Figure 1-2. The gap between the low-level visual feature and 

the high-level semantic. The two objects are different but have 

similar low-level features. 

However, the gap between the low-level visual feature and the high-level 

semantic of an image always leads to the poor performance of CBIR [99][100]. 

This point can be seen clearly from the Figure 1-2 and Figure 1-3. To bridge the 

gap and to improve the performance, the interactions between the user and the 

search engine are required. The user labels the retrieved images as semantically 

relevant or irrelevant, and then the system refines the retrieval results. This 

technique is generally named as relevance feedback (RF), which was initially 

developed in document retrieval [29]. RF is selected as an important modus to 

scale the pertbnuance of CBIR systems during the early and mid 1990's 

[81][82][90][91][92][95][98][101] and has been shown to provide dramatic 

performance boost. 

. (a) (b) (c) 
Figure 1-3. The ideal query assumption is not suitable. If (a), which includes the 
woman and the building, is the query image, (b) and (c) will be retrieved. Clearly, 
when the user focuses on the woman, (b) is a desirable image, otherwise; (c) is the 
right one. 
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Many RF methods have been developed in recent years [15] [16] [17] [18] [19] [20] 

[2l][22][23][26][55][58][67][68]. Some approaches [97][99][100][101] adjust the 

weights of various features to adapt to the user's perception. Some [95][101] 

estimate the density of the positive feedback samples. Some [55][11] give a 

binary feedback for positive and negative feedbacks. Some [6][35] use the 

Bayesian framework to estimate the user's requirements. Some [103] use both 

labeled and unlabeled data for training. Some [18][68] use multi-class methods. 

All these methods have certain limitations. 

Recently, the classification method, such as Artificial Neural Networks [42], 

Bayesian Analysis [6], etc., has become popularly in RF algorithms. However, the 

traditional classification and RF are definitely different because the user would 

not like to provide a large number of marked samples. To overcome this problem, 

small sample learning methods [27][37][52][54][55][84][85][91] are proposed in 

CBIR RF. Support vector machine (SVM) [26][58][67][95] and discriminant 

analysis (DA) [90][91] are two small sample learning methods used in CBIR RF 

ill the recent years and obtaining the-state-of-the-art performance. 

1.2 SVM based RF in CBIR 

S V M [84][85] is an approximate implementation of the structure risk 

minimization in statistical learning theory [84][85]. It was successfully used in 

CBIR in the last two years. S V M classifies the relevant samples and irrelevant 

samples based on the support vectors, which are automatically determined by the 

S V M learning algorithm. 

However, the performance of S V M based RF is often poor when the number of 

labeled positive feedback samples is small. This is mainly due to three reasons: 

r S V M classifier is unstable on a small size training set; 

> SVM's optimal hyper-plane may be biased when the positive feedback 

samples are much less than the negative feedback samples; 

> Over-filting due to the fact that the feature dimension is much higher than 

the size of the training set. 

In this thesis, we try to use random sampling techniques [56][79] to overcome 

these problems [21]. To address the first two problems, we propose an asymmetric 

bagging based S V M . For the third problem, we combine the random siibspace 
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method (RSM) and S V M for RF [22]. Finally, by integrating bagging and R S M , 

we solve all the three problems, further improving the RF performance. 

1.3 DA based RF in CBIR 

D A [27][52] is another way to model CBIR RF. In the last two years, Fisher linear 

discriminant analysis (LDA) has been successfully used in face recognition 

[14|[51][53]. It also can be used as a RF algorithm [91] for CBIR with a similar 

way to face recognition. L D A extracts the discriminant subspace in the low-level 

feature space to distinct the relevant and irrelevant samples. Then the remaining 

images in the database are projected into the subspace. Finally, the CBIR system 

uses some similarity measures to sort these images. 

However, L D A based RF considers the positive and negative feedback examples 

equivalently. This is a lethal drawback because all positive examples are alike and 

each negative example is negative in its own way. With the observation, biased 

discriminant analysis (BDA) was developed to scale the performance of CBIR 

and obtained satisfactory results. In the B D A model, the negative feedbacks are 

required to keep away from the center of positive feedbacks. Although B D A 

achieves the state-of-the-art performance, it also meets many problems: 

> For the B D A , the regularization method is used. It is well known that this 

method often encounters the Matrix Singular Problem (MSP) or the Small 

Sample Size (SSS) problem. 

> B D A assumes all positive feedbacks from a single Gaussian distribution 

which may not be the case for CBIR. 

> Although kernel B D A ( K B D A ) can circumvent the single Gaussian 

distribution assumption to some extent, the kernel parameter tuning makes 

the online learning unfeasible. 

Motivated by the successful direct method [31][43] and null-space method [57] 

used in L D A to solve the SSS problem, we generalize them into the kernel Hilbert 

space to over come the SSS problem in K B D A [15][16]. Because direct L D A 

method and null-space method may lose some discriminant information, we 

propose a new full-space method [16] to contain all discriminant information both 

in linear space and in kernel Hilbert Space. 
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To avoid the parameter tuning problem and the single Gaussian distribution 

assumption in B D A , we construct a new nonparametric discriminant analysis 

(NDA) [19] for RF in CBIR. W e then generalize the regularization method, the 

direct method, the null-space method, and the full-space method to address the 

SSS problem in N D A . 

1.4 Existing CBIR Engines 

CBIR for a general purpose image database is a challenging issue because the size 

of the database may be very large, understanding image contents is tough by a 

computer, and performance evaluation is difficult. Recently, a number of search 

engines were developed for general purpose image retrieval, such as I B M QBIC 

[59], V I R A G E [1], N E C A M O R A [75], Bell Laboratory [5], PhotoBook [6] 

[24][82J, Image Beagle [23]，PicToSEEK [78], N E T R A [86][87], WBIIS [49], etc. 

Here we show some image retrieval systems: 

• Quel, G o [15][19][2I] image 

K — , 一 fi i-etrieval system, developed in the 

• •一 . J I K J ^ i s i E i i E department of information 

^ § 5 engineering at the Chinese 

J^- —：；； P University of Hong Kong, supports 

^ 棚 ^ ^ I 〗 color, texture, and shape features. It 

P i y i 邀 叙 can use different relevance 

^ ^ ^ ^ ^ feedback algotithms. Moreover, 
£213X2215 I'J i 

new feedback algorithms can be easily embedded into the system. 

The BlobWorld [10] system supports color, shape, spatial, —...：；:.-,—r.. 

and texture features. It can segment each image into ：力：：..."二二.....^  

regions automatically, which correspond approximately to ^ ^ l ^ p S 

objects or parts of objects in an image. BlobWorld allows 

users to view the results of the segmentation of both the 

query image and returned results with highlight showing 

how the segmented features have influenced the retrieval results. The system allows 

querying at object level rather than on the whole image. 
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II,, , AllTheWeb can retrieval images, 
dllcneujeo 

' ’ ' ( " . a u d i o s , and Videos by text intormation. 
t .-'Wt. { Plclut«» t Vnjiii.- Aa-j.；. J rtf* (i'r» 

I HEssn 、 “ T h e system can be found at: 
“-—•丄:Jtiffimnf， Iim iiili|ii| till hIWiPiillMMiiMWWTiaiiiiifOI'll 

c„,,洲丨丨丨一丨丨 s 丨风 哪 , wvvw.alltheweb.com. 

‘ - ‘ " . . . 1 vjiL-^I-Hf •�•-. ‘ . ••i^ 
CopimqN OX03 0«*>tui« StMct* U.t 

The C-BIRD system [103], developed at Welcome to C-BIRD 

the Vision & Media Laboratory, Simon 識 。 一 一 彻 — 一 - 季 一  

Fraser University, supports color, shape, 

and texture matching features. B ^ ^B I T O ' ^ ^ ^ ^H 

Enter the C-BIRD site using Java 
The I mage Rover system [23], 

developed al Boston University, is a 豫 , W i l M 

World Wide W e b image search 

system that combines textual and ImageRover On-Line Demo 

visual statistics in a single index for 「 ^ ^ � . t �= 山 c t » r c i = v 咖 if-^^n'i 
I ̂mSŜ Ŝ Li i卿mark the check- ； ̂ fiSBjSS 2 ^ y^^HjOI J box found next to the 

content-based search of an Internet rci«v«nt immHm^ _ 

image database. Textual statistics are captured in a vector using a technique called 

latent semantic indexing. Similarly, visual statistics are captured in a feature vector 

using color and orientation histograms. Users initially specify keywords to describe 

the desired images, and then refine the query by relevance feedback. 

The ImageScape system [44] is a J L j W C l Q ^ ? f c‘d j ® C f c 

World Wide W e b sketch image 二 

retrieval system. “ 

C 优 」 圜 ^ M 
: H i . j I 

, S e n d g k c t c l i j C lear gketch 

H ^ i D H  
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H the The Leiden 19th Century Portrait Database 
^m i r vr tfi4*fi Vaivcrtlty. tn c«Uib«r*ti«ii vtth Pktllpi Ktioirh Lkbi linOkevtn. ^ ^ • ‘ 

， , ， J , ,,‘„「，:,,• (LCPD) [33], developed at the Computer 

年、fji 議 ' 讓 遍 國 國 Science Department, Leiden university, 

L 二： ―二 _ “； supports shape and texture matching 

麵 " J l 謹圓糧誦 features for the retrieval of grayscale 

diet mt f thtse i^trTe fMt simiJv cw 11T13.^CS . 

ii yc。""。丨ii s s s n — " " I 
|jMftv>n4P'/p»tltvpi»l 

PFZ^ . I 
J J - ™ — | ] DIm-Uv ft一IIW I T 一 , I c„ Kr： | 

H • M"“叫j 0,, i»MB-8«)ectloni * S«»rcl« •* Shiw fronJ 4 btck 

Multimedia Analysis and Retrieval System 
• • • _ • E-.._ 

( M A R S ) [100], developed at the Beckman ^ ^ 

Institute tor Advanced Science and Technology, i ! ^ r W . - W r W [ — ~ 

University of Illinois at Urbana-Champaign, 竺 | ^ J ” ‘ 

supports combinations of color, shape, spatial • 關 ® 圖圖•： 

layout, and texture matching features.  

I — " ^ In ImageGrouper system [63] 

m m H 國 was — l o p e d at the Beckman 

, . ‘ . V î 'inr：:：?*̂  u u ^ Institute for Advanced Science 

• • • ^ g ： 二 - J and Technology, University of 
I Pop.D K'icnin p̂ Sh 

l ^ ^ u t ^ ^ J. ll^roupPaielt^ Illinois at Urbana-Champaign. 

—i圓圃E^ bM 7 T^e碰舰 
KJC3 I nomrai pioup I 已 」combmatioiis 01 query examples 

by dragging and grouping images on the workspace (Query-by-Group) interactively. 

Because the query results are displayed on another pane, the user can quickly review 

the results. Combining different queries is also easy. Furthermore, the concept of 

“image groups” is applied to annotating and organizing a large number of images. 

The Beckman Institute for Advanced Science and 

Technology in University of Illinois at Urbana-

Champaign proposed an interactive 3D 

visualization system for Content-based image 

retrieval named 3D M A R S [64]. In 3D M A R S , only 

relevant images are displayed on projection-based 

immersive Virtual Reality system or desktop V R . H H K f l ^ H H ^ ^ H ^ ^ ^ H H 

Based on the users' feedback, the system 

reorganizes its visualization scheme. 3D M A R S eases tedious task of searching 
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images from a large set of images. 

jp^r�一" . The NeTra system [87] supports 
^ ijt.；.,̂  13； lA'.f J«IS 101 Ameri(H" Oaiocns) iSfiOUi …g 

iii^HHr"' 丨ib� colour, shape, spatial layout and 
B̂frmflfflS 丨 九 m丨丨） 156006 ipg 
.•ffiltlfiTaPIHi ™ ,51 (̂•,,、丨》,> I se007 ipg 

„„„ �• 赢 a — — _ 丨Sg texture matching features in 
— 1 «B? n.'.oOiat̂ OCarTvom ^ HSOIOipg O 

I tb« (Ot Ufu) �6))0lltP« 
O.»pi>ylm>ge»tnU0 | 丨 » 5 e O t . ' } P 5 

K—^^^^ M segmented image regions to search 

^ ^ ^ ^ .-'..̂g and retrieve similar regions from an 

— i m a g e database. 
,;iu*rvtfnag«« t58C03ipg 'rugtf* 11406) lOg frag^* >76076ipfl 'fnage« t840«7iftf 

I 

：]；；̂ ；̂；̂  i S ^ I I M ^ ^ ^ ^ 
MuTk iiiMSeieiWyNcgion , ‘ I i _ j . _ J 

Cyioj LociUofi iSijiUtUiPQ t;e02»ipj im»ge« 150001 ipg 

"Uktijtft Shipt Hack" j »> Nem'- | 

The PicSQM [42] system is an image 冊丨、：'"'二 
"；But, -J RHwd hoitw Mviuppc Pini i ' i jpi 'h _ • 免 

browsing system based on the Self- j • » ^ 
. . conlent-basod self-organizing image retrieval ！: 

Organizing M a p (SOM). 1 he system 卩咖• .一 .酬 

— 一 I: Utilizes a hierarchical version of the ！ 
Ml liti iitom：. “ Oik llfuMnKH lUU Ml me turn M/i^H'.mtthftUt&'UlViiai'. ！. 

• p^Kotap^ic wd ariilODi iliMTiip m tiduihi •‘ 

S O M neural algorithm, Tree — — \ 
rub uxtufQ nxulsabil 

Structured Self-Organizing M a p (TS- ^ S S ；| 

S O M ) , as the method for retrieving i—i i — i—i 

similar images from a set of reference || || ； 

images. The system adapts to the g ^ j 滋 ‘深^^ pj ^ ^ i 

user's preferences by returning images 式 •。 • ' • ^ ‘ •二 __ ‘ 

P s b J&i ^ t? h ^ K H H I 國 丨 from those SOMs where their ,... ' -‘ , ‘ -‘ ^ i 
responses have been most densely 7 ‘ ̂ ^ . . : 

) 

m nnnpH stiwimw" Crtunra- ？ ̂^ | 一 ) Itim如ycxfo — j | OnCwoOwyl |, 
• vffPBffiafll! - : 〜 - . ， … - T 烹 > 丄 

Semantics-sensittve Intecjrated Matching for Picture Libraries StailfOrd UniVGl Sity pi CSeilted tllC 
OptJon 1 Image ID 01 URL f一 — • Option 2 Option 3 - > Click an image to 

雀 ^ 丫 ，楚—、 Semantics-sensitive Integrated 

3 國 隱 l i 羅 • 顯 _ Matching for Picture Libraries 

_ - 1 m i ^ (SIMPLIcity) [50], an image retrieval 

Jsn^. ； kr^s vtM 議 system, which uses semantics 
li- > ‘ Ôiy I * -I ’ p..11 J ) 

m i i S i S H ? 1 m classification methods, a wavelet-

y«,i�o > oijjm” based approach for feature extraction, 
_ and integrated region matching based 

5 々 ami U： M I Sl̂，： li) 4 50>K； ScSmJI li：?̂  

>,‘,,‘“”,、“-、.一、…'V.,膽,、 ‘ ‘ upon image segmentation. The image 
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is represented by a set of regions, roughly corresponding to objects, which are 

characterized by color, texture, shape, and location. The system classifies images into 

semantic categories, such as textured-nontextured, graph-photograph. 

PicToSeek [78 j, developed in the Department of 
1 •JlJ ！ 1' J * * “ oullWit I Ki»|»«iM I Ulxf 麵 OMl|i>it I Mmit i««ic» | P»>» 11«imkm< IU I 

Computer Science, University of Amsterdam, — ! • 拟 咖 ， , — — . — - 爾 • 麵 

uses photometric color and geometric invariant ""‘ j 'iL.Ĵ f̂  

indices. Invariant Features are extracted from •右,.: J : - ' ' B p j j Q j g . 

each image in the database and are matched I H K & H H I SWiiir J^Sl 

with the invariant feature set derived from the p"  
Ki<«ivt>>| rtivill latfi itr««r . . rl«u« 

query image. 

Coiitent Basccl Image REtrieval System 

^ ^ (CIRES) [69], developed by the 

HiiifeJ department of Electrical and Computer 
- I -. . • -： I 

Images Engineering at the University of Texas 

at Austin, is a robust content-based 

image retrieval system based upon a 
r Yes NS r Vcs ' NS r Ycs^NS t- Yes r nS <-Yi.s«�NS 

感 、 combination of higher-level and lower-

' 霍 i K I i level vision principles. Higher-level 
f Vc. <~ * NS Yts N.S 广 V « f NS r Ytrs c NS 

— ; 下 • 秘 、 阶 ： 々 analysis uses perceptual organization, 

i — and. grouping principles to 

rYcŝNs 广Ycs' Ns (、YesrNS r、、.srN‘s Yc-srNS cxtFact seiiiantic iiifomiation describing 
«-No •• No No No 'f No O 

• the — 1 content of an image. 

"" sEiflMiltssL：：,^Hm Lower-level analysis employs a channel 
� Y e s 广 NS � Y o s - N S r Y c s ' NS r Yes f NS ‘“ Yes <" NS � � 

" N o No <： No Nio I? No 

energy model to describe image texture, 

and utilizes I he color histogram. Gabor fillers are used to extract fractional energies in 

various spatial-frequency channels. The system is able to accept queries ranging from 

scenes of purely natural objects such as vegetation, trees, sky, etc. to images 

containing conspicuous structural objects such as buildings, towers, bridges, etc. 
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Effective W W W image retrieval systems are 「•T̂ -MiT̂ nwTinMMrBMnMwiwffwmimi 
o Search Results 

• _ 1 J _ I _ J _ _ 1 _ _ , • • • • 一 ^ 八 • • J ro <«orcA fuHhtr. chaoMt a cwnbinoUon of c«l«ur 9r ttxi ond dick tht "Sttarth" button 

required to locate relevant images as more and 
紐fxh T«rm»; Tarn VaiiM： |tpO i)y, idwchi] 

more images used in H T M L documents. Lu 二 ^ ^ 

Guojun [32] described an approach integrating Gli^ 
miLmi wib 脚 m^Lsau m b p w wskjtaM wb p w 

ff" Ceiegr 5»iif<h Ccl»w- Coloof f C«W 5««rch C Colxr S*«r<i 广 CotM* S«art»i 

text based and content based techniques, to take ^ ^ ^ ^ g ^ ^ 

advantage of their complementing strengths. ^ 卞脚 ^ ^ ^ ^ 
C 1 C W' r <:oW-5«ach O Colau* 广！•otour Srorct̂  r Ceiouf 5«ac:h <" Coisw f Co\<»x Starei 

i 1 圔 — 
r ColBur^crih 广 jr. Coluv* C CBlxrafaro f Coi^r i tvf 

a H M i ^ i " PicHuiiter [35], a prototype content-based image 

H ^ ^ retrieval system, represents a simple instance of a 

wmmm, • i e j 二二• general Bayesian framework we describe for using 

^ ^ ^ S m ^ b M I : J relevance feedback to direct a search. With an 

^ ^ ^ k ^ i l explicit model of what users would do, given what 

^ ^ ^ ^ j M i ^ i L—IBfc^Jt: target image they want, it uses Bayes's rule to predict 

what the target is. This is done via a probability distribution over possible image 

targets, rather than by refining a query. 

1,5 Practical Applications of CBIR 

A wide range of applications for CBIR technology has been identified [38][62] 

|70][80]: 

architectural and engineering design, 

> art galleries and museum management, 

y crime prevention, 

V cultural heritage, 

r education and training, 

'r fabric and fashion design, 

> geographical information systems, 

V home entertainment, 

> intellectual property, 

,interior design, 

> Journalism and advertising, 

> law enforcement and criminal investigation, 

> medical image classification and diagnosis, 
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> picture archiving and communication systems, 

remote sensing and management of earth resources, 

> retailing, 

、r scientific database management, 

> the military, 

> trademark and copyright database management, 

,weather forecasting, and 

、.r web searching. 

Because research and develop most issues in CBIR spread on many different 

aspects and most of them share with image processing, computer vision, 

information retrieval, and patter recognition, the progress in CBIR can inspirit all 

the relative research fields. 

1.6 Organization of this thesis 

The rest of the thesis is organized as following. In Chapter 2, we review the 

statistical learning theory and its approximate implementation with S V M . In 

Chapter 3，we review the Principle Component Analysis (PC A), Kernel PC A 

(KPCA), L D A . BDA，and K B D A . W e also prove that K P C A combined with B D A 

is K B D A . In Chapter 4, we develop the random sampling based method for S V M 

based RF. In Chapter 5, we propose the direct method, null-space method, and 

full-space method for K B D A to overcome the SSS problem. Then the N D A is 

developed in Chapter 6. Alter that, a medical image classification application is 

described in Chapter 7. Finally, the Chapter 8 draws the conclusions of the thesis. 
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Chapter 2 

Statistical Learning Theory and 

Support Vector Machine 
This chapter provides an introduction on the fundamental knowledge of the 

statistical learning theory [84] and the Support Vector Machine ( S V M ) [84], 

which are the main theoretical background in this thesis, and have been 

successfully applied in the pattern recognition and multimedia information 

retrieval in the last years. Theses introductions is also chapter dwells entirely on 

the object recognition, image segmentation, information retrieval, time-series 

prediction, lexl categorization, and all their extended related fields. 

2.1 The Recognition Problem 

W e first consider the basic problem in pattern recognition [54]. Suppose we are 

given a set of observations generated from an unknown probability distribution 
/)(、_y) 

X = {(x„v,).(x,ô )’...’(\„’兄„》with X, e R", xe{-l, + l} . (2-1) 

and a class of functions 

/•• = {/l/:/rh^{-i,+i}) (2-2) 

then the basic problem is to find a function f s F that minimize a risk function 

4/;H/(.V-/(x)’X)"尸(X’,V) (2-3) 

where / denotes a suitable loss function, such as /(/(X),:K) = (/(X)-；^)' , which 

indicates how differences between y and /(x) should be penalized. 

As /)(x,少)is always unknown, therefore we cannot evaluate r[/] directly. One 

possible solution would be to estimate the density function P{\,y) from the 

samples x and many theoretical and practical techniques want exactly this by 

some way. It is well known that density estimation is difficult and depends greatly 

on the previous assumptions. If the size of x is small, it is always impossible to 
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estimate "(x,.v) well. One particular simple way is to minimize the empirical risk 

only 

“ . . … , , = ^ I / ( v , - / ( x , ) , x , ) . ( 2 - 4 ) 

When the number of the training samples is asymptotical to +co, the empirical risk 

will converge to the real risk. However, in pattern recognition the size of the 

training set is limited. Consequently, to minimize the empirical risk will always 

lead to the over-fitting problem. A network or function f that is too complex may 

fit the noise, not just the signal, leading to over-fitting. 
Over-fitting is especially dangerous because it can easily lead to predictions that 

are far beyond the range of the training data with many of the common types of 

pattern recognition methods. Over-fitting can also produce wild predictions in 

many pattern recognition methods even with noise-free data. The over-fitting 

problem is caused by the over complex function f , which can represent the 

training set x well but cannot generalize to unseen examples. The converse leads 

to the under-fitting problem. A network or function f that is not sufficiently 

complex can fail to detect fully the signal in a complicated data set, leading to 

under-fitting. 
Apparently, vvc need to control the complexity of the function set F to avoid the 

over-fitting problem and under-fitting problem. There are two methods to control 

the complexity of F , regularization and the structure risk minimization principle. 

；力、、、，y丨.lô、、、•，J 〇一 , > ^ 、 、 ^ 9 » 乂 ( ^ 〇 

〇 〇 I ^ ^ o 9 ^ 〇 〇 〇 〇 〇 o O o O 
o 1 ^ ; % 〇 〇 〇 〇 〇 < 〇 〇 〇 〇 〇 〇 〇 

Figure 2-1. Illustration of the over-fitting dilemma: Given only a small sample 

(left) either, the solid or the dashed hypothesis might be true, the dashed one being 

more complex, but also having a smaller empirical risk. Only with a large sample 

we are able to see which decision reflects the true distribution more closely. If the 

dashed hypothesis is correct the solid would under-fit (middle); if the solid were 

correct the dashed hypothesis would over-fit (right). 
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2.2 Regularization 

The method wants to minimize the empirical risk plus some penalty item, which is 

called the regularized risk: 

《V.、.=《.,",,+双2(/)’ （2-5) 

where Q ： / • / r is a regularization operator which measures the properties of the 

function f. The constant A is used to control the trade-off between the empirical 

risk and the regularization. 

2.3 The VC Dimension 

Another way of controlling the complexity of F is given by the Vapnik-

Chervonenkis (VC) theory [37]. The V C dimension is a property of a set of 

functions F . 11、a given set of m points can be labeled by {-i,+i} in all possible r 

ways, and for each labeling, a member of the set functions f can be found to 

correctly assign these labels, we say that set of points is shattered by F . V C 
dimension h of F is defined as the maximum number of training points that can 

be shattered by F . 

^ ^ o ^ L • : 

• o \ O • 

Figure 2-2. ] hi.ee points in shattered by oriented lines. 

Suppose the data belongs to , and i: consists of oriented straight lines, that is 

lor a given line, all points on one side are assigned by 1, and the other size are 

assigned by -1. The maximum number of points can be shattered is 3. Consequently, the V C dimension of F (the set of oriented lines in r^) is 3. 
14 



2.4 Structure Risk Minimization 

With the definition of the V C dimension, we give out the following theorem, 

which is the infrastructure of the statistical learning theory. 

Theorem (2-1). Let h denotes the VC-dimension of the function set F and /〈,„," is 

the empirical risk. For all。•>() and f e /-' the following inequality bounding the 

risk 

\h{In + 
"(./他(/,x) + j 、 h J (2-6) 

holds with probability of at least \-d for m > h over the random draw of the 

training samples x . 

2.5 Support Vector Machine 

S V M is a learning algorithm used for various function estimation problems based 

on the structural risk minimization principle. The S V M creates a classifier with 

minimized Vapnik-Chervonenkis dimension and an upper bound on the 

generalization error rate. Consider a linearly separable binary classification 

problem (The training data is linearly separable if there exists a hyper-plane (w,/?) 

for which the positive samples lie on one side while the negative ones lie on the 

other. It is shown in Figure 1.): 

肌d X ={+1,-1} (2-7) 

where x, is an /7-dimension vector and 兄 is the label of the class that the vector 
belongs to. S V M separates the two classes of points by a hyper-plane, 

、、‘'..、.+ /) =0, (2-8) 

where x is an input vector, w is an adaptive weight vector, and /?is a bias. S V M 

finds the parameters w and b for the optimal hyper-plane to maximize the 

geometric margin 2/||w|| subject to ̂ (w'x, + i, which will minimize a bound on 

the generalization error and will generalize best, regardless the dimension of the 

input space. Thai is we need to solve the following constrained minimization 

problem: 
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1 , 
nun —W W ^ A 、 

•、、.'’ 2 (2-9) 6../. .y, ( w ' x , 1 
The solution can be found through a Wolfe dual problem with Lagrangian 

multipliea,: 

= (2-10) 

subject to a, > 0 and ta.y, = o . 

Support Vectors 

# Hyper Plane 

o o X N C y 

� �。“、义 
。 〇 、、、、\ Margin 

Figure 2-3. S V M for the linearly separable binary classes problem. 

In the dual Ibrmat, the data points only appear in the inner product. To get a 

potentially beller representation of the data, the data points are mapped into the 

Hilbert Inner Product space through a replacement: 

X, .X, —«̂ (x,).«Hx,)=Mx,，x,), (2-11) 

where K{.) is a kernel function. W e then get the kernel version of the Wolfe dual 

problem: 

〔)(") = ia,-t a,a丨cl,cl丨人• ( x , ’ x ,)/2 . (2-12) 

1:1 i.i'i / 

Thus for a given kernel function, the S V M classifier is given by 

/••(x) = sgn(/(x)), (2-13) 
where / (x) = ia,v,A'(x,,x) + /? is the output hyper-plane decision function of the S V M . 

I 1 

In general, when |/(x)| for a given pattern is high, the corresponding prediction 

confidence will be high. On the contrary, a low |/(x)| of a given pattern means the 

pattern is close to the decision boundary and its corresponding prediction 
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confidence will be low. Consequently, the output of S V M , / ( x ) has been used to 

measure the dissimilarity between a given pattern and the query image, in 

traditional S V M based CBIR RF. 

2.6 Kernel Space 

Kernel method is to first process the data by some non-linear mapping o and then 

to apply the same linear algorithm in the kernel feature space. 

For example: 

O： 4 

‘ 、 卜 F ,、 (2-14) 

0 is carried out before all other steps of the classification methods. The only 

modification due to the kernel mapping is exchanging the dot product ( x , , x , ) by 

(o(x,).o(x,)). In this example, we get: 

K is a symmetric function in x, and x,. The following table shows some useful 

kernels: 

Kernel Function Type Kernel Function 

Polynomial of Order p ( i + ( x , , x , ) ) ' ' 

Gaussian Radial Basis f . 
、I， exp 

V / 

Sigmoid Function tanh(/c(x„xj-^) 
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Chapter 3 

Discriminant Analysis 
In this Chapter, we first give the definitions of Principle Component Analysis 

(PC A) [27] and Kernel PC A (KPCA) [54], which are the base for discriminant 

analysis. Then we briefly discuss L D A [52], B D A [91], and K B D A [91]. Finally, 

we prove the K P C A combined with B D A is actually K B D A . 

3.1 PCA 

Given a set of N observations, x,，k = i,.../V , x, E R.、'，PCA diagonalizes the 

covariance matrix in the input space: 

C = li (x , -m)(x , -m) ' . (3-1) 
A 1=1 

where m = — i x , . 
A, 1.1 

To do this, one has to solve the Eigenvalue equation 

乂v = Cv (3-2) 

for Eigenvalues /î o and veR、'\{o}. 

3.2 KPCA 

The section is devoted to a straightforward translation to a nonlinear scenario, in 

order to prepare the ground for the method. W e shall now describe this 

computation in another dot product space F , which is related to the input space by 

a possibly nonlinear map: 

卜：R、'h>F 

X (-4 (J){\、. 

Note thai v, which is referred lo as the kernel space or the feature space, could 

have an arbitrarily large, possibly infinite, dimensionality. 

Given a set of N observations, ̂(x,), k = I...N , ̂ ^(xJg F, K P C A diagonalizes the 

covariance matrix in the feature space: 
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, . V (3-4) 

N •'、、 N '八 N ) 

where (j)[\,) = ip,, m 二去少‘!.， 

A' N N 

and x； x , = = 

To do this, one has to solve the Eigenvalue equation 

(3-5) 

for Eigenvalues /l>0 and 

From the soluiions of the Eigenvalue problem in the input space, the solutions 

lie in the span of , which means =(Pa , 

where 

a = ...，a. = 小N\ . (3-6) 

_ a � -

(v'}' C V =a'O'C、I>0( 

= a'(D' -m^ ... ... cl>a 

=(u' Cl)' (CI) - ))(u'(I)' (cl> - m”'、,))' 

=(u'(D' CD - a'(I)' n/ r, )(a' CI)' (D - a ' m " )' (3-7) 

( 1 V 1 Y. 
=u'K-a'cD' — a)l,l； a'K-a'O' —<1>1,,1； 

V A'' A A ' ' ' ) 
f I V 1 Y 

=u'K-—a'Kl、.、 a'K-ia'Kl、、 
V A' _ A A' j 

广 1 Y 1 V' 
=u' K- — K L , K——Kl、\ a 

I A' A N � \J 
1 、 

=o' KK'——K1,,K' u 
V N ) 

Then we need to solve the following Eigenvalue problem: 

( V。 ' c v机、， (3-8) 

i.e. 

K' a = A . (3-9) 

The projection is: 
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y = v V ( x ) = ( i a > ( x , ) V ^(x) = i a / (x,)^^(x) = ia,/c(x„x). ( 3 - 1 0 ) 
/ r~\ ' - I 

3.3 LDA 

L D A tries to 11 nd the subspace best discriminating different classes. It is spanned 

by a set of vectors w maximizing the ratio between the within-class scatter matrix 

s‘，and the between-class scatter matrix s,， 

vVs.w 门 1 1、 
\Y_ = arg max V-J-l 1 ； w W'S„\V . 

Let the training set contain c individual classes and each class c, has N, samples. 

Then s„ and s,, are defined as, 

. . 〜 ' = ' 、 ( 3 - 1 2 ) 

I\ / - I 

where m = — v x is the mean vector of the total training set, m, = —ix ' is the 

A厂丨 N, M 

mean vector for the individual class c,, and x； is the sample belonging to class c,. 

w can be computed from the eigenvectors of ŝ 's,. If c is 2, L D A changed into 

Fisher discriminant analysis, otherwise, multiple discriminant analysis. 

3.4 BDA 

Based on ‘‘all positive examples are alike, each negative example is negative in its 

own way", Zhou developed Biased discriminant analysis (BDA). B D A defines the 

(/ +x)-class cldssificalion problem, which means there is an unknown number of 

classes but the user only concerns one class. 

B D A tries to find the subspace to discriminate the positive (the only class 

concerned by the user) and negative samples (unknown number of classes). It is 

spanned by a set of vectors w maximizing the ratio between the positive 

covariance matrix s、. and the biased matrix s,, 

vVs W 门 1 , � 
、V = arg 111 ax (J-lij 

、v ||vv's,.w||. 

Let the training set contains positive and Ny negative samples. Then s、. and s„ 

are defined as, 
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s 、 = 如 - m 、 . ) ( x , - m、.)' 

• ‘：: , (3-14) 
S, = Z ( y , - m , ) ( y , 

where x, denote the positive samples, y, denote the negative samples, m、. = — E x , 

A', 1=1 

is the mean vector of the positive samples, and w can be computed from the 

eigenvectors of s;s, . Firstly, B D A minimize the variance of the positive samples. 

Then B D A maximize the distance between the center of the positive feedbacks 

and all negative feedbacks. B D A maximize the distance between the center of the 

positive feedbacks and all negative feedbacks. 

3.5 KBDA 

According to the non-linearity of the data and the successfully kernel method used 

in non-linear analysis, B D A was also generalized to its kernel version, named as 

kernel biased discriminant analysis (KBDA). To obtain the non-linear 

generalization, the nonlinear mapping: 

U) ir ̂  F (3-15) 

\ 1-4 O (X) 

from the linear input space to nonlinear kernel feature space is used. Where the 

data x,.x, ,. . . ,x„ 6 is mapped into a potentially much higher dimensional feature 

space F, For a given learning problem one now considers the same algorithm in F 

instead of R^. The idea behind K B D A is to perform the B D A in the feature space 

instead of the input space. 

Let St and s* be the “the positive with-in class scatter" and "the negative scatter 

with respect to positive centroid" matrices in the feature space F. They can be 

respectively expressed as follows: 

S:=|((<)(x,)-ip(x))((p(x,)-9(x))'=cDX 

^ '二 (3-16) 
S : = l ( q ) ( y , ) - J p ( x ) ) ( c p ( y , ) - i p ( x ) ) ' =(I>、,(!>: 

( 里 ) 、 列 X))…（q)(x,) — ip(x))…（q)(x、.、.) 一 
P _ ^ (3-17) 

=[(<p(y,)-ip(x))…((p(y,)-iMx))…(9(y,、、,)-iKx)) 

where 9(x) =」-i>(x,) is the centroid of the positive samples, Nŷ  is the number of 

positive samples, and Ny is the number of negative samples. K B D A determines a 
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set of optimal discriminant basis vectors vv =卜丄丨，which can be obtained to 

solve the following eigenvalue problem: 

VV^StW 门 1 o � \V = arg max (J-1 o ) 
� v w'sy . 

according to eigenvectors of . 

The dimension of the feature space F is arbitrarily large, and possibly infinite. But 

we need not to use the exact o(x) to calculate W , because the kernel method can 

be utilized to avoid to map the feature point from the linear input space to 

nonlinear kernel feature space based on replace the dot product with a kernel 

function in the input space R^. 

Theorem (3-1). Kernel P C A combined with B D A is Kernel B D A . 

To prove K P C A combined with B D A equals to K B D A , we first use K P C A to 

project all samples in the training set to the empirical feature space, that is we will 

use the K P C A projection matrix to map the training set samples. 
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From these deductions, we can see that K P C A + B D A equals to K B D A , but we 

should reserve all the eigen-vectors of the K P C A procedure, otherwise, we will 

lose some discriminant information. 
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Chapter 4 

Random Sampling Based SVM 
Recently, classification-based RF has become a popular technique in CBIR and 

S V M based RF ( S V M R F ) has shown promising results owing to its good 

generalization ability [26][58][67][95]. However, when the number of positive 

feedbacks is small, the performance of S V M R F becomes poor. This is mainly due 

to the following reasons. 

First, S V M classifier is unstable for small size training set, i.e. the optimal hyper-

plane of S V M is sensitive to the training samples when the size of the training set 

is small. In S V M RF, the optimal hyper-plane is determined by the feedbacks. 

However, more often than not the users would only label a few images and cannot 

label each feedback accurately all the time. Hence the performance of the system 

may be poor with the inexactly labeled samples. 

Second, in the RF process there are usually much more negative feedback samples 

than positive ones. Because of the imbalance of the training samples for the two 

classes, SVM's optimal hyper-plane will be biased toward the negative feedback 

samples. Consequently, S V M R F may mistake many query irrelevant images as 

relevant. 

Finally, in RF. the size of the training set is much smaller than the dimension of 

the feature vector, thus may cause the over fitting problem. Because of the 

existence of noise, some features can only discriminant the positive and negative 

feedbacks but cannot discriminant the relevant or irrelevant images in the database. 

So the learned S V M classifier cannot work well for remnant images in database. 

In order to overcome these problems, we design several new algorithms to 

improve the S V M based RF for CBIR. The key idea comes from the Classifier 

Committee Learning (CCL) [12J[41][56][79][83]. Since each classifier has its 

own unique ability to classify relevant and irrelevant samples, the C C L can pool a 

number of weak classifiers to improve the recognition performance. W e use 

bagging and random subspace method to improve the S V M since they are 

especially effective when the original classifier is not very stable. 
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4.1 Asymmetric Bagging SVM 

Bagging [56] strategy incorporates the benefits of bootstrapping and aggregation. 

Multiple classifiers can be generated by training on multiple sets of samples that 

are produced by bootstrapping, i.e. random sampling with replacement on the 

training samples. Aggregation of the generated classifiers can then be 

implemented by majority voting rule ( M V R ) [41]. 

Experimental and theoretical results have shown that bagging can improve a good 

but unstable classifier significantly. This is exactly the case of the first problem of 

S V M based RF. However, directly using Bagging in S V M RF is not appropriate 

since we have only a very small number of positive feedback samples. To 

overcome this problem we develop a novel asymmetric Bagging strategy. The 

bootstrapping is executed only on the negative feedbacks, since there are far more 

negative feedbacks than the positive feedbacks. This way each generated classifier 

will be trained on a balanced number of positive and negative samples, thus 

solving the second problem as well. The Asymmetric Bagging S V M ( A B S V M ) 

algorithm is described in Table 1. 

Table 4-1: Algorithm of Asymmetric Bagging S V M . 

Input: positive training sets—, negative training sets、weak classifier /(SVM), 

integer r (number of generated classifiers), x is the test sample. 

1. For ；• = 1 to T { 

2. s, = bootstrap sample from s , with |s, | = |s+ . 

3. (,, = / ( s " s , ) 
4. } 
5. r , (x )= ‘哪/.t哪"f川{(’,(x,s, /<yj . 

Output: classifier C . 

In A B S V M , the aggregation is implemented by Majority Voting Rule (MVR). 

The asymmetric Bagging strategy solves the classifier unstable problem and the 

training set unbalance problem. However, it cannot solve the small sample size 

problem. W e will solve it by the Random Subspace Method (RSM) in the next 

section. 
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4.2 Random Subspace Method SVM 

Similar to Bagging, R S M [79] also benefits from the bootstrapping and 

aggregation. However, unlike Bagging that bootstrapping training samples, R S M 

performs the bootstrapping in the feature space. 

For S V M based RF, over fitting happens when the training set is relatively small 

compared to the high dimensionality of the feature vector. In order to avoid over 

fitting, we sample a small subset of features to reduce the discrepancy between the 

training data size and the feature vector length. Using such a random sampling 

method, we construct a multiple number of S V M s free of over fitting problem. 

W e ihen combine these S V M s to construct a more powerful classifier. Thus the 

over fitting problem is solved. The R S M based S V M ( R S V M ) algorithm is 

described in Table 2. 

Table 4-2: Algorithm of R S M S V M . 

Input: feature set F , weak classifier / (SVM), integer r (number of generated 
classifiers), x is the test sample. 

1 • For I = I to I. { 
2. K, = bootstrap feature from F . 
3. (，,=•,) 

4. } 

5. r'(x) = aggn'}icUion^C\(x,F, ),!</< 7'| . 

Output: classifier C'. 

4.3 Asymmetric Bagging RSM SVM 

Since the asymmetric Bagging method can overcome the first two problems of 

S V M R F and the R S M can overcome the third problem of the S V M R F , we should 

be able to integrate the two methods to solve all the three problems together. So 

we propose an Asymmetric Bagging R S M S V M ( A B R S V M ) to combine the two. 

The algorithm is described in Table 3. 
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Table 4-3: Algorithm of Asymmetric Bagging R S M S V M . 

Input: positive training set s—, negative training set s-, feature set F , weak 
classifier / (SVM), integer '/:、(number of Bagging classifiers), integer T丨(number 

of R S M classifiers), x is the test sample. 

1. For 7 = 1 10 7； { 

2. s, = bootstrap sample from s-. 

3. for / = 1 to 7； { 

4. F, = bootstrap sample from F . 

5. C,, = /(F„s;,s^). 

6. } 

7. } 

o ,’.，、 K , , ( 、 f , ’ S , ’ S 。 ] 

o, ( X = aegrciicilion 

、 ‘ ‘ [1</<7；,1< ； <7； 

Output: classifier C . 

In order to explain why Bagging R S M strategy works, w e derive the proof 

following a similar discussion on Bagging in [56]. 

Let (v.x) be a data sample in the training set L with feature vector F, where y is 

the class label of the sample x. L is drawn from the probability distribution p. 

Suppose 识（X’/、厂)is the simple predictor (classifier) constructed by the Bagging 

R S M strategy, and the aggregated predictor is, 

{x,F) = !：：,£, <p{\.L,F). (4-1) 

Lei random variables ()\x) be drawn from the distribution p independent of the 

training set i. . The average predictor error, estimated by (p{\,L,F) , is 

f„ = -(p[\,LJ''))' . The corresponding error estimated by the aggregated 

predictor is 

e<, = /“(ri,(x,/))”. （4-2) 

Using the inequality — I — > [ — ! ； — i r l , we have: 
^ 1 A/ U N YM^NT "J 

L F) L, F))' (4-3) 
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(4-4) 

Thus, 

<•)、. = - 2E, , }>, + 、. E, E,r{X, L, F) (4—5) 

… \ 丨 丨 

Therefore, the predicted error of the aggregated method is reduced. From the 

inequality, we can see thai the more diverse is the (/?(x’/.’/:,), the more accurate is 

the aggregated predictor. In CBIR RF, the S V M classifier is unstable both for the 

training features and the training samples. Consequently, the Bagging R S M 

strategy can improve the performance. 

Here we made an assumption that the average performance of all the individual 

classifier —x./../',)，trained on a subset of feature and training set replica is similar 

to a classifier, which use the full feature set and the whole subset training set. This 

can be true when the size of feature and training data subset is adequate to 

approximate the full set distribution. Even when this is not true, the drop of 

accuracy for each simple classifier may be well compensated in the aggregation 

process. 

From the inequality, we can see that the more diverse of the (p(\,L,F), the more 

accurate of the aggregated predictor. Practically, the aggregated predictor is not 

(P,{\,p), but …(X,/),), because the Bagging R S M strategy is used on the training set. 

P' and P are consistent in the probability space. If the classifier cp is stable, 

(P,{\.P') (it approximates to </J(X,/.,/•')) given by the Bagging R S M strategy is not as 

accurate as q\,{\,P) . Therefore, the strategy may not work. However, if (p is 

unstable (weak classifiers are diverse), (̂“x,/)')can improve the performance. In 

CBIR RF，the S V M classifier is unstable both for the training features and the 

training samples. Consequenlly, the Bagging R S M strategy can improve the 

performance. 

There are many different ways to do the aggregation. T w o typical methods are 

hierocratic and parallel structures. The hierocratic structure of the aggregation is 

shown in Figure 1. 

28 



I I I 

y 

^ 1 

Figure 4-1. I lierocratic structure of aggregation. 

For a given pattern, we first recognize it by a series of weak SVMs, which are 

constructed by the bootstrapping training set and features and denoted as 

c; =c'(/-;..v,)|I</<'/;.i<y<7；} . Then we recognize it on a subset of weak 

classif iers c, = c(/>5,)|i</<7；} , which are constructed on the same training 

examples but with different training features. At last, we use these outputs and the 

aggregation rule to construct the destination classifier. For example, if the 

aggregation rule is majority voting, we can represent it as: 

r ' ( . v ) = argmax I 1 ( 4 - 6 ) 
i'EI 

/<Mv,S/)-mi i i i iu\ I 
«)• U'l/O.ri 

The parallel structure of the aggregation is shown in Figure 2. 

I I I ! I I 
V  

Figure 4-2. Parallel structure of aggregation. 

For a given pattern, we recognize it by all weak S V M s 

r" =C'(/-;..s\)|i</<7;.i<y<'/;}. Then, an aggregation rule is utilized to classify it as 

a query relevant or irrelevant. For example, if the aggregation rule is majority 

voting, we can represent it as: 

C [x] = arg max I 1 ( 4 - 7 ) 
/,yl'(/(v.F(.S/)=> 
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For a given lest sample, we first recognize it by all 7； • r, weak S V M classifiers. 

Then, an aggregation rule is used to integrate all the results from the weak 

classifiers for final classification of the sample as relevant or irrelevant. 

4.4 Aggregation Model 

After training a given C C L model, such as B S V M or R S V M , the aggregation rule 

should be given to combine the weak classifiers. Many aggregation models have 

been developed, such as majority voting rule (MVR), Bayes sum rule (BSR), 

Bayes product rule, LSE-based weighting rule, double-layer combination, 

Dempster-Shafer model, and some nonlinear methods. In this paper, we only 

focus on the M V R and the BSR, due to their good performance in pattern 

classification. 

1. MVR 
M V R is the simplest method to combine multiple classifiers. Given a series of 

weak classifiers 

{ c , , ( x > . i . the M V R can be represented as: 

r(x) = argmax I 1 . (4-8) 
re)' 

M V R does noi consider any individual behavior of each weak classifier. It only 

counts the largest number of classifiers that agree with each other. 

2. B S R 

M V R does not consider the behaviors of the weak classifiers. If one classifier is 

much more accurate than all the others, the M V R cannot take advantage of it. To 

address this problem, J. Kittler [10] proposed a general theoretical framework 

based on the Bayeian decision rule. W e select B S R in the paper to aggregate 

multiple classifiers, because B S R outperform most of the other rules. 

BSR, denotes the measurement vector used by the /"' classifier . In the 

measurement space each class y‘ is modeled by the probability density function 

/}(：, IV,) and its priori-probability is "()、）. Then B S R can be computed as, 

r-(x) = ai.gmax[(l-R)/)(_yJ + i"(_y,|r,)]. (4-9) 
fi L '=1 _ 

To use the B S R in our schemes ( B S V M , R S V M , and B R S V M ) , the probability 

model is required. As shown in [17], the sigmoid function combined with the 
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output of S V M can be used to estimate the class-conditional probability for a 

given instance x by, 

/^(y,|-) = l/{uexp(-|y;(x)|)}. (4-10) 
W e do not need to consider /;(v,) here, because the probability for an unknown 

sample to be query relevant or irrelevant are equal. Then B S R is simplified as, 

r'(x) = ai-gmax[f P{y, | r,)] . (4-11) 

4.5 Dissimilarity Measure 

1. Using M V R to Combine the S V M s ( M V R S V M ) 

For a given sample, we first use the M V R to recognize it as query relevant or 

irrelevant. Then we measure the dissimilarity between the sample and the query as 

the output of the individual S V M classifier, which gives the same label as the 

M V R and produces the highest confidence value (the absolute value of the 

decision function of the S V M classifier). 

2. Using B S R to Combine the S V M s ( B S R S V M ) 

For a given sample, we first use the B S R to recognize it as query relevant or 

irrelevant. Then we measure the dissimilarity between the sample and the query 

using the individual S V M classifier, which gives the same label as the B S R and 

has the highest confidence value. 

3. B S R 

From the definition of BSR, the output of the B S R ip(y,\.x,) can also be used as a 
1=1 

dissimilarity measure between a given sample and the query. 

In this chapter, we will compare all the three rules for B R S V M based RF. 

4.6 Computational Complexity Analysis 

From 112], we know that the computational complexity for training a S V M is 

o{si'M) = o(nl + irL + njiiL), where "、is the number of support vectors, n丨 is feature 

dimension, and i. is the size of the training set. From the formula of the output of 

S V M , the number of the support vectors determines the computational 

complexity in the testing stage. W e denote the computational complexity for a 
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multiplication and addition of two real values as® and e , respectively. Then the 

computational complexities of S V M , B S V M , R S V M , and B R S V M are: 

Table 4-4: Algorithms' computational complexity. 

Training Testing 

S V M O(SI'M) yVf、' • A.'.;"' .(® + ①） 

A B S V M T, . 0{SI'M) 7； • . N.广'.(® + ®) 

R S M S V M T , •0{S]'M) 丁「N丨丨細..\丨.N丨J細..〜丨+ 

A B R S V M '/；.7.,.O(I'M) 7; • T丨‘ " ; 而 | • N；|細..、'.(® + ®) 

4,7 QueryGo Image Retrieval System 

In CBIR, we assume that the user is greedy, who expects the best possible 

retrieval results after each RF iterations, i.e. the search engine is required to 

feedback the most semantically relevant images under the previous feedback 

samples. Meanwhile, the user is impatient, who will never label a great deal of 

images in each RF iteration and only does a few numbers of iteration. To solve 

this type CBIR problem, the following CBIR framework QueryGo is proposed. 

With the proposed system, we can embed any RF algorithm easily. 

<;II7~ User 一 Query 
一 , ^ ^ 

Visual Feature __ _ 
f - —• V w Large Image Datab^ 

Similarity Measure "“~~  
• Z 人 y i  <r-Relevance Feedbad?^ ^ Retrieval Result ^  

z - z 丨 
— \ f ~ -：> 

— —— >— ~—^ 

H Positive Feedback Negative Feedback 

IP i f 

Final Retrieval Result Relevance Feedback Model  
Figure 4-3. QueryGo system flow chart. 
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From Figure 3, when a query (image) is inputted, the low-level visual features are 

extracted. Then, all images in the database are sorted based on some similarity 

metric. If the user is satisfactory with the result, there will be no relevance 

feedback. However, most time, the RF is needed because of the poor performance. 

The user labels some top images as positive feedbacks and negative feedbacks. 

The user labels some top images as positive feedbacks and negative feedbacks. 

Using these feedback images, a RF model is trained based on certain machine 

learning algorithms. Then the similarity metric is updated based on the RF model. 

All the images are sorted again based on the renovated similarity metric. If the 

user is not content the result, the RF is done circularly, otherwise, the user get the 

final retrieval result. 

The image retrieval system has been implemented with a real-world image 

database including 17,800 Corel images a subset of Corel Photo Gallery [39]. 

Corel Photo Gallery uses semantic concepts to group the photos each with 100 

images. But we cannot directly use the concept information as the ground truth, 

because many images with similar concept bit given different label information. 

Meanwhile, some content absolutely dissimilar images given same label 

information. Because of these reasons, we re-labeled the 17, 800 images into 90 

concepts. 

In QueryGo, we represent images by three main features: color [3J-[5], texture 

[6J-[13], and shape [13]-[17]. Color information is the most important features for 

image retrieval because color is robust with respect to scaling, orientation, 

perspective, and occlusion of image, which are pointed out by [3]. Texture 

information is also a type of important cue for image retrieval. Previous studies on 

texture have shown that texture information according to structure and orientation 

fits well the model of human perception. Shape information is another type of 

important clue to fit the perception of human, and many image retrieval systems 

support the feature. 

For color, we select the color histogram [3] to representation the color information 

of an image. W e select the hue, saturation, and value (HSV) color space to 

represent the color information. Here, the color histogram is quantized into 256 

levels. Because hue is the most important for human's perception, we quantized 

hue into 8 bins. Saluralion and value are quantized into 4 bins respectively. 
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For texture. Wavelet texture is extracted from Y component in YCrCb space. W e 

select the pyramid wavelet transform (PWT) [12] for image texture information 

representation. Image is decomposed by the traditional pyramid-type wavelet 

transform with Haar wavelet. In the system, the mean and standard deviation are 

calculated in terms of the sub-bands at each decomposed level. The 

decomposition procedure can be seen from the figure. P W T results in a feature 

vector of 2x4x3 values. 

For shape, the edge histogram [13] captures the spatial distribution of edges in an 

image. The distribution of edges is a good shape signature that is useful for 

image-to-image matching even when the underlying texture is not homogeneous. 

The edge histogram is calculated on Y component in YCrCb color space. Edges 

are grouped into five categories, which are horizontal, 45 diagonal, vertical, 135 

diagonal, and isotropic. From the description of edge histogram, we can get a five-

dimension shape feature for image retrieval. 

For each component mean and ~ 
v a r i a n c e are c a l c u l a t e d as 一 
f e a t u r e s . - J L j^Zlp -^__ 

CQ C! C2 C3 

prl 一 一 一 

C—OO Oil Qi2 Q)3 

'-000 Qoi QlO； QO3 
Figure 4-4. Wavelet texture feature structure. 

Each feature has its own power to characterize a type of property of the content of 

an image. W e combine the color, texture, and shape features into a feature vector, 

and then we normalize it into a normal distribution. 

Figure 5 shows the user interface of Query Go. In the paper, query by example is 

used. To scale the performance, the RF algorithms are focused here. First, user 

selects a query image from the thumbnail gallery and pushdown the “Set As 

Query” button. Second, user pushdown the “Retrieval，，button, and then the 

images in the gallery are resorted. Third, user provides the feedback by clicking 

on the "thumb up" or “thumb down" button in terms of his judgment of the 

relevance of the retrieved image. At last, user pushdown the "Retrieval" button to 
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resort the images in the gallery. The last two steps can be done iteratively to 

obtain a satisfactory performance. 

Tî  ui ]'i • fj SSTSSŜ i" 
j J J i i i IL U i i j i l i i i wULl JjESS^, ^ 、 i 

= : : 。 ， n 藝 ^ ^ 擁 

_ _ _ m m 
—’ — 驪 

M • wW 氣： 

Figure 4-5. User interface of QueryGo System. 

4.8 Toy Experiments 
1. S V M is Unstable for Small Size Training Set 

The toy problem in Figure 6 shows that the optimal hyper-plane of the S V M is 

sensitive to the small changes of the training set. The left figure shows an optimal 

hyper-plane, which is trained by the original training set. The right figure shows a 

much different optimal hyper-plane, which is trained by the original training set 

with only one incremental pattern. 

；广 1 

“ • .J?)' r̂  ^ a n e y g pattern 

Figure 4-6. S V M is unstable. 
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2. S V M is Biased with Unbalanced Training Set 

The toy problem in Figure 7 shows that the optimal hyper-plane of the S V M , 

which is trained by an unbalanced training set, will bias toward the class with 

more training samples. The left figure shows the overview of the training set. 

Through the right figure, which is cut from the bottom-right part of the left figure, 

we can see that the optimal hyper-plane bias to the class with more training 

examples. 

麗 • 
Figure 4-7. SVM's optimal hyper-plane is deflected. 

3. The Visual Feature is Diverse for CBIR 

This toy problem is constructed from the real data in RF. There are four positive 

and seven negative feedbacks. W e randomly select two features to construct the 

S V M optimal hyper-plane for three times. They are visualized in Figure 8. W e 

can see thai Ihc individual S V M classifiers are diverse with different features. 

‘ I , . , - . • ： 飞 • ‘ : : 、 ^ ! ^ 

r • .1. • L 遍 望 _ 
Figure 4-8. Ihe features are diverse. 

4.9 Statistical Experimental Results 

In this section, we compare the new algorithms with existing algorithms through 

the QueryGo. The experiments are simulated by a computer automatically. First, 

300 queries are randomly selected from the data, and then RF is automatically 

done by the computer: all query relevant images (i.e. images of the same concept 
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as the query) are marked as positive feedbacks in the top 40 images and all the 

other images are marked as negative feedbacks. In general, we have about 5 

images as positive feedbacks. The procedure is close to the real circumstances, 

because the user typically would not like to click on the negative feedbacks. Thus 

requiring the user to mark only the positive feedbacks in top 40 images is 

reasonable. 

In this Chapter, precision and standard deviation (SD) are used to evaluate the 

performance of a RF algorithm. Precision is the percentage of relevant images in 

the top N retrieved images. The precision curve is the averaged precision values 

of the 300 queries, and S D curve is the SD values of the 300 queries' precision 

values. The precision curve evaluates the effectiveness of a given algorithm and 

S D curve evaluates the robustness of the algorithm. In the precision and SD 

curves 0 feedback refers to the retrieval based on Euclidean distance measure 

without RF. 

W e compare all the proposed algorithms with the original S V M based RF [5] and 

the constrained similarity measure S V M ( C S V M ) based RF [7]. W e chose the 

Gaussian kernel 人(x'y)" '’®"、* with ^ = ' (the default value in the O S U - S V M [15] 

MatLabTM toolbox) for all the algorithms. The performances of all the S V M 

algorithms arc stable over a range of P . 

1. Performance of Asymmetric Bagging S V M 

Figure 9 shows the precision and SD values when using different number of 

S V M s in A B S V M . The results show that the number of S V M s will not affect the 

performance of the asymmetric Bagging method when the number of S V M is 

large enough. 

Piocision Vs. Nijmboi of SVMs Sland^rd Dovialion Vs. Numbor of SVMs 
1 0 35 

J I , ^ f 十 Top 10 

0的 二益 € 
一^-^〜-__ — — ~ : {二 一 

+ T叩印 
。助 一一 . Top 70 * 

• * ？ — - A - Top 80 c ^ - - t I 0.25 3 0 75 Top 10 ！S   I - ^ - ^ Top 20 “ 1 一 一 一    
0 7 TopM ？ 02 Top 40 沒 0 05° ® Top 50 “ ° 

— Top 60 

‘ ~:: 二 二 。 
0 55 一 * A A ‘ ‘ 

A  10 15 20 25 ° k 10 16 20 25 
NuniOor of SVMs Nun^or of SVMs 

Figure 4-9. A B S V M in RF. The number of S V M s will not affect the performance 

of the asymmetric Bagging method when the number of S V M is enough. 
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Figure 12 evaluates the performance of the proposed A B R S V M based RF. In this 

experiment, we chose '/; = 5 for A B S V M . The results in Figure 12 show that the 

A B S V M gives a much better performance than S V M and C S V M . 

2. Performance of R S M S V M 

Figure 10 shows the precision and SD values when using different number of 

S V M s of R S V M . The results show that the number of S V M s does not affect the 

perlbmiance of R S V M when the number of S V M s is large enough. 
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Figure 4-11. R S M S V M in RF. The number of S V M s does not affect the 

performance of R S V M when the number of S V M s is large enough. 

Figure 12 evaluates the performance of the proposed R S M S V M based RF. In this 

experiment, we chose T丨=5 for R S M S V M . The results in Figure 12 show that the 

R S M S V M gives a much better performance than S V M and C S V M . 

3. Performance of Asymmetric Bagging R S M S V M 

This experiment evaluates the performance of the proposed A B R S V M , A B S V M , 

and R S V M based RF. In this experiment, we chose y; = 5 for A B S V M , 7； =5 for 

R S V M , a n d 7； = r, = 5 for A B R S V M . 
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Figure 4-12. Performance of all proposed algorithms compared to existing 

algorithms. The algorithms are evaluated over 9 iterations. 

This experiment evaluates the performance of the proposed A B R S V M , A B S V M , 

and R S M S V M based RF. In this experiment, we chose 7; =5 for A B S V M , T丨=5 

for R S V M , and 7： = 7； =5 for A B R S V M . The results in Figure 12 show that the 

A B R S V M gives the best performance followed by R S M S V M then A B S V M . 

They all outperform S V M and C S V M . 

4. Aggregation Model Evaluation 

This experiment evaluates the performance of three different dissimilarity 

measures, M V R S V M , BSR, and B S R S V M , for the proposed B R S V M based RF. 

All algorithms are evaluated over nine iterations. The precision and SD curves are 
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reported in Fig. 9. From the figure, we see that M V R S V M can outperform both 

B S R S V M and BSR. 
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Figure 4-14. Aggregation model evaluation. 

B S R S V M considers the behavior of weak classifiers, so in theory it may 

outperform the M V R S V M . However, according to the experimental results, its 

performance is worse than M V R S V M , because we cannot estimate the behavior 

exactly for unstable weak classifiers. From Figure 9, we find that B S R is much 

worse than M V R S V M and B S R S V M , because M V R S V M and B S R S V M choose 

the best individual S V M to measure the dissimilarity between a given image and 

the user's sentiment. B S R uses the averaged probabilities, which cannot be 

estimated exactly. Therefore, M V R S V M is the best choice. 

5. Computational Complexity 

Because the size of the training set is small, the overall computational complexity 

is mostly determined by the testing stage. The /V, for S V M RF is much bigger than 

that of B S V M and B R S V M , and the A', of S V M RF is much bigger than that of 

R S V M and B R S V M . Thus the computational complexity of S V M RF is much 
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higher than that of B S V M , R S V M , and B R S V M . In general, for each of the four 

algorithms, the inequality A', > /V�holds, because the number of feedbacks is much 
smaller than I he dimension of the feature. Consequently, the computational 

complexity of B S V M is higher than R S V M and B R S V M , and the computational 

complexity of R S V M is lower than that of B R S V M . Our experiments will 

confirm these observations. 

To verify the efficiency of the proposed algorithms, we record the computational 

time when conducting the experiments. The ratio for the time used by different 

methods are S V M : C S V M : A B S V M : R S V M : A B R S V M = 25: 25: 1 1: 3: 5. This 

is show that ihc new S V M based algorithms are much more efficient than existing 

S V M based algorithms. 
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Chapter 5 

SSS Problems in KBDA RF 
K B D A [91] has been used for RF mainly because it handles the positive and 

negative feedbacks separately. However, K B D A often suffers from the SSS 

problem. To overcome it, the regularization method adds small quantities to the 

diagonal of the scatter matrices. This apparently is not an optimal solution and 

sometimes it may lead to an ill-posed problem, which limits the performance of 

RF. 

Recently, direct L D A (DLDA) [30] was proposed to solve the SSS problem in 

face recognition. D L D A discards the null space of between-class scatter matrix. 

Then the discriminant vectors are the within-class scatter matrix's eigenvectors 

with smallest eigenvalues. The successes of the kernel-machine based pattern 

classification algorithms have motivated us to generalize the idea of D L D A to 

B D A in the kernel feature space (DKBDA). W e first project all the training 

samples from the input feature space to kernel feature space, and then the null-

space of the iicgative-scatter-with-respecl-to-positive-centroid matrix is removed. 

At last, the discriminant vectors are extracted as the positive-within-class-scatter 

matrix's eigenvectors with the smallest eigenvalues. 

Another method lo overcome the SSS problem is the null-space L D A (NLDA) 

[57]. N L D A extracts discriminant information from the null space of within class 

scatter matrix. Similar to K D B D A , we also generalize the idea of N L D A to B D A 

in the kernel feature space (NKBDA). W e first project all the training samples 

from the input feature space to kernel feature space, and then the primal-space of 

the posilive-wilhin-class-scatter matrix is removed. At last, the discriminant 

vectors are extracted as the negalive-scatter-with-respect-to-positive-centroid 

matrix's eigenvectors with the largest eigenvalues. 

Clearly, both D L D A and N L D A may lose some discriminant information, because 

the null space of between class scatter matrix and the principle space of within-

class scatter matrix, which are removed when conduct D L D A and N L D A , may 

contain some discriminant information. So we propose a full-space method 
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(FLDA) to preserve all discriminant information contained in L D A . Finally, we 

generalize the F L D A for K B D A as the Kernel Full-space B D A (FKBDA) 

[15]116J. 

5.1 DKBDA 

5.1.1 DLDA 

Yii et. al. proposed a direct L D A method, and it accepts high-dimensional data as 

input, and optimizes Fisher's criterion directly, without any feature extraction or 

dimension reduction steps, so it takes advantage of all the information within and 

outside of the null space of s„,. In this approach, s,, is first diagonalized, and the 

null space of s, is removed, 

Y ' S , Y = D , > ( ) (5-1) 

where \ are eigenvectors and D, are the corresponding non-zero eigenvalues of 

s,,. s„ is transformed to 

= (5-2) 

K„ is diagonalized by eigenanalysis, 

1-!'K,.IJ = D„ . ( 5 - 3 ) 

The L D A transformation matrix for classification is defined as, 

、V = Y D ; / 。 U D : .丨 . ( 5 - 4 ) 

In D L D A , the null space of s, is first removed, and the discriminant vectors are 

restricted in the subspace spanned by class centers. It is assumed that the null 

space of s, contains no discriminative information at all. 

5.1.2 DKBDA 

Before we deduce the kernel Direct B D A , we first introduce the kernel matrix K : 

' - [k： y (5-5) 
where 

" A - ( X „ X , )…/、 . ( X | , X \ .、 . ) ] "(X丨’:Vi)…人.(vy、,） 
里、、.、一 ..， ... ... ，•、” — … ... ... ， 

• / � . ( x � . � . , x丨）… / � . ( X � � X � . � . ) J �(x��.’y丨）…A.(x.�v’y.、,,） 
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A-(>VX 丨） . . . A - ( y , , x , J A ' ( y , , y , ) … " ( x 丨’ x , ) 

^ I、.— … … .•. ’ 夏 《 一 … .•, … ’ 

人•(>'�)•.X|) ... [A-(yv,^y,)…A-(yv,,y,v,) 
X, is the positive feedback samples, a: is the number of positive feedback 

samples, y, is the negative feedback samples, /V‘，is the number of negative 
feedback samples, and /、-(.,.) is the kernel function. 

J List like Direct L D A , we begin the kernel Direct B D A from the analysis of the 

"the negative scatter with respect to positive centroid" matrix. Since the 

dimension of the could be arbitrarily infinitive, it is impossible to calculate 

St =a>,(i>' directly and implement Eigen analysis with s, • Fortunately, this can be 

avoid through ihe following analysis: 

(I):U>‘e, = A'e, (Cl>)‘e,) = A, ((D),e,) 
=八 u , 二 u , ( 5 - 6 ) 

LI =0 ,E 
The dimension of is the number of negative relevance feedback samples. 

The following problem is to get the matrix. 

V ( y 丨 (‘、))-

(>,、、H'>))-
= [(V(>',H'(x))(9(y,;M(x))],:,2、:, （5-7) 

= < p ' ( y X y , ) - ^ ' ( x ) ( p ( y J + 9 ' ( x ) ; p ( x ) l ^ 
7=1.2, ..\V 

Then we should calculate )9(y,). (p' (y,)ip(x), 9'(x)(p(yJ, and (x)ip(x). The 
details will be seen from the following formulations 

/ I ^ 丫 f 1 � � 
乐 ' （ X ) 列 ‘ 、 ) = — t v i K ) �A ' �丨 j �/ V � . j 

= ^ S S c p ' { x „ , ) c p ( x „ ) 
八 、 ( 5 - 8 ) 

= ^ Vv.l K� . .v l Vv.l 
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_ f , 丫 
乂 V / 

= 女 , ( 5 - 9 ) 

I /V m=l 
\ V / 

地,） (5-10) 

/ V � . ' " " I 

where i、、丨 is a column vector with all terms equal to one. 

So we can obtain the following formulation according to the kernel matrix (13). 

=<p'(y,:M��)-V(y,)�(x)-�'(xMy,)+�'(xM>0],:,2、：、. 
L /=l.2. Vv 

= + (5-11) 
. ' � '� + A ' � . m=l / V � . ,=1.2. ..,vy 

L /=l.2......�:i, 

“ n 一 N >..�. 1 � � - . 1 1 . � � • ‘ 一 N 1 1 .� .� . .I K >> + ' J J T 1 Vv.： K 1、,.、..11 ,y,,,,vv 

= K „ , - — K ,,�. 1 Vv „ \ , - — 1 A, ,.Vv K vv + 1 W.AV 

where a = i'v。K J、v.i, i、、、v is a matrix with all terms equal to one. 

W e do Eigen analysis with (11), and obtain the none-zero space E of O)'；<!),, i.e. 

E'(i)((i) E = D, . According to (6), we can easily obtain the diagonalized none-

zero sLibspace w = (D,D,"-E of ，i.e. vv'stAV ̂^ o . Here, we need not to calculate 

w = (i) D "-E . To reckon the largest Eigen values and corresponding Eigen vectors, 

we can in depth the analysis. It is similar with the Direct L D A , and then the 

“positive with-in class scatter" matrix is projected into the none-zero space: 

\v'stw = D,"-E'(i);sta),Ei)；"- (5-12) 
From (12), we can see that to calculate w = (D„D;"-E can be avoided. The new 

coming problem is to reckon 中，.With the following deduction (13), (14), 

(15), (16), and (17), we can draw the conclusion that <i>::s他 only relates to the 

kernel matrix (5), just like o'U),. 

ci>:s:o, = ( i > ( c D � a > : . ( i > �( ( ! ) > „ ) (5-13) 
To reckon ，we only need to calculate ci>(.a>,,. 
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0>:(1> ‘ 

= 示 ' （ X ) ) {<p(yi)-^(x)…示(X)…<p(yv,)-巧(X) 

… （5-14) 

((p'{x,.)-ip'{x))_ 

= "(<p'(x,)-ip'(x))(,p(y,)-ip(x))l 、̂.、. 

� / = L2. ,\V 
/ - I .2 , .S'y 

To calculate (i>:.(i>, , we first should to calculate (p''(x,)(p(x) , 9'(x)(p(yj，and 

ip' (x)î (x). Here, (x)(p(yj and (x);p(x) are respectively calculated in (9) and (8). 

In the formulation (15), we reckon (x,)(p(x). 

A ' ' " - I 
\ V / 

= ⑷ cp(x,„) ( 5 - 1 5 ) A' 
» 

A' III-1 
V 

Then we can obtain the o'o, by formulation (16). 

=/、.(vy,)-";̂ iU(x,’x,„)- + iiA.(x„,,y,) ++i'、:、.,|K„.i、,,.| (5-16) 

N V N�. A\. ,=1.2, ..VV 
」•/=丨.2. .AV 

= K _ + K (、. 1、.、、•,，一 1 , v,.Vv K + 1 A v.AV 

Then we can obtain according to the following deduction: 
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(D'Ŝ I), 
,. 1 , 1 , a , Y 

=1、" ~ ~ “ \ . ‘ . — A T ‘ ^ ' ..W I、十 ‘ ,Vv. 

/ . . \ 
.K L K 1 1 K + — 1 

V A.� A'� N� } 
A , N� N： 

-^'v, Vv - ̂  ̂  ' V, .Yv K J< I sV. Vr + • Sy.AV u- ̂  Vv..Vv v, ^^ 1 7) 

- T T T 1 \> \ v vv 1 Vv. V, - " 7 7 " K I,�. 1 \ v„,\ v K、1 + , K、,、. 1 v,v,.Yv 1 ,v;v,.\v 

,�.� N、. N、. • 
n ' Vv.Av ' \ v..\\' « TTT K ,.�. 1 V v.wVvv.AV + \V,.Vv w 

A . : 八.V N � 

• " T T T ‘ .1 \.v I �v v I、V..Vr " T T T " ' \V , .Vv'.Vv„\v'"^vt "777 ' .V , . .Vv' .Vv, .Vv 

‘ � � . K N、 

二 丄B + 
V , A\： N : 

2 

where A = \<J<„ + 告 ( K J、、、、+1、:,..,、、.+ 、.,、:,，, 

B = KK、.、. 1、.、.、‘+ I<,, 1、.、...、.、. K + 丨、,,,K、.、.K + K „, 1、…..、.、.K、、., 

C = 1 � , . � > K i � . K � . �1、、 , , + 1 � , . . � � . K � J \ . � � . � . K � ‘ + K J � . � . � � K �人 、 . � , + / V v K ) . 人 、 . , K ” ， , a n d 

Under the idea of Direct L D A , we do the Eigen analysis of 

s* = vv's^w = I)；' -E û'sto.ED；"-, and we select the eigenvectors v o f s； with the 
smallest eigenvalues i)、.，i.e. 

v's:v = D, (5-18) 

At last we established the overall projection matrix u = ED;"-VD;"-. 

Obviously, il is possible that some diagonal values in the matrix D、. is zero, which 

means thai i),' - does not exist. However, we can avoid the zero eigenvalue 

problem based on a changed K B D A criterion, according to [K. Liu]. 

The modified K B D A criterion is: 

W = arg m a x ^ (5-19) 

、v w ' (st + ŝ ,)vv • 

It is clearly that the modified criterion equals to the original K B D A criterion 

based on the proof in [K. Liu]. Based on the modified K B D A criterion, we can 

avoid the singular value problem, because w's:w = i. 
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Here, we sum up the D K B D A algorithm: 

1. Calculate the kernel matrix K based on (5). 

2. Calculate (I)(,(I>,, according to (11). 

3. D o Eigen analysis on (1>::巾,.，and obtain the none-zero subspace E of 

(I)( (I)丨 

4. Calculate according to (17). 

5. D o Eigen analysis on 

§<； = + = +I , and select the 

Eigen vectors V of Sj with the smallest Eigen values D、.. 

6. Established the overall projection matrix U = ED^i'^VD:"〗. 

5.2 NKBDA 

5.2.1 NLDA 

N L D A [8] optimizes L D A in the null space of s,„. In N L D A , the null space of s,.. 

is first calculated as: 
Y'S,„Y = () (5-20) 

where、. are eigenvectors with zero eigenvalues and Y'Y = i. The between class 

scatter matrix s, is projected onto the null space of s„,, 

S, = Y'S,Y (5-21) 

The eigenvectors u of s, with largest eigenvalues are selected to form the 

transformation matrix, 

w = YU , (5-22) 

5.2.2 NKBDA 

For null-space method in K B D A (NKBDA), we first extract the null-space of st 

according to, 

W'S:W=<0'S:cDa,,�. ？ 
= «;,vK�.(l -l;,�.)KX,�= D, ‘ ) " 

where e > d,,…> >... > (/、.、= o. Then project St onto the null-space of s, by, 
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S* = a' cI)'SM)a 
、 “ 、 ‘ “ 、 7 (5-24) 

=«:,、.(•<,-1<、1丨、、)(1<,-1<几）a,„. 

Finally, the eigenvectors of s* corresponding to the largest eigenvalues selected 

as feature basis, 

< s > , = D , . (5-25) 

The kernel projection matrix is: (/;,‘0:丨'乂、.山'. 

5.3 FKBDA 

5.3.1 FLDA 

Both D L D A and N L D A may lose some discriminant information. D L D A loses 

the information in the null space of the between class matrix. N L D A loses 

information in the principle space of the within class scatter matrix. In order to 

overcome the M S P and still preserve the discriminant information, we propose a 

full space L D A . For s„, we compute, 

v's„Y = D., (5-26) 

where d„ =("叩(又,....,A,o), A,,,,, < ̂  < A,„, and e is a user selected threshold 

value (such as 0.01). 

For a given c , the eigenvalue matrix d„ is then converted to 

£)、, = …A,A,,,.A,,…’...,. All values, which is smaller than , are 

substituted by A,,….After the substitution, the between class scatter matrix s, is 

projected onto the space by, 

§广£)、,丨'、"8)丸丨。， （5-27) 

Finally, the eigenvectors u of ŝ  with largest eigenvalues are selected to form the 

transformation matrix, 

W = Y6„|。ud,2. (5-28) 

5.3.2 FKBDA 

For full-space method in K B D A (FKBDA), we first extract the principle and null 

spaces of s?, and then combine them by a weight as the full-space, 
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W ' S r w = a>'S:(D«,、.=a',、.K、.（l-l;,、.)K:.(x,、. （ ^ ― 】 。 ） 

=A、.〜八V = (々 ,...,又,,,’�,,+1，1’...’ ) 
where 义、>...> >£> >o. Then project St onto the full-space of ŝ  by, 

‘ “ (5-30) 
入丨卞,—K几)(K丨-|�ig 

Finally, we extract the eigenvectors of the projected s:. with largest eigenvalues as, 

«;,‘.§>,,, = D , , ( 5 - 3 1 ) 

The kernel projection matrix is: . 

5.4 Experimental Results 

W e evaluate I he performance of the proposed algorithm using the precision and its 

standard deviation. Precision is the ratio of the number of retrieved relevant 

images lo the lop N retrieved images. Precision examines the effectiveness of an 

algorithm and the corresponding standard deviation evaluates the robustness of 

the algorithm. W e conduct the experiment on QueryGo. 

In the statistical experiment, we compare all proposed algorithms ( D K B D A , 

N K B D A , and F K B D A ) with the existing K B D A . The computer automatically did 

the feedback experiments with 200 queries. For each iteration, the system marked 

the first 5 incorrect and correct retrieved images from the top 48 matches as 

irrelevant and relevant examples, respectively. In the kernel based algorithms, we 

chose the Gaussian kernel = with p = i/io because the parameter 

shows the best performance for F K B D A , N K B D A , D K B D A , and K B D A from a 

series of values. 

Figure 1 shows the performance of F K B D A , N K B D A , D K B D A , and K B D A . The 

results show that our algorithms outperform the existing K B D A consistently both 

on effectiveness and robustness, meanwhile, F K B D A works best in all algorithms. 

In addition, the computation costs of the three methods are similar in our 

experiments. 
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Figure 5-1. Evaluation experimental results based on the Corel database with 17, 

800 images with 200 queries, (a), (b), and (c) display the retrieval precision in top 

10, 20’ and 30 retrieved images respectively, (d), (e), and (f) display the 

corresponding standard deviation of the precision curve in top 10, 20, and 30 

retrieved images respectively. 
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Chapter 6 

NDA based RF for CBIR 
B D A [91] has been used as a feature selection method to improve RF, because 

B D A models the RF better than many other methods. However, B D A assumes all 

positive samples form a single Gaussian distribution, which means all positive 

samples should be similar with similar view angle, similar illumination, etc. 

Clearly, this is not the case for CBIR. The kernel-based learning is used in B D A 

to overcome the problem. However, it has to rely on parameter tuning, making 

online learning unfeasible. 

To avoid the parameter tuning problem and the single Gaussian distribution 

assumption in B D A , we develop a new discriminant analysis using a 

nonpai.ameti.ic approach. The proposed nonparametric discriminant analysis 

(NDA) [19] has the following properties: 

, N D A assumes that all positive samples are alike and each negative sample is 

negative in its own way; 

> N D A does not require that all positive samples form a single Gaussian 

distribution. 

> N D A , similar to B D A and K B D A , may meet the Small-Sample-Size (SSS) 

problem. 

In this Chapter, we solve the SSS problem with three methods: 1. the 

regularization method, which is used in B D A ; 2. the null-space method, which is a 

popular method to solve the SSS problem in linear discriminant analysis for face 

recognition; 3. the full-space method, which is proposed to preserve all 

discriminant information of N D A . 

6.1 NDA 

Similar to B D A , N D A is also biased toward to the positive examples. The 

objective function of N D A is: 

、、|w's、.、v|. 
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Let the training set contains hk positive and "y negative samples. Then §、. and s„ 

are defined as, 

. (6-2) 

. 1=1 

where x, are positive samples, y, are negative samples, m^' is the mean 

vector of the k positive nearest neighbors of the 产 positive feedback sample x,, 

⑴=丄;^y, is the mean vector of the k negative nearest neighbors of the /•山 positive 
“ k M 

feedback sample x , m ? = 丄 Z x , is the mean vector of the k positive nearest 
‘ 、’ k 

neighbors of the negative feedback sample y, ’ and w,"’, can be computed from 

the eigenvectors of §:.'§、. N D A finds the optimal feature set to maximize the 

margin between all positive feedbacks and all negative feedbacks in the input 

feature space. Because the original feature dimension is much larger than the 

number of the feedback samples, we can always find the subset feature to 

discriminant the positive and negative samples. 

6.2 SSS Problem in NDA 

In RF, the size of the training set is much smaller than the dimension of the 

feature vector, thus it may cause the SSS problem. In this Section, we will address 

the SSS problem using three methods, the regularization method, the null-space 

method, and the new full-space method. 

6.2.1 Regularization method 

Regularization method, which is proposed by Friedman to deal with the 

singularity issue, is implemented by adding small quantities to the diagonal of the 

scatter matrices s, and s. . The regularized version of §、. and s„ , with the 

dimension of the original feature space n and the identity matrix I，are; 

s;. =(i-")§、.+二 ".[§、.Ji (6-3) 
n 

s;>(i-r)s,+-̂ /r[s,]i (6-4) 
n 
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where // and control the shrinkage toward a multiple of the identity matrix. /r[.] 

is the trace operation. 

It is well known that regularization method may meet the ill-posed problem. 

Hence, we select the null-space to overcome the ill-posed issue. 

6.2.2 Null-space method 

Null-space linear discriminant analysis (LDA) [8] accepts high-dimensional data 

as the input, and optimizes L D A in the null space of within class scatter matrix. 

Here, we generalize the null-space idea for N D A . The null space of §、. is first 

calculated as: 

Y ' s , V = 0 (6-5) 
where Y are eigenvectors with zero eigenvalues and Y' Y = I . s,, is projected onto 
the null space of §、: 

s： = Y'S,Y . (6-6) 
The eigenvectors i) of s'； with largest eigenvalues are selected to form the 

transformation matrix as: 

、、‘=YU . ( 6 - 7 ) 

6.2.3 Full-space method 

Null-space method loses the information in the principle space of the within class 

scatter matrix. In order to preserve all discriminant information, we compute 

features fi.om both the null space and the principle space of §、.，and then integrate 

the two parts with a suitable weighting. A rational choice of the weighting is to 

select a small eigenvalue of s、, . The algorithm first computes the eigenvalues of 

s, as, 

� . ‘s� .Y = D、， (6-8) 
where D,. = diâ î iA,’...’A,.".’A…人’丨,....o), 乂,„+,=“,，and e is a user selected threshold 
value (such as 0.01). 

For a given e , the eigenvalue matrix D、 is replaced by 

f), =diag{A,.....A,.....…’..... All values, which are smaller than , are 

substituted by A"….After the substitution, §、is projected onto the space by: 
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I =iV''Y。、Yî、|'、 (6-9) 

Finally, the eigenvectors u of s„ with largest eigenvalues are selected to form the 

Iransformation matrix, 

� v = Yf)�…UD 广， (6-10) 

6.3 Experimental results 

In this part, a large number of statistical experiments are performed based on 

QueryGo. The experiments are simulated by the computer automatically. First, 

300 queries are randomly selected from the data, and then RF is done by computer 

as: top 5 query relevant and irrelevant images are marked as positive and negative 

feedbacks in the top 48 images, respectively. 

In this Section, precision and standard deviation (SD) are used to evaluate the 

performance of a RF algorithm. Precision is the ratio of the number of relevant 

images retrieved to the top N retrieved images. Precision curve is the averaged 

precision values of the 300 queries, and SD curve is the S D values of 300 queries' 

precision. The precision curve evaluates the effectiveness of a given algorithm 

and S D curve evaluates the robustness of the algorithm. In precision and SD 

curves, the total feedback times are 9, with 0 feedback referring to the retrieval 

based on Euclidean distance measure without RF. 

6.3.1 K nearest neighbor evaluation for NDA 

The experimcnl shows N D A is insensitive to the k value of the k-nearest-neighbor. 

Figure 1, 2, and 3 show the top 30 retrieved results with 3, 6，and 9 feedback 

iterations by the regularization method, null-space method, and full-space method, 

respectively. Because all curves are flat, we can draw the conclusion that N D A is 

insensitive to the k value in k nearest neighbor. 
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Figure 6-1. Regularization method. 
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Figure 6-2. Null-space method. 
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Figure 6-3. Full-space method. 

6.3.2 SSS problem 

Fig. 4 shows the performance of the full-space method, the null-space method, 

and the regularization method in N D A to solve the SSS problem. From the left 

sLibfigure in Fig. 4，we can see the precision curve of full-space method is higher 

than that of null-space method and regularization method, meanwhile the SD 

curve of full-space method is lower than that of null-space method and 

regularization method. Hence we can draw the conclusion the new full-space 
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method can work better than the existing null-space method and regularization 

method. Meanwhile, the null-space method can outperform the regularization 

method. 

Retrieval precision in top 20 retrieved images Retrieval standard deviation in lop 20 retrieved Images 
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Figure 6-4. Comparing the full-space method with the null-space method and 

regularization method. 
6.3.3 Evaluation experiments 
W e will compare the new flill-space N D A with the existing state-of-the-art 

algorithms, which are B D A [5], S V M [4]，and constrained S V M (CSM) [11]. 

Results in Fig. 5 shows that the full-space N D A by 3-nearest-neighbor can 

significantly improve the CBIR RF compared with all the other algorithms 

[4,5,11]. 
1 Retrieval precisionin top 20 retrieved … • ^ Retneval standard deviation in top 20 retrieved images 
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Figure 6-5. Evaluation experimental results based on the Corel database with 17, 

800 images with 300 queries, (a), (b), and (c) display the retrieval precision in top 

20, 40, and 60 retrieved images respectively, (d), (e), and (f) display the 

corresponding standard deviation of the precision curve in top 20, 40, and 60 

retrieved images respectively. 
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Chapter 7 

Medical Image Classification 
In this Chapter, we conduct the first study on S A R S radiographic image 

processing as an application of CBIR [94]. In order to distinguish S A R S infected 

regions from normal lung regions using texture features, we propose several 

improvemenls to the traditional gray-level co-occurrence texture features. W e use 

a multi-level leature selection approach to extract texture features from a multi-

resolution region based co-occurrence matrix directly for texture classification. 

The selected texture features can preserve most of the discriminant information in 

the texture image. Satisfactory results are obtained on a large set of chest 

radiographic images of S A R S patients. 

7.1 Introduction 

Severe Acute Respiratory Syndrome (SARS) outbreak in Hong Kong started in 

March 2003 and quickly spread to many regions around the world. By the end of 

the epidemic, there were 1,755 patients infected and 299 deaths in Hong Kong 

[56]. The main symptoms of S A R S are high fever and dry cough, shortness of 

breath or breathing difficulties. S A R S may also be associated with other 

symptoms including a headache. Because of the highly contagious nature of the 

disease and its very last progress that often threatens the life of the patient, it is 

critically important to identify the disease at an early stage. However, since most 

of the symptoms are similar to regular pneumonia and fever, it is very difficult to 

give an accurate diagnosis of the disease. All currently available methods depend 

on laboratory testing of the virus samples from the patient, which is both costly 

and time consuming. 

In this Chapter, we study the chest radiographs of the S A R S patients to investigate 

a possible computer-aided approach to distinguish the S A R S infected area from 

the normal lung area. This can be an important first step toward image based 

computer-aided diagnosis. Of course, it is unrealistic to expect accurate diagnosis 

only based on automatic computer processing of radiographic images. However, 
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we do expect our study to be able to assist doctors with their diagnosis in the 

future. In addition, since for confirmed patients the chest radiographic images are 

taken everyday, we can also compare the progress of the images with previous 

patients in the database to monitor the effect of the treatment. 

Because S A R S regions are irregular, we cannot use shape to distinguish it from 

normal areas. So we focus on using texture classification to classify the S A R S 

region. In this paper, we propose several improvements to the classic texture 

model, gray-level co-occurrence matrix [73], to distinguish the subtle S A R S 

texture. W e use a multi-level feature selection approach to extract texture features 

from a multi-resolution region based co-occurrence matrix directly for texture 

classification. Encouraging results are obtained on a set of chest radiographic 

images. 

7.2 Region-based Co-occurrence Matrix 

Texture Feature 

Co-occurrence texture l̂ atures were proposed by Haralick et al. [73]. For an 

image with N by N pixels and G gray levels, the co-occurrence matrix for a 

displacement d in a direction q is defined to be a G by G matrix whose entry M(/, 

/) is the number of occurrences of transitions from gray level i to gray level /, 

given the inter-sample distance d and the direction q. The matrix gives a measure 

of the joint probability density of the pairs of gray levels that occur at pairs of 

points separated by distance d in the direction q. For a coarse texture, d is 

relatively small compared to the sizes of the texture elements; the pairs of points 

al separation d have similar intensity values. This means the matrix M has large 

values near its main diagonal. Conversely, for a fine texture the values in M are 

quite uniformly spaced. Thus, a measure of the degree of value spread around the 

main diagonal of M should provide a good sense of the texture coarseness. 

Similarly, one can extract other features to measure the directional information, 

contrast, correlalion, etc. Haralick el al. [73] proposed 28 second-order statistic 

features that can be measured from this co-occurrence matrix. 
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Generally, the co-occurrence matrix is computed from a rectangular region or 

image. In our application, however, the regions are not rectangles. In order to 

compute the texture features, we develop a region based co-occurrence matrix: 

1. Extract the marked S A R S infected regions. 

2. Find the maximum bounding box of each region. 

3. Quantize the region with a given bin number and fill the blank part of the 

bounding box with -1. 

4. Calculate the co-occurrence matrix P of the filled bounding box, and extract a 

sub-matrix p, from i), where p、is obtained by deleting the first row and the 

first column of i). The region based co-occurrence matrix is: 

丨 (7-1) 

S A R S Ret j lon Ex'.raciKMi Mimi-iasoiul ion Tex l u t e Modn l 

rn ^S 

Pm 透 r ^ 

Texture /] Feature D 

Feature Selection N 「 c 

PCA FSFS 

Figure 7-1. Flowchart of the multi-resolution non-rectangle region's co-

occurrence matrix and texture feature extraction. 

The size ol、the texture image is crucial for classification. To preserve more 

information ol' the texture image, we select a series scales to zoom the original 

image and the scale vector is: 5 = 10.1 0.20.4 0.6 0.8 i.o], where 5 = 0.6 means the ratio 

between the size of the zoomed image and the original image is 0.6. For each 

scale, the region-based co-occurrence matrix and the corresponding statistical 

features are calculated. 
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7.3 Multi-level Feature Selection 

The original texture features computed from the co-occurrence matrix are mostly 

based on intuitive observation of the shape and statistics of the matrix [73]. There 

are two drawbacks with this approach. First, there is no theoretical proof that, 

given a certain number of features, maximum texture information can be extracted 

from I he co-occurrence matrix. Second, many of these features are highly 

correlated with each other. A better approach is to use the co-occurrence matrix as 

the texture lealure vector directly to preserve all the information in the matrix 

instead of developing new functions to extract texture information. However, this 

again introduces two problems: the large dimensionality of the feature vector and 

the high-degree correlation of the neighborhood features. To alleviate these 

problems, we developed an multi-level dominant eigenvector estimation (MDEE) 

method to approximate P C A and apply to the co-occurrence matrix directly to 

extract texture features [93]. 

The M D E E cuts a long feature vector into sections of small vectors, and then 

perfonns a P C A on each small vector separately. The selected top features with 

large eigenvalues in each section are then combined to form a new feature vector 

with a second P C A applied again. Several orders of computation complexity 

reduction iVoin the conventional P C A are achieved by this method. 

In [65], a new feature similarity based feature selection (FSFS) method is 

developed and shown to perform better than P C A for feature selection. In this 

paper, we select the maximal information compression index (A,) as the feature 

similarity measure. Lei I be the covariance matrix of random variables .v and 

Define maximal information compression index as = smallest eigenvalue of 

I, i.e., 

2 A . = ( v a i . ( . Y ) + v a r ( v ) ) 

(7-2) 
- - ^ [ v a r ( . v ) + v a r ( v ) ) " - 4 v a r ( . Y ) v a r ( . v ) ( l - v ) ' . 

The larger the value of A,, the less of the dependency of the two variables. The 

value of /L is zero means the features are linearly dependent. For feature selection, 

FSFS first partitions the original feature set into a number of homogeneous 
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subsets and select a representative feature from each subset based on the similarity 

measure. 

However, the FSFS method encounters the same problem as PCA. The 

computational complexity of FSFS is where D is the feature dimension 

and I is the size of the data-set. In our study, the feature dimension is 1024x6 • The 

computational cost is too high for FSFS. In order to overcome this problem, we 

propose a similar multi-level approach as the M D E E method. W e first apply the 

FSFS to feature vector for each image scale, then combine the selected features 

and use the FSFS again on the combined feature vector. 

The 11 owe hart of our l̂ ature selection algorithm is shown in Figure 2. For each 

level, we calculate the region-based co-occurrence matrix, and then FSFS or P C A 

is applied to the matrix directly to select first level features. W e then combine all 

the selected features into a new feature vector and the feature selection method is 

used again to select the final features. 

Tevel T 1_^""'FSFST']__^ 
Features I P C A g 

^ g 
a 

Level 2 _ J FSFS / | 

Features P C A ^ _ h J FSFS/ _ K Selected 
• ‘ a 1/ P C A Features a  

. • at 
c 

1__ RSFS n__^ i 
Features ^ P C A ___ 

Figure 7-2. Flowchart of the multi-level feature selection method. 

7.4 Experimental Results 

In this Section, we use the new algorithm to classify the S A R S infected region 

from the normal lung region in chest radiographic images. W e also compare the 

new features with traditional co-occurrence features. W e use the S V M with 

Gaussian Kernel as the classifier since S V M is a very effective binary classifier. 

All the parameters are default values in O S U S V M [34]. 
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7.4.1 Data Set 

W e use the posteroanterior chest radiographs taken by the department of 

Diagnostic Radiology & Organ Imaging of the Prince of Wales Hospital. The 

digital images were obtained by digitizing the chest radiographs in the SIEMENS 

medical computer system. The original image has a pixel size of about 0.175mm, 

a matrix size of about 2000 x 2400, and a gray level range of 16 bits. The SARS 

infected regions and normal regions of all lung radiographs were labeled by 

doctors in the hospital as ground truth. Table 1 shows the details of the database 

and Figure 3 shows some sample images and S A R S infected regions in the 

database. 

Table 7-1. Image Database 

S A R S Normal 

Training 37 37 

Testing 126 3 8 ~ ~ 

Total I 163 I 75 

Norrrial l.unq Licjhl SARS infected Lurxj Severe SARS infected Lung 

t I 备 

, i y i i p p ^ : , . ^ ^ 

>> 邊 m M . f,：灘:• 1 

. 斤 I f . ig K . J 後 . w i 

r 叫 i 4 I J 
P R ； , 肩 ws^： 

C/) a- . 、梵;•免： 厂 

l l j I , J 

l i l P i 

丨 f o / 

Figure 7-3. Sample images and S A R S infected regions in the database. 
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7.4.2 Classification Using Traditional Features 

W e first use the traditional texture features defined in [73] to classify the images. 

Classification results are summarized in Table 2. The results show that the 

traditional feature of each co-occurrence direction in each scale cannot 

discriminant the S A R S and normal lung regions well. Figure 4 shows the results 

of using FSFS to select features from all the traditional texture features (the 

original feature dimension is 1 3 x6 x4 = 312). The classification result is still less 

than satisfactory. 

Table 7-2. Traditional feature based classification. The first row is the scale value 
of the image and the first column is the direction of the co-occurrence matrix. 

0 . 1 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 

0.7927 0.8110 0.8110 0.2561 0.81 10 0.8171 

0 . 7 6 8 3 0 . 2 5 0 0 0 . 2 5 0 0 0 . 8 1 7 1 0 . 7 9 2 7 0 . 8 1 7 1 

0 . 7 6 8 3 0 . 2 5 6 1 0.8354 0 . 2 5 6 1 0 . 8 2 3 2 0.2561 

135 0.2439 0.2317 0.2439 0.8171 0.8232 0.8476 

Statistical Co-occurrence Matrix Feature 
1 1 r 1 I ~~ 

I 
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Feature Dimension 

Figure 7-4. Classification results using FSFS to combine traditional co-occurrence 

features. 
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7.4.3 Classification Using the New Features 

Classification results using the multilevel P C A to extract texture features directly 

from the co-occurrence matrices are shown in Figure 5. The recognition rate is 

significantly improved over the traditional features. This shows that the method 

can effectively preserve the discriminant texture information for S A R S and 

normal lung region classification. 

Next, we use the new multi-level FSFS method to extract the texture features 

directly from the original co-occurrence matrix. The recognition rate is further 

improved as shown in Figure 6. The highest classification rate of the method is 

around 97%. 

Co-occurrence Matrix Feature 
0 9 6 5 1— 1 ’ — — - 1 -1- T r 1 r 1 

0.96[ -
• 

0.955r 

I 。 . 9 5 「 I R 

I 0.945' ^Brf (a 丨广 " m i l   

I 0.94 i L ^ 
ra 0.9351-

O [] 

0 . 9 3 1 " -

0.925-1 -

n Q9 • [TTTI .」 -i 1. 丄 1 ‘ ^ ‘ 
0 —5 10 15 20 25 30 35 40 45 50 

Feature Dimension 
Figure 7-5. Classification results using multi-level P C A to extract texture features 

directly from the co-occurrence matrices. 
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Figure 7-6. Classification results using multi-level FSFS to extract texture features 

directly from the co-occurrence matrices. 

67 



Chapter 8 

Conclusion 
In this thesis, we analysis two popular small sample learning algorithms, the 

Support Vector Machine (SVM) and the Biased Discriminant Analysis (BDA), for 

relevance feedback (RF) in content-based image retrieval (CBIR). 

For S V M based RF, because the S V M classifier is unstable on small size training 

set, SVVTs optimal hyper-plane will be deflected when the positive feedback 

examples are much fewer than the negative feedback examples, and the dimension 
of the low-level feature is much greater than the size of the training set. 

Consequenlly, we develop an Asymmetric Bagging Random Subspace Method for 

S V M based RF. With the new learning scheme, all the three problems in S V M 

based RF can be overcome to some extent. Extensive experiments on a Corel 

Photo database with 17, 800 images show that the new algorithm can improve the 
performance (both the accuracy and the efficiency) of RF significantly. 

For B D A based RF, we first generalize the ideas of the Direct Linear Discriminant 

Analysis ( D L D A ) and the Null-space Linear Discriminant Analysis (NLDA) for 

B D A in the Hilbert space to solve the Small Sample Size (SSS) problem. Because 

D L D A and N L D A may lose some discriminant information, we then propose a 

ftill-space method. Finally, we implement the full-space method for kernel B D A . 

According to a large number of evaluation experiments in the Corel Photo Gallery, 

we can draw the conclusion that the proposed Direct Kernel B D A , Null-space 

Kernel B D A , and Full-space Kernel B D A outperform Kernel B D A consistently. 

Moreover, B D A based RF assumes that all positive feedbacks form a single 

Gaussian disiribution. This may not be the case in CBIR. Although kernel B D A 

can overcome the drawback to some extent, the kernel parameter tuning makes the 

online learning unfeasible. To avoid the parameter tuning problem and the single 

Gaussian distribution assumption in B D A , we construct a new nonparametric 

discriminant analysis (NDA). To address the small sample size problem in N D A , 

we introduce the regularization method and the null-space method. Because the 

regularization method may meet the ill-posed problem and the null-space method 

68 



may lose some discriminant information, we propose here a full-space method. 

The proposed full-space N D A is demonstrated to outperform B D A based RF 

significantly with a large number of experiments in the Corel database. 

Finally, as an application of CBIR and toward assisting doctors to diagnose 

Severe Acute Respiratory Syndrome (SARS) patients, we conduct a preliminary 

study on texture classification of SARS infected regions in chest radiographic 

images. In order to distinguish SARS infected regions from normal lung regions, 

we propose several improvements to the traditional gray-level co-occurrence 

texture features. W e use a multi-level feature selection approach to extract texture 

features from a multi-resolution region based co-occurrence matrix directly for 

texture classification. The multi-level Feature Similarity-based Feature Selection 

algorithm is shown to be very effective in preserving most of the discriminant 

information in the texture image. Experiments on a large set of chest radiographic 

images of S A R S patients give encouraging results. This is a first promising step 

toward computer-aided diagnosis of the disease. 
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