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Abstract

With the explosive growth of the digital visual information, content based image
retrieval (CBIR) became an important and active research topic. Many CBIR
systems have been developed over the years based on the low-level visual features.
However, the gap between the low-level visual feature and the high-level
semantic content always degrades the retrieval performance. Relevance feedback
(RF) is an important tool to improve the performance of CBIR. In a RF process,
the user first labels a number of relevant retrieval results as positive feedbacks and
some irrelevant retrieval results as negative feedbacks. Then the system refines all
retrieval results based on these feedbacks. The two steps are carried out iteratively
to improve the performance of image retrieval system by gradually learning the
user’s perception.

Many RF methods have been developed in recent years and small sample learning
based methods achieved the state-of-the-art performance. In this thesis, we focus
on two popular small sample learning algorithms, the Support Vector Machine
(SVM) and the Biased Discriminant Analysis (BDA).

SVM classifies the relevant samples and irrelevant samples based on the support
vectors, which are automatically determined by SVM learning algorithm.
However, the performance of SVM-based RF is often poor when the number of
labeled positive feedback samples is small. This is mainly due to three reasons: 1.
SVM classifier is unstable on small size training sets; 2. SVM’s optimal hyper-
plane may be biased when the positive feedback samples are much less than the
negative feedback samples; 3. Over-fitting due to the fact that the feature
dimension is much higher than the size of the training set. In this thesis, we try to
use random sampling techniques to overcome these problems. To address the first
two problems, we propose an asymmetric bagging based SVM. For the third
problem, we combine the random subspace method with SVM. Finally, by
integrating bagging and RSM, we solve all the three problems and further
improve the RF performance.

BDA is another small sample learning model in CBIR RF. In BDA model, the
negative feedbacks are required to stay away from the center of positive feedbacks.
Although BDA achieved satisfactory results, it also meets many problems: 1. To

solve the BDA, the regularization method is used. It is well known that the



method often encounters the Matrix Singular Problem (MSP) or the Small Sample
Size (SSS) problem; 2. BDA assumes all positive feedbacks form a single
Gaussian distribution which may not be the case for CBIR; 3. Although kernel
BDA (KBDA) can overcome the single Gaussian distribution assumption to some
extent, the kernel parameter tuning makes the online learning unfeasible.
Motivated by the successful direct method and null-space method used in linear
discriminant analysis to solve the SSS problem, we generalize them into the
kernel Hilbert space to over come the SSS problem in KBDA. Because direct
method and null-space method may lose some discriminant information, we
propose a new full-space method to contain all discriminant information both in
linear space and in kernel Hilbert Space. To avoid the parameter tuning problem
and the single Gaussian distribution assumption in BDA, we construct a new
nonparametric discriminant analysis (NDA) for RF in CBIR. We then generalize
the regularization method, the direct method, the null-space method, and the full-
space method to address the SSS problem in NDA.

At the end of the thesis, we conduct the first study on SARS radiographic image
processing as an application of CBIR. In order to distinguish SARS infected
regions from normal lung regions using texture features, we propose several
improvements to the traditional gray-level co-occurrence texture features. We use
a multi-level feature selection approach to extract texture features from a multi-
resolution region based co-occurrence matrix directly for texture classification.
The selected texture features can preserve most of the discriminant information in
the texture image. Satisfactory results are obtained on a large set of chest

radiographic images of SARS patients.
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Chapter 1

Introduction

1.1 Content-based Image Retrieval

With the explosive growth of image databases in terms of both size and variety,
effective indexing and searching images from a large-scale database or the
Internet are becoming more and more important in recent years

(1][7][50](591(62][66][70].

Figure 1-1. (a) Picasso’s “Bathers with Crab”, (b) Picasso’s “Girl Asleep at a
Table”, and (¢) Munch’s “The Scream”

Conventional approach relies on the key words or text description of an image to
retrieve and index image data [40][60][62][70][88]. However to give all images
text annotation is very difficult, because automatic annotation of an image cannot
be done by the current image processing and pattern recognition techniques yet
[3][6]. Moreover, an image says more than a thousand words and many images
even cannot be described by text information, such as the Picasso’s “Bathers with
Crab”, the Picasso’s “Girl Asleep at a Table”, and the Munch’s “The Scream”,
which are shown in Figure 1-1. There, using the visual information of the image
data to retrieve images is a reasonable approach for the nonce [35][36][45][65].

Content-based Image Retrieval (CBIR) is the techniques that retrieve semantically
relevant images from an image database through the automatically extracted
image features based on the color [3][8](28][39][40][60](74][103], texture
[4][9][30][46][49][77][93]. or shape [2][48][71](72](78] information of the

images. In the past twenty years, a great deal of low-level visual features have be



used for CBIR, such as the color histogram[60], color coherence vector[28],

wavelet texture[4], Gabor texture[9], edge direction histogram[2], etc.

Figure 1-2. The gap between the low-level visual feature and
the high-level semantic. The two objects are different but have
similar low-level features.

However, the gap between the low-level visual feature and the high-level
semantic of an image always leads to the poor performance of CBIR [99][100].
This point can be seen clearly from the Figure 1-2 and Figure 1-3. To bridge the
gap and to improve the performance, the interactions between the user and the
search engine are required. The user labels the retrieved images as semantically
relevant or irrelevant, and then the system refines the retrieval results. This
technique is generally named as relevance feedback (RF), which was initially
developed in document retrieval [29]. RF is selected as an important modus to
scale the performance of CBIR systems during the early and mid 1990°s
[81](82][90][91][92][95][98][101] and has been shown to provide dramatic

performance boost.

Figure 1-3. The ideal query assumption is not suitable. If (a), which includes the
woman and the building, is the query image, (b) and (c) will be retrieved. Clearly,
when the user focuses on the woman, (b) is a desirable image, otherwise; (c) is the
right one.



Many RF methods have been developed in recent years [15][16][17][18][19] [20]
[21][22][23][26][55][58][67](68]. Some approaches [97][99][100][101] adjust the
weights of various features to adapt to the user’s perception. Some [95][101]
estimate the density of the positive feedback samples. Some [55][11] give a
binary feedback for positive and negative feedbacks. Some [6][35] use the
Bayesian framework to estimate the user’s requirements. Some [103] use both
labeled and unlabeled data for training. Some [18][68] use multi-class methods.
All these methods have certain limitations.

Recently, the classification method, such as Artificial Neural Networks [42],
Bayesian Analysis [6], etc., has become popularly in RF algorithms. However, the
traditional classification and RF are definitely different because the user would
not like to provide a large number of marked samples. To overcome this problem,
small sample learning methods [27][37][52][54][55][84][85][91] are proposed in
CBIR RF. Support vector machine (SVM) [26][58][67][95] and discriminant
analysis (DA) [90][91] are two small sample learning methods used in CBIR RF

in the recent years and obtaining the-state-of-the-art performance.

1.2 SVM based RF in CBIR

SVM [84][85] is an approximate implementation of the structure risk
minimization in statistical learning theory [84][85]. It was successfully used in
CBIR in the last two years. SVM classifies the relevant samples and irrelevant
samples based on the support vectors, which are automatically determined by the
SVM learning algorithm.
However, the performance of SVM based RF is often poor when the number of
labeled positive feedback samples is small. This is mainly due to three reasons:
~ SVM classifier is unstable on a small size training set;
» SVM’s optimal hyper-plane may be biased when the positive feedback
samples are much less than the negative feedback samples;
» Over-fitting due to the fact that the feature dimension is much higher than
the size of the training set.
In this thesis, we try to use random sampling techniques [56][79] to overcome
these problems [21]. To address the first two problems, we propose an asymmetric

bagging based SVM. For the third problem, we combine the random subspace



method (RSM) and SVM for RF [22]. Finally, by integrating bagging and RSM,

we solve all the three problems, further improving the RF performance.

1.3 DA based RF in CBIR

DA [27][52] is another way to model CBIR RF. In the last two years, Fisher linear
discriminant analysis (LDA) has been successfully used in face recognition
[14][51][53]. It also can be used as a RF algorithm [91] for CBIR with a similar
way to face recognition. LDA extracts the discriminant subspace in the low-level
feature space to distinct the relevant and irrelevant samples. Then the remaining
images in the database are projected into the subspace. Finally, the CBIR system
uses some similarity measures to sort these images.

However, LDA based RF considers the positive and negative feedback examples
equivalently. This is a lethal drawback because all positive examples are alike and
each negative example is negative in its own way. With the observation, biased
discriminant analysis (BDA) was developed to scale the performance of CBIR
and obtained satisfactory results. In the BDA model, the negative feedbacks are
required to keep away from the center of positive feedbacks. Although BDA
achieves the state-of-the-art performance, it also meets many problems:

» For the BDA, the regularization method is used. It is well known that this
method often encounters the Matrix Singular Problem (MSP) or the Small
Sample Size (SSS) problem.

» BDA assumes all positive feedbacks from a single Gaussian distribution
which may not be the case for CBIR.

» Although kernel BDA (KBDA) can circumvent the single Gaussian
distribution assumption to some extent, the kernel parameter tuning makes
the online learning unfeasible.

Motivated by the successful direct method [31][43] and null-space method [57]
used in LDA to solve the SSS problem, we generalize them into the kernel Hilbert
space to over come the SSS problem in KBDA [15][16]. Because direct LDA
method and null-space method may lose some discriminant information, we
propose a new full-space method [16] to contain all discriminant information both

in linear space and in kernel Hilbert Space.



To avoid the parameter tuning problem and the single Gaussian distribution
assumption in BDA, we construct a new nonparametric discriminant analysis
(NDA) [19] for RF in CBIR. We then generalize the regularization method, the
direct method. the null-space method, and the full-space method to address the
SSS problem in NDA.

1.4 Existing CBIR Engines

CBIR for a general purpose image database is a challenging issue because the size
of the database may be very large, understanding image contents is tough by a
computer, and performance evaluation is difficult. Recently, a number of search
engines were developed for general purpose image retrieval, such as IBM QBIC
[59], VIRAGE [1], NEC AMORA [75], Bell Laboratory [5], PhotoBook [6]
[24][82], Image Beagle [23]. PicToSEEK [78], NETRA [86][87], WBIIS [49], etc.

Here we show some image retrieval systems:

f"ﬂiﬂ!fﬁ’ 1'%.]‘!.&1) -m.mu QueryGo  [15][19][21]  image

Query s ﬁ retrieval system, developed in the
M department of i i

information

m @ m M engineering at the  Chinese
e Avaipseion M ﬁ% University of Hong Kong, supports

color, texture, and shape features. It

& E can use different relevance

ST feedback algotithms. Moreover,

new feedback algorithms can be easily embedded into the system.

The BlobWorld [10] system supports color, shape, spatial,
and texture features. It can segment each image into -
regions automatically, which correspond approximately to
objects or parts of objects in an image. BlobWorld allows

users to view the results of the segmentation of both the

query image and returned results with highlight showing
how the segmented features have influenced the retrieval results. The system allows

querying at object level rather than on the whole image.




AllTheWeb can retrieval images,

allthewed , _ e
: audios, and Videos by text information.
2 <o S Sast The system can be found at:
ENPESRI (VS0 1 Y S B - = LIRSS s 41 T e T ]
sty ooy 11817001 ek o www.alltheweb.com.
The C-BIRD system [103], developed at Welcome to C-BIRD

C-BIRD stands for Content-Based Image Relrieval from Digital llbraries

the Vision & Media Laboratory, Simon
Fraser University, supports color, shape,

and texture matching features.

Enter the C-BIRD site using Java

The ImageRover system [23],

developed at Boston University, is a Image and Video
p Y Mdge vﬂ‘ Computing Group

World Wide Web image search
system that combines textual and ImageRover On-Line Demo

visual statistics in a single index for

To select a relevant
(4| image, mark the check-
box found next to the
relevant image(s)...

content-based search of an Internet

image database. Textual statistics are captured in a vector using a technique called
latent semantic indexing. Similarly, visual statistics are captured in a feature vector
using color and orientation histograms. Users initially specify keywords to describe

the desired images, and then refine the query by relevance feedback.

The v a o Vi 1Q ¢ . . b )
I'he ImageScape system [44] is a ImageScape
World Wide Web sketch image e
; 3 £ 4
retrieval system. Viswal ®uery Yoor Results
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" Send sketeh clonr




o Content-based Image Retrieval in

“ s The Leiden 19th Century Portrait Database
& 2] .

(LCPD) [33], developed at the Computer

Science Department, Leiden university,

supports shape and texture matching
features for the retrieval of greyscale

it e 17 i imgon 15 Tind ¢ LT 3 i images.

% Y t‘ammll

[(Zrem] s |

Diwelar  “wie | Yowss | g, (4 Taage Mr

> | -
H Shonr: O Leser-weleciion # Search” Shaw front & back

Multimedia Analysis and Retrieval System
(MARS) [100], developed at the Beckman

Institute for Advanced Science and Technology,

University of Illinois at Urbana-Champaign,

supports combinations of color, shape, spatial

layout, and texture matching features.

R In ImageGrouper system [63]

was developed at the Beckman

Institute for Advanced Science

| and Technology, University of
rouPalelte

[llinois at Urbana-Champaign.

Users can compare different

combinations of query examples
by dragging and grouping images on the workspace (Query-by-Group) interactively.
Because the query results are displayed on another pane, the user can quickly review
the results. Combining different queries is also easy. Furthermore, the concept of

“image groups” is applied to annotating and organizing a large number of images.

The Beckman Institute for Advanced Science and
Technology in University of Illinois at Urbana-
Champaign  proposed an interactive 3D
visualization system for Content-based image
retrieval named 3D MARS [64]. In 3D MARS, only
relevant images are displayed on projection-based

immersive Virtual Reality system or desktop VR.

Based on the wusers’ feedback, the system

reorganizes its visualization scheme. 3D MARS eases tedious task of searching




images from a large set of images.

Wit imge L wegory

(31 % Jah C ewrivy Oarawmi

The NeTra system [87] supports
colour, shape, spatial layout and

texture matching features in

segmented image regions to search
and retrieve similar regions from an

image database.
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The PicSOM [42] system is an image

browsing system based on the Self-
Organizing Map (SOM). The system
utilizes a hierarchical version of the
SOM
Structured Self-Organizing Map (TS-

neural  algorithm,  Tree

SOM), as the method for retrieving
similar images from a set of reference
images. The system adapts to the
user's preferences by returning images
from those SOMs where their
responses have been most densely

mapped.
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(SIMPLIcity) [50], an image retrieval

system, which uses semantics

classification methods. a wavelet-
based approach for feature extraction,

and integrated region matching based
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upon image segmentation. The image




is represented by a set of regions. roughly corresponding to objects, which are
characterized by color, texture, shape, and location. The system classifies images into

semantic categories, such as textured-nontextured, graph-photograph.

PicToSeek [78], developed in the Department of
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indices. Invariant features are extracted from

each image in the database and are matched
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with the invariant feature set derived from the F,.'*
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query image.

Content Based Image REtrieval System
(CIRES) [69], developed by the

department of Electrical and Computer

Query Image

Engineering at the University of Texas

at Austin, is a robust content-based
image retrieval system based upon a
combination of higher-level and lower-

level vision principles. Higher-level

“Yes °NS “Yes °NS

analysis uses perceptual organization,
inference and grouping principles to
extract semantic information describing
the structural content of an image.

Lower-level analysis employs a channel

“Yes NS Ves NS “Yes NS “Yes ONS “YesONS
“ No #No # No “No “ No

energy model to describe image texture,
and utilizes the color histogram. Gabor filters are used to extract fractional energies in
various spatial-frequency channels. The system is able to accept queries ranging from
scenes of purely natural objects such as vegetation, trees, sky, etc. to images

containing conspicuous structural objects such as buildings, towers, bridges, etc.
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Effective WWW image retrieval systems are

Search Results

Ta sacrch further. choose & combination of colour or tent ond click the “Search™ butten

required to locate relevant images as more and
more images used in HTML documents. Lu
Guojun [32] described an approach integrating
text based and content based techniques, to take

advantage of their complementing strengths.

PicHunter [35], a prototype content-based image
retrieval system, represents a simple instance of a
general Bayesian framework we describe for using
relevance feedback to direct a search. With an

explicit model of what users would do, given what

target image they want, it uses Bayes's rule to predict

OIS - oy ..

what the target is. This is done via a probability distribution over possible image

targets, rather than by refining a query.

1.5 Practical Applications of CBIR

A wide range of applications for CBIR technology has been identified [38][62]
[70](80]:

» architectural and engineering design,

» art galleries and museum management,

» crime prevention,

» cultural heritage,

» education and training,

» fabric and fashion design,

» geographical information systems,

» home entertainment,

» intellectual property,

» interior design,

» journalism and advertising,

» law enforcement and criminal investigation,

» medical image classification and diagnosis,



» picture archiving and communication systems,

» remote sensing and management of earth resources,

» retailing,

~ scientific database management,

» the military,

» trademark and copyright database management,

~ weather forecasting, and

» web searching.
Because research and develop most issues in CBIR spread on many different
aspects and most of them share with image processing, computer vision,
information retrieval, and patter recognition, the progress in CBIR can inspirit all

the relative research fields.

1.6 Organization of this thesis

The rest of the thesis is organized as following. In Chapter 2, we review the
statistical learning theory and its approximate implementation with SVM. In
Chapter 3, we review the Principle Component Analysis (PCA), Kernel PCA
(KPCA), LDA. BDA, and KBDA. We also prove that KPCA combined with BDA
is KBDA. In Chapter 4, we develop the random sampling based method for SVM
based RF. In Chapter 5, we propose the direct method, null-space method, and
full-space method for KBDA to overcome the SSS problem. Then the NDA is

developed in Chapter 6. After that, a medical image classification application is

described in Chapter 7. Finally, the Chapter 8 draws the conclusions of the thesis.



Chapter 2
Statistical Learning Theory and
Support Vector Machine

This chapter provides an introduction on the fundamental knowledge of the
statistical learning theory [84] and the Support Vector Machine (SVM) [84],
which are the main theoretical background in this thesis, and have been
successfully applied in the pattern recognition and multimedia information
retrieval in the last years. Theses introductions is also chapter dwells entirely on
the object recognition, image segmentation, information retrieval, time-series

prediction, text categorization, and all their extended related fields.

2.1 The Recognition Problem

We first consider the basic problem in pattern recognition [54]. Suppose we are
given a set of observations generated from an unknown probability distribution
P(x.y)

X= }(x,.y,).(x:._v,).....(x,,,._vm)} with x e R, y, e{-1,+1}. (2-1)
and a class of functions

F={f1/:R" > {-1+1}} (2-2)
then the basic problem is to find a function ser that minimize a risk function

RL1J=[1(y =1 (x).x)dP(x.y) (2-3)
where / denotes a suitable loss function, such as /(s(x).»)=(/(x)-») . which
indicates how differences between y and s(x) should be penalized.
As P(x.y) is always unknown, therefore we cannot evaluate R[] directly. One
possible solution would be to estimate the density function r(x.y) from the

samples X and many theoretical and practical techniques want exactly this by
some way. It is well known that density estimation is difficult and depends greatly

on the previous assumptions. If the size of X is small, it is always impossible to



estimate P(x.y) well. One particular simple way is to minimize the empirical risk

only

R, =—'—§j/(_v, - f(x,).x,). (2-4)

m

When the number of the training samples is asymptotical to +=, the empirical risk
will converge to the real risk. However, in pattern recognition the size of the
training set is limited. Consequently, to minimize the empirical risk will always
lead to the over-fitting problem. A network or function s that is too complex may
fit the noise, not just the signal, leading to over-fitting.

Over-fitting is especially dangerous because it can easily lead to predictions that
are far beyond the range of the training data with many of the common types of
pattern recognition methods. Over-fitting can also produce wild predictions in
many pattern recognition methods even with noise-free data. The over-fitting
problem is caused by the over complex function s, which can represent the
training set X well but cannot generalize to unseen examples. The converse leads
to the under-fitting problem. A network or function s that is not sufficiently
complex can fail to detect fully the signal in a complicated data set, leading to
under-fitting.

Apparently, we need to control the complexity of the function set / to avoid the
over-fitting problem and under-fitting problem. There are two methods to control

the complexity of # , regularization and the structure risk minimization principle.

Figure 2-1. Illustration of the over-fitting dilemma: Given only a small sample
(left) either. the solid or the dashed hypothesis might be true, the dashed one being
more complex. but also having a smaller empirical risk. Only with a large sample
we are able to see which decision reflects the true distribution more closely. If the
dashed hypothesis is correct the solid would under-fit (middle); if the solid were
correct the dashed hypothesis would over-fit (right).



2.2 Regularization

The method wants to minimize the empirical risk plus some penalty item, which is
called the regularized risk:

R.=R, +2Q(/), (2-5)
where Q:# -k is a regularization operator which measures the properties of the
function /. The constant 4 is used to control the trade-off between the empirical

risk and the regularization.

2.3 The VC Dimension

Another way of controlling the complexity of r is given by the Vapnik-
Chervonenkis (VC) theory [37]. The VC dimension is a property of a set of
functions . [f a given set of m points can be labeled by {-1.+1} in all possible 2"
ways, and for each labeling, a member of the set functions s can be found to
correctly assign these labels, we say that set of points is shattered by r. VC
dimension » of # is defined as the maximum number of training points that can

be shattered by # .

®
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Figure 2-2. Three points in R’ shattered by oriented lines.

Suppose the data belongs to #°, and » consists of oriented straight lines, that is
for a given line, all points on one side are assigned by 1, and the other size are
assigned by -1. The maximum number of points can be shattered is 3.

Consequently, the VC dimension of 7 (the set of oriented lines in &) is 3.



2.4 Structure Risk Minimization

With the definition of the VC dimension, we give out the following theorem,
which is the infrastructure of the statistical learning theory.

Theorem (2-1). Let » denotes the VC-dimension of the function set # and &, is

the empirical risk. For all §>0 and seF the following inequality bounding the

risk

h[ln 2/’)" + I)— In(‘)‘x‘fi)

m

R(/)SR,, (/.X)+ (2-6)

holds with probability of at least 1-5 for m>#4 over the random draw of the

training samples X.

2.5 Support Vector Machine

SVM is a learning algorithm used for various function estimation problems based
on the structural risk minimization principle. The SVM creates a classifier with
minimized Vapnik-Chervonenkis dimension and an upper bound on the
generalization error rate. Consider a linearly separable binary classification
problem (The training data is linearly separable if there exists a hyper-plane (w.5)
for which the positive samples lie on one side while the negative ones lie on the

other. It is shown in Figure 1.):
(o) and y, ={+1,-1) 2-7)

where x, is an n-dimension vector and y,is the label of the class that the vector

belongs to. SVM separates the two classes of points by a hyper-plane,
wa+b =0, (2'8)

where x is an input vector, wis an adaptive weight vector, and »is a bias. SVM
finds the parameters w and » for the optimal hyper-plane to maximize the

geometric margin 2/|w| subject to y,(w'x +5)2+1, which will minimize a bound on

the generalization error and will generalize best, regardless the dimension of the
input space. That is we need to solve the following constrained minimization

problem:



Al bl
mmn —wyw
" 2 (29)

sty (w’ X, + b) 2]

The solution can be found through a Wolfe dual problem with Lagrangian

multiplieq, :

Ola)=%a, -3 aa,yy,(xx,)/2, (2-10)

subject 10 @, >0 and Sa,y, =0.
=l

Support Vectors

Hyper Plane

Figure 2-3. SVM for the linearly separable binary classes problem.

In the dual format, the data points only appear in the inner product. To get a
potentially better representation of the data, the data points are mapped into the
Hilbert Inner Product space through a replacement:

XX, > h(x,) P(x,)=K(x,.x,), (2-11)
where &()is a kernel function. We then get the kernel version of the Wolfe dual
problem:

Ola)=5a, - ia,aﬂ,d,k’(x;xj 2 (2-12)
Thus for a given kernel function, the SVM classifier is given by

F(x)=sgn(/(x)) (2-13)
where /(x)=YayK(x,.x)+b is the output hyper-plane decision function of the SVM.
In general, when |/(x) for a given pattern is high, the corresponding prediction
confidence will be high. On the contrary, a low [/(x)| of a given pattern means the

pattern is close to the decision boundary and its corresponding prediction



confidence will be low. Consequently, the output of SVM, r(x) has been used to

measure the dissimilarity between a given pattern and the query image, in
traditional SVM based CBIR RF.

2.6 Kernel Space

Kernel method is to first process the data by some non-linear mapping @ and then
to apply the same linear algorithm in the kernel feature space.
For example:

D R = R' (2 14)

(x,%;) P (xf,\Z.\',,\':.xi)
@ is carried out before all other steps of the classification methods. The only

modification due to the kernel mapping is exchanging the dot product (x,x,) by
(@(x.).®(x,)) . In this example, we get:

(x .x,) =((.\;,.,\',,)'(.\',,,.\',‘.))v—> ((.\',’,,\/'2-.\'”.\',,.,\',1,).(x;',.~/'2_.\',I.\',,,,\-;'2))= K(x.x,). (2-15)
K is a symmetric function in x, and x,. The following table shows some useful

kernels:

Kernel Function Type Kernel Function
Polynomial of Order p (|+(x,.x,))"
Gaussian Radial Basis [ [, - x "]
exp| ————=
20°
Sigmoid Function tanh(x(x,.x,) - 0)




Chapter 3

Discriminant Analysis

In this Chapter, we first give the definitions of Principle Component Analysis
(PCA) [27] and Kernel PCA (KPCA) [54], which are the base for discriminant
analysis. Then we briefly discuss LDA [52], BDA [91], and KBDA [91]. Finally,
we prove the KPCA combined with BDA is actually KBDA.

3.1 PCA

Given a set of N observations, x, , k=1.N, x,eR" , PCA diagonalizes the

A9

covariance matrix in the input space:

C= "(x,—m)(.\',—m)i. (3-1)

|

|
N

where m = e WS

L
N
To do this, one has to solve the Eigenvalue equation

v =Cy (3-2)

for Eigenvalues 220 and veR"\{0} .

3.2 KPCA

The section is devoted to a straightforward translation to a nonlinear scenario, in
order to prepare the ground for the method. We shall now describe this
computation in another dot product space F, which is related to the input space by
a possibly nonlinear map:

p:R" > F

'{¢ v g(x). o

Note that ¥, which is referred to as the kernel space or the feature space, could
have an arbitrarily large, possibly infinite, dimensionality.

Given a set of v observations, ¢(x,). k=1..N, ¢(x,)eF, KPCA diagonalizes the

covariance matrix in the feature space:



Crct =%il(¢(x )-m*)((x )-m*)
'l ’ | | T (3'4)
“xhls "V§¢'J(¢"W§¢')
where x - ¢(x)=¢, m—>m’ =%}\:¢(x,)=%z\:¢, =%<D|’\ 3
1al N =l /

and x' -x 11)(\,)" -qﬁ(x‘): k(x,.x,)=k” .
To do this, one has to solve the Eigenvalue equation
Av' =C*v* (3-5)
for Eigenvalues 220 and v’ eF\{0}.
From the solutions of the Eigenvalue problem in the input space, the solutions v*

lie in the span of ¢.¢,...4, , which means v* =S a¢ = ®a,
=l

where

a=| .|, 0:[a o] (3-6)

(\"' )’ C'v =o' @' C’'u,
¢| -m’

=o' @ [¢,-m‘ @y —-m‘] . |®a
¢\ -m’

=o' @ ((D-m'l‘\ )(Q’—m"l'\ )’ Da

= (u’d)’ (@-m*1] ))(u'd” (@- m"l'\.))l

(0O ®-d'®m'l)(d OO’ D' m'1]) (3-7)
7
.—_[u o @ ld’l‘l\)(uK o' @ ltbl\l\)
l !
[a'K—-—a Kl\\J(a’K—Ta’KIN)

1
=qg (K——Kl\\)(K—LKI\\] a
N A {

=a"(KK’ —%Kl\._K’]u

Then we need to solve the following Eigenvalue problem:

(v) cv =[], .» (3-8)

a’[KK’—%Kn\\K']uA. (3-9)

The projection is:



y=v'¢(x) =(i}a,¢(x,))l é(x)= ia,gz}’ (x,)¢(x)=i}a,k(x,.x) - (3-10)

3.3 LDA

LDA tries to find the subspace best discriminating different classes. It is spanned
by a set of vectors W maximizing the ratio between the within-class scatter matrix
s. and the between-class scatter matrix s, .

[W's,w|

[W's.w|. (@=11)

W =arg max
W

Let the training set contain ¢ individual classes and each class ¢, has ~, samples.

Then s, and s, are defined as,

e (3-12)

\ . ~ o« 9 1 N .
where m=—y« is the mean vector of the total training set, m, =X, is the
] /=l

L)
N

mean vector for the individual class ¢, and x' is the sample belonging to class ¢,.
w can be computed from the eigenvectors of s.'s,. If ¢ is 2, LDA changed into

Fisher discriminant analysis, otherwise, multiple discriminant analysis.

3.4 BDA

Based on “all positive examples are alike, each negative example is negative in its
own way”, Zhou developed Biased discriminant analysis (BDA). BDA defines the
(1+x)-class classification problem, which means there is an unknown number of
classes but the user only concerns one class.

BDA tries to find the subspace to discriminate the positive (the only class
concerned by the user) and negative samples (unknown number of classes). It is
spanned by a set of vectors W maximizing the ratio between the positive
covariance matrix s, and the biased matrix s,

||w 'S, w||

[W's wi. 3-13)

W = arg max
W

Let the training set contains N, positive and Ny negative samples. Then s, and s,

are defined as,

20



M=

S, =3(x,-m)(x,-m)

v, (3-14)
S, -—-;(y, -m )(y, —m.)l.

where x denote the positive samples, y, denote the negative samples, m, =7\|'—ix,

is the mean vector of the positive samples, and W can be computed from the

eigenvectors of s's . Firstly, BDA minimize the variance of the positive samples.

Then BDA maximize the distance between the center of the positive feedbacks
and all negative feedbacks. BDA maximize the distance between the center of the

positive feedbacks and all negative feedbacks.

3.5 KBDA

According to the non-linearity of the data and the successfully kernel method used
in non-linear analysis, BDA was also generalized to its kernel version, named as
kernel biased discriminant analysis (KBDA). To obtain the non-linear
generalization. the nonlinear mapping:

®:R' 5 F (3-15)

v B(x)

from the linear input space to nonlinear kernel feature space is used. Where the
data x.x....x, e ®' is mapped into a potentially much higher dimensional feature
space F. For a given learning problem one now considers the same algorithm in F
instead of R". The idea behind KBDA is to perform the BDA in the feature space
instead of the input space.
Let s* and s’ be the “the positive with-in class scatter” and “the negative scatter
with respect to positive centroid” matrices in the feature space F. They can be

respectively expressed as follows:

§¢ = ﬁ(w(x,)—«“v(x))(tv(x.)-‘""(")); =89, (3-16)
St =2(0(v.)-2(x))(0(y.)-3(x)) =0,
@ ~[(¢(x.)-¢(x)) - (o(x)-9(x) .. (‘P("\')"’(x))] (3-17)

where (‘p(x):%—i(p(x,) is the centroid of the positive samples, Ny is the number of

positive samples, and Ny is the number of negative samples. KBDA determines a
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set of optimal discriminant basis vectors W={w,|" , which can be obtained to

solve the following eigenvalue problem:

[wsow]
||w rs‘w”

(3-18)

W= dlyn.L\

according to eigenvectors of §*'s?.
The dimension of the feature space F is arbitrarily large, and possibly infinite. But

we need not 1o use the exact o(x) to calculate W, because the kernel method can

be utilized to avoid to map the feature point from the linear input space to
nonlinear kernel feature space based on replace the dot product with a kernel
function in the input space R".

Theorem (3-1). Kernel PCA combined with BDA is Kernel BDA.

To prove KPCA combined with BDA equals to KBDA, we first use KPCA to
project all samples in the training set to the empirical feature space, that is we will

use the KPCA projection matrix to map the training set samples.

0=vo(z)=(Lan(2))6() = ap(z)o(2) - ak(z.2) (3-19)
s, =,_%,,(<". —%gw,][w,—%,rgtp,)’ (3-20)
s.<¥(0--¥0 030 (3-21)
S,

= \_: Za’k(zl.z.)-Li’)‘_a (z Z)J[Za I.(L z)-%iia,k(z,.z,)l

(=1 j=l
¥

- 3| Lagio-qisad @J[S:Ia,m -E3ad ¢,J
\ g “ j
LT (®a) ¢ - \—}_, ][ ¢—%z ®a) ¢,J

(3-22)

= X |(®a) g —T(ma)’ (D‘I'\‘]{((Du)' ) ——l\l"—(d)a)l d),l’h]

(@a) { Z(:p —%m| L ](¢ = %m‘ 11‘] ]((Da)

7
-_-((Da)’ [(D' —%mllﬂ,l\lj[(b. —%m‘l'\‘l“] (®a)

i

1
=a («D'm, Lo, \I)[m’o oo, ] a
N "N il
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7
L (KNP .0 1 S grg 1 X !
-%[%“M‘” N‘IZ“};Ia,;b,;tI][Ma,(ﬁ,(é m ;Ea,¢,@]
!
=i[(mu)' ¢, -—(®a) ® 1! ][(d’a)' é —%(Cbu)’ m‘l’\.,) @23
=(qm)'{ i‘[qs, —%m‘l’\_J[ﬁ —\L,d)\l’h] ](ma)
=(®y) {m‘ —\—"w‘ . ][m‘ -\L,a), I’\‘l\bJ (®a)
=a [(D’(D_——I—(D'(D‘l\‘ “J[m’m‘—la:’o_lh,\,] a
N N, '
That is,
max ||W"S“’W|| = max "W’S,W"
wsw] " wsw] (2%)
B=uW

From these deductions, we can see that KPCA + BDA equals to KBDA, but we
should reserve all the eigen-vectors of the KPCA procedure, otherwise, we will

lose some discriminant information.
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Chapter 4
Random Sampling Based SVM

Recently, classification-based RF has become a popular technique in CBIR and
SVM based RF (SVMRF) has shown promising results owing to its good
generalization ability [26][58][67][95]. However, when the number of positive
feedbacks is small, the performance of SVMRF becomes poor. This is mainly due
to the following reasons.

First, SVM classifier is unstable for small size training set, i.e. the optimal hyper-
plane of SVM is sensitive to the training samples when the size of the training set
is small. In SVM RF, the optimal hyper-plane is determined by the feedbacks.
However, more often than not the users would only label a few images and cannot
label each feedback accurately all the time. Hence the performance of the system
may be poor with the inexactly labeled samples.

Second. in the RF process there are usually much more negative feedback samples
than positive ones. Because of the imbalance of the training samples for the two
classes, SVM’s optimal hyper-plane will be biased toward the negative feedback
samples. Consequently, SVMRF may mistake many query irrelevant images as
relevant.

Finally, in RI*. the size of the training set is much smaller than the dimension of
the feature vector, thus may cause the over fitting problem. Because of the
existence of noise, some features can only discriminant the positive and negative
feedbacks but cannot discriminant the relevant or irrelevant images in the database.
So the learned SVM classifier cannot work well for remnant images in database.
In order to overcome these problems, we design several new algorithms to
improve the SVM based RF for CBIR. The key idea comes from the Classifier
Committee Learning (CCL) [12][41][56][79][83]. Since each classifier has its
own unique ability to classify relevant and irrelevant samples, the CCL can pool a
number of weak classifiers to improve the recognition performance. We use
bagging and random subspace method to improve the SVM since they are

especially effective when the original classifier is not very stable.
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4.1 Asymmetric Bagging SVM

Bagging [56] strategy incorporates the benefits of bootstrapping and aggregation.
Multiple classifiers can be generated by training on multiple sets of samples that
are produced by bootstrapping, i.e. random sampling with replacement on the
training samples. Aggregation of the generated classifiers can then be
implemented by majority voting rule (MVR) [41].

Experimental and theoretical results have shown that bagging can improve a good
but unstable classifier significantly. This is exactly the case of the first problem of
SVM based RF. However, directly using Bagging in SVM RF is not appropriate
since we have only a very small number of positive feedback samples. To
overcome this problem we develop a novel asymmetric Bagging strategy. The
bootstrapping is executed only on the negative feedbacks, since there are far more
negative feedbacks than the positive feedbacks. This way each generated classifier
will be trained on a balanced number of positive and negative samples, thus
solving the second problem as well. The Asymmetric Bagging SVM (ABSVM)

algorithm is described in Table 1.

Table 4-1: Algorithm of Asymmetric Bagging SVM.

Input: positive training setS’, negative training sets , weak classifier /(SVM),
integer 7 (number of generated classifiers), x is the test sample.

l. Fori=1tor {

2. s, = bootstrap sample from s ., with |s/|=[s"|.
3; ¢ =1(s,.8)
4. }

3. (“(-‘) = "ngvgulion{(',(x.Sl SHlgi< 'I'} s

Output: classifier C”.

In ABSVM., the aggregation is implemented by Majority Voting Rule (MVR).
The asymmetric Bagging strategy solves the classifier unstable problem and the
training set unbalance problem. However, it cannot solve the small sample size
problem. We will solve it by the Random Subspace Method (RSM) in the next

section.
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4.2 Random Subspace Method SVM

Similar to Bagging, RSM [79] also benefits from the bootstrapping and
aggregation. However, unlike Bagging that bootstrapping training samples, RSM
performs the bootstrapping in the feature space.

For SVM based RF, over fitting happens when the training set is relatively small
compared to the high dimensionality of the feature vector. In order to avoid over
fitting, we sample a small subset of features to reduce the discrepancy between the
training data size and the feature vector length. Using such a random sampling
method, we construct a multiple number of SVMs free of over fitting problem.
We then combine these SVMs to construct a more powerful classifier. Thus the
over fitting problem is solved. The RSM based SVM (RSVM) algorithm is

described in Table 2.

Table 4-2: Algorithm of RSM SVM.

Input: feature set ¥, weak classifier / (SVM), integer 77 (number of generated
classifiers), x is the test sample.

I. For i=1to 1 {

2. F =bootstrap feature from F.
3. C =I(F)

4. }

3, C'(x)= uggrvgulmn{(',(x.F, L1<is< 'I'} .

Qutput: classilier .

4.3 Asymmetric Bagging RSM SVM

Since the asymmetric Bagging method can overcome the first two problems of
SVMREF and the RSM can overcome the third problem of the SVMRF, we should
be able to integrate the two methods to solve all the three problems together. So
we propose an Asymmetric Bagging RSM SVM (ABRSVM) to combine the two.

The algorithm is described in Table 3.
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Table 4-3: Algorithm of Asymmetric Bagging RSM SVM.

Input: positive training set s, negative training set s, feature set ¥, weak
classifier /(SVM), integer 7. (number of Bagging classifiers), integer 7, (number
of RSM classifiers), x is the test sample.

I.. For j=1 to: T. 4

2. s =bootstrap sample from s .

3. for i=1to T, {

4. F =bootstrap sample from F.
5. C,, =1(F,8;.8"):

6. }

T

s

: C,(x.F,,S,,§")
8. ('(x)=aggregation s ;
I<isT <<t

Output: classifier ¢

In order to explain why Bagging RSM strategy works, we derive the proof
following a similar discussion on Bagging in [56].
Let (y.x) be a data sample in the training set £ with feature vector , where y is

the class label of the sample x. £ is drawn from the probability distribution 7.

Suppose o(x.L.F) is the simple predictor (classifier) constructed by the Bagging
RSM strategy, and the aggregated predictor is,
@, (x.P)= E.E o(x,L.F). (4-1)
Let random variables (y.X) be drawn from the distribution P independent of the
training set . . The average predictor error, estimated by ¢(x.LF) , is
e, =EEE (Y -p(X.L /)) The corresponding error estimated by the aggregated
predictor is
e =B\ (Y-0,(X.P)) . (4-2)

Using the inequality %z%z()z(%z%zj , we have:

E,E,0 (X, L. F) 2 (E,E,p(X,LF)) (4-3)
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E, \E.E@ (X.L.F)2 E, ,0}(X.P) (4-4)
Thus,
o, = E, Y} =2E, Yo, +E, EE@ (X.LF
‘ ‘ BIRES). (4-5)
2E ., (Y-0,) =e,
Therefore, the predicted error of the aggregated method is reduced. From the

inequality, we can see that the more diverse is the ¢(x...F), the more accurate is

the aggregated predictor. In CBIR RF, the SVM classifier is unstable both for the
training features and the training samples. Consequently, the Bagging RSM
strategy can improve the performance.

Here we made an assumption that the average performance of all the individual

classifier ¢(x...F), trained on a subset of feature and training set replica is similar

to a classifier. which use the full feature set and the whole subset training set. This
can be true when the size of feature and training data subset is adequate to
approximate the full set distribution. Even when this is not true, the drop of
accuracy for each simple classifier may be well compensated in the aggregation
process.

From the inequality, we can see that the more diverse of the ¢(x.L.F), the more
accurate of the aggregated predictor. Practically, the aggregated predictor is not
0, (x.P).but ¢ (x.r), because the Bagging RSM strategy is used on the training set.
P and P are consistent in the probability space. If the classifier ¢ is stable,
o, (x.P') (it approximates t0 ¢(x.L.F)) given by the Bagging RSM strategy is not as
accurate as ¢ (x.”). Therefore, the strategy may not work. However, if ¢ is
unstable (weak classifiers are diverse), ¢,(x,»")can improve the performance. In
CBIR RF, the SVM classifier is unstable both for the training features and the
training samples. Consequently, the Bagging RSM strategy can improve the
performance.

There are many different ways to do the aggregation. Two typical methods are

hierocratic and parallel structures. The hierocratic structure of the aggregation is

shown in Figure 1.
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Figure 4-1. Hicerocratic structure of aggregation.

For a given pattern, we first recognize it by a series of weak SVMs, which are
constructed by the bootstrapping training set and features and denoted as

{(‘u=(‘(l-;,.'s',)|Isis'l',.lSjs'I'l}. Then we recognize it on a subset of weak
classifiers {(j:('(/ﬁ.s,)]ls:’s'/',}, which are constructed on the same training

examples but with different training features. At last, we use these outputs and the
aggregation rule to construct the destination classifier. For example, if the
aggregation rule is majority voting, we can represent it as:

C"(x) = arg max >3] 1 (4-6)

0
¥ Ny |

vl |
ISy |--.-l||m.\<
ver |

The parallel structure of the aggregation is shown in Figure 2.

Figure 4-2. Parallel structure of aggregation.

For a given pattern, we recognize it by all weak SVMs
{('“ =C(F.S,)1<isT,. Sjs'lj}. Then, an aggregation rule is utilized to classify it as
a query relevant or irrelevant. For example, if the aggregation rule is majority
voting, we can represent it as:

C'(x)=argmax ¥ | 4-7)

ININIER J8 AT
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For a given test sample, we first recognize it by all 7,.7 weak SVM classifiers.

Then, an aggregation rule is used to integrate all the results from the weak

classifiers for final classification of the sample as relevant or irrelevant.

4.4 Aggregation Model

After training a given CCL model, such as BSVM or RSVM, the aggregation rule
should be given to combine the weak classifiers. Many aggregation models have
been developed, such as majority voting rule (MVR), Bayes sum rule (BSR),
Bayes product rule, LSE-based weighting rule, double-layer combination,
Dempster-Shaler model, and some nonlinear methods. In this paper, we only
focus on the MVR and the BSR, due to their good performance in pattern
classification.

1. MVR

MVR is the simplest method to combine multiple classifiers. Given a series of
weak classifiers

{C(x)1<i< N}, the MVR can be represented as:

59 s (4-8)

("(x)=argn'1u.\” .
MVR does not consider any individual behavior of each weak classifier. It only
counts the largest number of classifiers that agree with each other.

2. BSR

MVR does not consider the behaviors of the weak classifiers. If one classifier is
much more accurate than all the others, the MVR cannot take advantage of it. To
address this problem, J. Kittler [10] proposed a general theoretical framework
based on the Bayeian decision rule. We select BSR in the paper to aggregate

multiple classifiers, because BSR outperform most of the other rules.

BSR, denotes the measurement vector used by the i classifier z . In the

measurement space each class y, is modeled by the probability density function

p(z1v,) and its priori-probability is p(y,). Then BSR can be computed as,
C*(x)=arg max[(l-l( )P(y.)+ 5 P(y, | :)] . (4-9)

To use the BSR in our schemes (BSVM, RSVM, and BRSVM), the probability

model is required. As shown in [17], the sigmoid function combined with the
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output of SVM can be used to estimate the class-conditional probability for a

given instance x by,

PO ) =Y/ {1+exo(-[ ()} (4-10)
We do not need to consider p(y,) here, because the probability for an unknown
sample to be query relevant or irrelevant are equal. Then BSR is simplified as,

C'(x)= urg:nux[li P(y |z, )} . (4-11)

4.5 Dissimilarity Measure

1. Using MVR to Combine the SVMs (MVRSVM)

For a given sample, we first use the MVR to recognize it as query relevant or
irrelevant. Then we measure the dissimilarity between the sample and the query as
the output of the individual SVM classifier, which gives the same label as the
MVR and produces the highest confidence value (the absolute value of the
decision function of the SVM classifier).

2. Using BSR to Combine the SVMs (BSRSVM)

For a given sample, we first use the BSR to recognize it as query relevant or
irrelevant. Then we measure the dissimilarity between the sample and the query
using the individual SVM classifier, which gives the same label as the BSR and
has the highest confidence value.

3. BSR

From the definition of BSR, the output of the BSR {IP()-A |x,) can also be used as a

dissimilarity measure between a given sample and the query.

In this chapter. we will compare all the three rules for BRSVM based RF.

4.6 Computational Complexity Analysis

From [12]. we know that the computational complexity for training a SVM is

O(SIM)=0(n +n’L+nn,L), where n_is the number of support vectors, », is feature

dimension, and £ is the size of the training set. From the formula of the output of

SVM, the number of the support vectors » determines the computational

complexity in the testing stage. We denote the computational complexity for a
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multiplication and addition of two real values as® and @, respectively. Then the

computational complexities of SVM, BSVM, RSVM, and BRSVM are:

Table 4-4: Algorithms’ computational complexity.

Training Testing
SVM O(SM) NN (@ + @)
ABSVM T.-O(SYM) T, NSNS (@ + @)
RSMSVM | 7,-0(SrM) T, NI NS (@ + @)
ABRSVM | 7.:7,-0(S¥M) T, T, NN S (© 4+ @)

4.7 QueryGo Image Retrieval System

In CBIR., we assume that the user is greedy, who expects the best possible
retrieval results after each RF iterations, i.e. the search engine is required to
feedback the most semantically relevant images under the previous feedback
samples. Meanwhile, the user is impatient, who will never label a great deal of
images in each RF iteration and only does a few numbers of iteration. To solve
this type CBIR problem, the following CBIR framework QueryGo is proposed.

With the proposed system, we can embed any RF algorithm easily.

I Visual Feature I

* Y—I Large Image Database ]
[ Similarity Measure |

‘s " +
Relevance Feedback Retrieval Result }:
5T

..... /
A
e - o
| FPositive Feedback Negative Feedback
\ \ Y
IFinal Retrieval Result J | Relevance Feedback Nodel J———

Figure 4-3. QueryGo system flow chart.
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From Figure 3. when a query (image) is inputted, the low-level visual features are
extracted. Then, all images in the database are sorted based on some similarity
metric. If the user is satisfactory with the result, there will be no relevance
feedback. However, most time, the RF is needed because of the poor performance.
The user labels some top images as positive feedbacks and negative feedbacks.
The user labels some top images as positive feedbacks and negative feedbacks.
Using these feedback images, a RF model is trained based on certain machine
learning algorithms. Then the similarity metric is updated based on the RF model.
All the images are sorted again based on the renovated similarity metric. If the
user is not content the result, the RF is done circularly, otherwise, the user get the
final retrieval result.

The image retrieval system has been implemented with a real-world image
database including 17,800 Corel images a subset of Corel Photo Gallery [39].
Corel Photo Gallery uses semantic concepts to group the photos each with 100
images. But we cannot directly use the concept information as the ground truth,
because many images with similar concept bit given different label information.
Meanwhile, some content absolutely dissimilar images given same label
information. Because of these reasons, we re-labeled the 17, 800 images into 90
concepts.

In QueryGo, we represent images by three main features: color [3]-[5], texture
[6]-[13]. and shape [13]-[17]. Color information is the most important features for
image retrieval because color is robust with respect to scaling, orientation,
perspective, and occlusion of image, which are pointed out by [3]. Texture
information is also a type of important cue for image retrieval. Previous studies on
texture have shown that texture information according to structure and orientation
fits well the model of human perception. Shape information is another type of
important clue to fit the perception of human, and many image retrieval systems
support the feature.

For color, we select the color histogram [3] to representation the color information
of an image. We select the hue, saturation, and value (HSV) color space to
represent the color information. Here, the color histogram is quantized into 256
levels. Because hue is the most important for human's perception, we quantized

hue into 8 bins. Saturation and value are quantized into 4 bins respectively.

33



For texture, Wavelet texture is extracted from Y component in YCrCb space. We
select the pyramid wavelet transform (PWT) [12] for image texture information
representation, Image is decomposed by the traditional pyramid-type wavelet
transform with Haar wavelet. In the system, the mean and standard deviation are
calculated in terms of the sub-bands at each decomposed level. The
decomposition procedure can be seen from the figure. PWT results in a feature
vector of 2x4x3 values.

For shape, the edge histogram [13] captures the spatial distribution of edges in an
image. The distribution of edges is a good shape signature that is useful for
image-to-image matching even when the underlying texture is not homogeneous.
The edge histogram is calculated on Y component in YCrCb color space. Edges
are grouped into five categories, which are horizontal, 45 diagonal, vertical, 135
diagonal, and isotropic. From the description of edge histogram, we can get a five-

dimension shape feature for image retrieval.

For each component mean and
variance are calculated as
features.

B %l O

Figure 4-4. Wavelet texture feature structure.

Each feature has its own power to characterize a type of property of the content of
an image. We combine the color, texture, and shape features into a feature vector,
and then we normalize it into a normal distribution.

Figure 5 shows the user interface of QueryGo. In the paper, query by example is
used. To scale the performance, the RF algorithms are focused here. First, user
selects a query image from the thumbnail gallery and pushdown the “Set As
Query™ button. Second, user pushdown the “Retrieval” button, and then the
images in the gallery are resorted. Third, user provides the feedback by clicking
on the “thumb up” or “thumb down™ button in terms of his judgment of the

relevance of the retrieved image. At last, user pushdown the “Retrieval” button to
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resort the images in the gallery. The last two steps can be done iteratively to

obtain a satisfactory performance.

Figure 4-5. User interface of QueryGo System.

4.8 Toy Experiments

1. SVM is Unstable for Small Size Training Set

The toy problem in Figure 6 shows that the optimal hyper-plane of the SVM is
sensitive to the small changes of the training set. The left figure shows an optimal
hyper-plane, which is trained by the original training set. The right figure shows a
much different optimal hyper-plane, which is trained by the original training set

with only one incremental pattern.
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2. SVM is Biased with Unbalanced Training Set

The toy problem in Figure 7 shows that the optimal hyper-plane of the SVM,
which is trained by an unbalanced training set, will bias toward the class with
more training samples. The left figure shows the overview of the training set.
Through the right figure, which is cut from the bottom-right part of the left figure,
we can see that the optimal hyper-plane bias to the class with more training

examples.

L4l

F igur 4-7. SVM’s optimal hyper-plane is deflected.

3. The Visual Feature is Diverse for CBIR

This toy problem is constructed from the real data in RF. There are four positive
and seven negative feedbacks. We randomly select two features to construct the
SVM optimal hyper-plane for three times. They are visualized in Figure 8. We

can see that the individual SVM classifiers are diverse with different features.

A P

iixre 4-8. The features are diverse.

4.9 Statistical Experimental Results

In this section. we compare the new algorithms with existing algorithms through
the QueryGo. The experiments are simulated by a computer automatically. First,
300 queries are randomly selected from the data, and then RF is automatically

done by the computer: all query relevant images (i.e. images of the same concept
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as the query) are marked as positive feedbacks in the top 40 images and all the
other images are marked as negative feedbacks. In general, we have about 5
images as positive feedbacks. The procedure is close to the real circumstances,
because the user typically would not like to click on the negative feedbacks. Thus
requiring the user to mark only the positive feedbacks in top 40 images is
reasonable.

In this Chapter, precision and standard deviation (SD) are used to evaluate the
performance of a RF algorithm. Precision is the percentage of relevant images in
the top N retrieved images. The precision curve is the averaged precision values
of the 300 queries, and SD curve is the SD values of the 300 queries’ precision
values. The precision curve evaluates the effectiveness of a given algorithm and
SD curve evaluates the robustness of the algorithm. In the precision and SD
curves 0 feedback refers to the retrieval based on Euclidean distance measure
without RF.

We compare all the proposed algorithms with the original SVM based RF [5] and
the constrained similarity measure SVM (CSVM) based RF [7]. We chose the

Gaussian kernel K(1)=" o =i (the default value in the OSU-SVM [15]
MatLabTM toolbox) for all the algorithms. The performances of all the SVM
algorithms are stable over a range of #.

1. Performance of Asymmetric Bagging SVM

Figure 9 shows the precision and SD values when using different number of
SVMs in ABSVM. The results show that the number of SVMs will not affect the
performance of the asymmetric Bagging method when the number of SVM is

large enough.
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Figure 4-9. ABSVM in RF. The number of SVMs will not affect the performance
of the asymmetric Bagging method when the number of SVM is enough.



Figure 12 evaluates the performance of the proposed ABRSVM based RF. In this

experiment, we chose 7. =5 for ABSVM. The results in Figure 12 show that the

ABSVM gives a much better performance than SVM and CSVM.

2. Performance of RSM SVM
Figure 10 shows the precision and SD values when using different number of
SVMs of RSVM. The results show that the number of SVMs does not affect the

performance of RSVM when the number of SVMs is large enough.
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Figure 4-11. RSMSVM in RF. The number of SVMs does not affect the
performance of RSVM when the number of SVMs is large enough.
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Figure 12 evaluates the performance of the proposed RSMSVM based RF. In this

experiment, we chose 7, =5 for RSMSVM. The results in Figure 12 show that the

RSMSVM gives a much better performance than SVM and CSVM.

3. Performance of Asymmetric Bagging RSM SVM

This experiment evaluates the performance of the proposed ABRSVM, ABSVM,
and RSVM based RF. In this experiment, we chose 7 =5 for ABSVM, 7, =5 for
RSVM, and 7 =7, =5 for ABRSVM.
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Figure 4-12. Performance of all proposed algorithms compared to existing

algorithms. The algorithms are evaluated over 9 iterations.

This experiment evaluates the performance of the proposed ABRSVM, ABSVM,
and RSMSVM based RF. In this experiment, we chose 7. =5 for ABSVM, 7, =5
for RSVM, and 7, =7, =5 for ABRSVM. The results in Figure 12 show that the

ABRSVM gives the best performance followed by RSMSVM then ABSVM.
They all outperform SVM and CSVM.

4. Aggregation Model Evaluation
This experiment evaluates the performance of three different dissimilarity
measures, MVRSVM, BSR, and BSRSVM, for the proposed BRSVM based RF.

All algorithms are evaluated over nine iterations. The precision and SD curves are
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reported in Fig. 9. From the figure, we see that MVRSVM can outperform both
BSRSVM and BSR.
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Figure 4-14. Aggregation model evaluation.

BSRSVM considers the behavior of weak classifiers, so in theory it may
outperform the MVRSVM. However, according to the experimental results, its
performance is worse than MVRSVM, because we cannot estimate the behavior
exactly for unstable weak classifiers. From Figure 9, we find that BSR is much
worse than MVRSVM and BSRSVM, because MVRSVM and BSRSVM choose
the best individual SVM to measure the dissimilarity between a given image and
the user’s sentiment. BSR uses the averaged probabilities, which cannot be

estimated exactly. Therefore, MVRSVM is the best choice.

5. Computational Complexity
Because the size of the training set is small, the overall computational complexity

is mostly determined by the testing stage. The v, for SVM RF is much bigger than
that of BSVM and BRSVM, and the v, of SVM RF is much bigger than that of
RSVM and BRSVM. Thus the computational complexity of SVM RF is much
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higher than that of BSVM, RSVM, and BRSVM. In general, for each of the four

algorithms, the inequality N, > ~, holds, because the number of feedbacks is much

smaller than the dimension of the feature. Consequently, the computational
complexity of BSVM is higher than RSVM and BRSVM, and the computational
complexity of RSVM is lower than that of BRSVM. Our experiments will
confirm these observations.

To verify the efficiency of the proposed algorithms, we record the computational
time when conducting the experiments. The ratio for the time used by different
methods are SVM: CSVM: ABSVM: RSVM: ABRSVM = 25: 25: 11: 3: 5. This
is show that the new SVM based algorithms are much more efficient than existing

SVM based algorithms.
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Chapter 5
SSS Problems in KBDA RF

KBDA [91] has been used for RF mainly because it handles the positive and
negative feedbacks separately. However, KBDA often suffers from the SSS
problem. To overcome it, the regularization method adds small quantities to the
diagonal of the scatter matrices. This apparently is not an optimal solution and
sometimes it may lead to an ill-posed problem, which limits the performance of
RF.

Recently. direct LDA (DLDA) [30] was proposed to solve the SSS problem in
face recognition. DLDA discards the null space of between-class scatter matrix.
Then the discriminant vectors are the within-class scatter matrix’s eigenvectors
with smallest eigenvalues. The successes of the kernel-machine based pattern
classification algorithms have motivated us to generalize the idea of DLDA to
BDA in the kernel feature space (DKBDA). We first project all the training
samples from the input feature space to kernel feature space, and then the null-
space of the negative-scatter-with-respect-to-positive-centroid matrix is removed.
At last, the discriminant vectors are extracted as the positive-within-class-scatter
matrix’s eigenvectors with the smallest eigenvalues.

Another method to overcome the SSS problem is the null-space LDA (NLDA)
[57]. NLDA extracts discriminant information from the null space of within class
scatter matrix. Similar to KDBDA, we also generalize the idea of NLDA to BDA
in the kernel feature space (NKBDA). We first project all the training samples
from the input feature space to kernel feature space, and then the primal-space of
the positive-within-class-scatter matrix is removed. At last, the discriminant
vectors are extracted as the negative-scatter-with-respect-to-positive-centroid
matrix’s eigenvectors with the largest eigenvalues.

Clearly, both DLDA and NLDA may lose some discriminant information, because
the null space of between class scatter matrix and the principle space of within-
class scatter matrix, which are removed when conduct DLDA and NLDA, may

contain some discriminant information. So we propose a full-space method
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(FLDA) to preserve all discriminant information contained in LDA. Finally, we
generalize the FLDA for KBDA as the Kernel Full-space BDA (FKBDA)
[15][16].

5.1 DKBDA

5.1.1 DLDA

Yu et. al. proposed a direct LDA method, and it accepts high-dimensional data as
input, and optimizes Fisher’s criterion directly, without any feature extraction or
dimension reduction steps, so it takes advantage of all the information within and
outside of the null space of s, . In this approach, s, is first diagonalized, and the
null space of s, is removed,

Y'SY=D, >0 (5-1)
where v are eigenvectors and b, are the corresponding non-zero eigenvalues of
S,. S. is transformed to

K. =D, °Y'S YD, . (5-2)
K. is diagonalized by eigenanalysis,

U'K U=D,. (5-3)
The LDA transformation matrix for classification is defined as,

W =YD, UD". (5-4)
In DLDA., the null space of s, is first removed. and the discriminant vectors are

restricted in the subspace spanned by class centers. It is assumed that the null

space of s, contains no discriminative information at all.

5.1.2 DKBDA

Before we deduce the kernel Direct BDA, we first introduce the kernel matrix K :

, I\'\I K\l
el | (5-5)
where
K(Xix) o R(X%) k(xisy) "'(‘p)’\.)
K. =| . 3 Blal e, m o b
k(XgoX)) o k(Xyoxy) k(X)) v k(xh.y\.)
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K(¥i%): = K(Xa) B(gid) = k(X%)

k(yisixi) = klyaxi) K(yom): - %¥ig:¥)
x is the positive feedback samples, v, is the number of positive feedback
samples. y is the negative feedback samples, ~ is the number of negative
feedback samples, and «(...) is the kernel function.

Just like Direct LDA, we begin the kernel Direct BDA from the analysis of the
“the negative scatter with respect to positive centroid” matrix. Since the

dimension of the ® could be arbitrarily infinitive, it is impossible to calculate
s =@ @' directly and implement Eigen analysis with s’. Fortunately, this can be

avoid through the following analysis:

O De=de =00 (De)=7(De)
O O®u=iu =u=0c¢ (5-6)
U=0E

The dimension of @@ is the number of negative relevance feedback samples.
The following problem is to get the matrix.

(¢ (v)-9'(x)

'@ =| (o' (y)-9(x) [(tp(y.)-(_P(X)) o (oly,)-8(x) - (w(y\,.)—Tp(X))]

(¢ (y.)-9'(x))

(@ ()= ()(e(v.)-8(x)].,. | (5-7)

)
=12 N

[0 (v)e(y) -0 (1)()-F () (y,)+# ()3()]...

/™2, N

Then we should calculate o' (y )o(y,). o' (v.)a(x). & (x)o(y,). and & (x)#(x). The

details will be seen from the following formulations

o) [tee)

€l
=
~—
Sl
—_

-
S—

|

S

"ol 2 (5-8)
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E o' (x,)e(y,) (5-9)

=‘\L,§;‘¢p’(y.)tp(x...) (5-10)

where 1., is a column vector with all terms equal to one.

So we can obtain the following formulation according to the kernel matrix (13).
.0,

=o' (v)oly,)-o' (v)a(x)-# (e(y,)+@ (\)#(x)]... .

1212 Ny

| LY ]y |
:[l\'(y,.y,)—T;k(y,.xm)—T;Y_:k(xm.yl).pFll\.“'lemll (5-11)

| =
1212 Ny

| AR | > I
:l<n_Tl\nl\\ll‘hl-Tlh!I'\'\ll\\\+F"\'\'.IK L1

o TN NN
N

=K " "'If'K.‘l\. 3 "_l'ln \‘K\ +i\'l\; M
"N, N TN

where « =1 K _1,,, 1, 1samatrix with all terms equal to one.

We do Eigen analysis with (11), and obtain the none-zero space Eof ®’® | i.e.
E®®E=D »0. According to (6), we can easily obtain the diagonalized none-
zero subspace w=@ D 'E of ® @', i.e. Ws*W=0. Here, we need not to calculate

w=o D “E. To reckon the largest Eigen values and corresponding Eigen vectors,

we can in depth the analysis. It is similar with the Direct LDA, and then the
“positive with-in class scatter”™ matrix is projected into the none-zero space:

WS'W=D'E®S®ED" (5-12)
From (12), we can see that to calculate w=® p;"*E can be avoided. The new
coming problem is to reckon @’s*® . With the following deduction (13), (14),
(15), (16), and (17), we can draw the conclusion that ®’s*®, only relates to the
kernel matrix (5), just like o'® .

PSP =000 =(00) (0w) (5-13)

To reckon @’s‘@ . we only need to calculate o’ .

45



o' @
(0 (x)-%"(x)) |

(0 (x)=(x) [[ox)-8(x) -~ oy,)-8(x) - o(y,)-2(x)]

(0" (x)-9" (%)),
=[(0' ()-8 ())(oly.) 2], .

=020 Ny

=[o' (0 )ely,)- 9" (x)3(x)-F (X)o(v,)+¥ (3.,
To calculate @@ ., we first should to calculate ¢'(x)(x) . & (x)e(y,) , and

o' (x)9(x). Here, 9 (x)o(y,) and ¢’ (x)p(x) are respectively calculated in (9) and (8).

In the formulation (15), we reckong’ (x,)@(x) .

S
—
”
S—
S|
—
”
Nad
"
<
—_
Kol
—
Y e
‘z.|_.
le

?_:cp’ (x)e(x,) (5-15)

Then we can obtain the '@, by formulation (16).

A4

P
= [«p’ (x)e(y,)-0 (x)a(x)-8' (x)o(y,)+o’ (X)‘_P(*)],;.l.:l "

‘ | %, 2 I (5-16)
=[k(x...\',)—TMZ__,/\(x.-xu.)-yg"("m-y,)*AT‘:"\'.A.K.J\.._.LL X

I=1.2. Ny

| 1 a
=K, ‘TK.‘I\\ Ay "Tl\.\.Ku +T{"\\.\s

Then we can obtain @'s*® according to the following deduction:
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Under the idea of Direct LDA, we do the Eigen analysis of
S =W'S'W=D ‘E'®s'®ED', and we select the eigenvectors v of §¢ with the
smallest eigenvalues b . i.e.

V'SV =D, (5-18)
At last we established the overall projection matrix U=ED;"*vD;"*.
Obviously, it is possible that some diagonal values in the matrix b, is zero, which
means that p'* does not exist. However, we can avoid the zero eigenvalue
problem based on a changed KBDA criterion, according to [K. Liu].

The modified KBDA criterion is:

|w's:w|
W = arg max

v Wr(st+st)w)- (5-19)

It is clearly that the modified criterion equals to the original KBDA criterion
based on the proof in [K. Liu]. Based on the modified KBDA criterion, we can

avoid the singular value problem, because [w's'w|=1.
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Here, we sum up the DKBDA algorithm:

1. Calculate the kernel matrix K based on (5).

o

Calculate ®'®  according to (11).

Do Eigen analysis on ®'® . and obtain the none-zero subspace E of

I

(l)" D .

4. Calculate (D_’.S‘f(l)l according to (17).

wh

Do Eigen analysis on
S =W/S*W+W'S*W=D""E'®'S’® ED,"? +1 . and select the
Eigen vectors V of S? with the smallest Eigen values D .

6. Established the overall projection matrix U = ED;"*VD"?.

5.2 NKBDA

5.2.1 NLDA

NLDA [8] optimizes LDA in the null space of s_. In NLDA, the null space of s,
is first calculated as:

Y'S. ¥=0 (5-20)
where v are eigenvectors with zero eigenvalues and v'y=1. The between class
scatter matrix s, is projected onto the null space of s_,

S, =Y'S,Y (5-21)
The eigenvectors U of §, with largest eigenvalues are selected to form the

transformation matrix,

W=YU. (5-22)

5.2.2 NKBDA

For null-space method in KBDA (NKBDA), we first extract the null-space of s
according to.
WS'W=a ®'S'0g,

=, K (1-1,)K a, =D, =diag(d,,...dy,)

"

(5-23)

where ¢2d,, >d,,>..>d_ =0. Then project s* onto the null-space of s* by,
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S* =u ®'S'Da,, 5.24)
=a, (K -K I, )(K -Kl\_)’am (

Finally, the cigenvectors of s* corresponding to the largest eigenvalues selected
as feature basis,
«,Sla, =D, . (5-25)

The kernel projection matrix is: o/ D;"’a’ @' .

5.3 FKBDA

5.3.1 FLDA

Both DLDA and NLDA may lose some discriminant information. DLDA loses
the information in the null space of the between class matrix. NLDA loses
information in the principle space of the within class scatter matrix. In order to
overcome the MSP and still preserve the discriminant information, we propose a

full space LDA. For s, , we compute,

Y'S.Y=D, (5-26)
where D, =diag(A,... A .2, 4,,..0), A, <ei <4, ,and ¢ is a user selected threshold
value (such as 0.01).

For a given ¢ . the eigenvalue matrix b, is then converted to
D, =diag(A ...h ...r, Ay, ik, ) . All values, which is smaller than 1, , are
substituted by 4, . After the substitution, the between class scatter matrix s, is
projected onto the space by,

S, =DV, ¥D'\?, (5-27)
Finally, the eigenvectors U of §, with largest eigenvalues are selected to form the
transformation matrix,

W=YD':UD;"*. (5-28)

5.3.2 FKBDA

For full-space method in KBDA (FKBDA), we first extract the principle and null

spaces of s*, and then combine them by a weight as the full-space,
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WSIW =0/ ®@'S!®a, =a K (1-1 )Kla
[

1
¥
wt)

where 4 >..24 2¢24,,20. Then project s* onto the full-space of s¢ by,

» (5-29)

=A,~A, =di(lg(l].....].”.}. A,

ST =0, A O'S'DA g,

o s A (5-30)

=aj A (K, -K I )(K, -K 1) A,

Finally. we extract the eigenvectors of the projected s* with largest eigenvalues as,
o' S'a, =D (5-31)

The kernel projection matrix is: o’ D;"*a/ A '@’ .

5.4 Experimental Results

We evaluate the performance of the proposed algorithm using the precision and its
standard deviation. Precision is the ratio of the number of retrieved relevant
images to the top N retrieved images. Precision examines the effectiveness of an
algorithm and the corresponding standard deviation evaluates the robustness of
the algorithm. We conduct the experiment on QueryGo.

In the statistical experiment, we compare all proposed algorithms (DKBDA,
NKBDA., and FKBDA) with the existing KBDA. The computer automatically did
the feedback experiments with 200 queries. For each iteration, the system marked
the first 5 incorrect and correct retrieved images from the top 48 matches as
irrelevant and relevant examples, respectively. In the kernel based algorithms, we

chose the Gaussian kernel K(x.y)=¢*™ with p=1/10 because the parameter

shows the best performance for FKBDA, NKBDA, DKBDA, and KBDA from a
series of values.

Figure 1 shows the performance of FKBDA, NKBDA, DKBDA, and KBDA. The
results show that our algorithms outperform the existing KBDA consistently both
on effectiveness and robustness, meanwhile, FKBDA works best in all algorithms.
In addition, the computation costs of the three methods are similar in our

experiments.
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Figure 5-1. Evaluation experimental results based on the Corel database with 17,
800 images with 200 queries. (a), (b), and (c¢) display the retrieval precision in top
10, 20, and 30 retrieved images respectively. (d), (e), and (f) display the
corresponding standard deviation of the precision curve in top 10, 20, and 30

retrieved images respectively.
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Chapter 6
NDA based RF for CBIR

BDA [91] has been used as a feature selection method to improve RF, because
BDA models the RF better than many other methods. However, BDA assumes all
positive samples form a single Gaussian distribution, which means all positive
samples should be similar with similar view angle, similar illumination, etc.
Clearly, this is not the case for CBIR. The kernel-based learning is used in BDA
to overcome the problem. However, it has to rely on parameter tuning, making
online learning unfeasible.
To avoid the parameter tuning problem and the single Gaussian distribution
assumption in BDA, we develop a new discriminant analysis using a
nonparametric approach. The proposed nonparametric discriminant analysis
(NDA) [19] has the following properties:
» NDA assumes that all positive samples are alike and each negative sample is
negative in its own way;
» NDA does not require that all positive samples form a single Gaussian
distribution.
» NDA. similar to BDA and KBDA, may meet the Small-Sample-Size (SSS)
problem.
In this Chapter, we solve the SSS problem with three methods: 1. the
regularization method, which is used in BDA; 2. the null-space method, which is a
popular method to solve the SSS problem in linear discriminant analysis for face
recognition; 3. the full-space method, which is proposed to preserve all

discriminant information of NDA.

6.1 NDA

Similar to BDA, NDA is also biased toward to the positive examples. The
objective function of NDA is:

w's W
(6-1)

\V”N = urg\lnilx W '



Let the training set contains Ny positive and Ny negative samples. Then S, and s,

are defined as,

I

S, = “(x, -m" X\ =M, )’

(6-2)

3¢ 5

S, =3(y, -mt)y, -mt) X, -m Y, -m’)
i= [l

.. . A .
where x are positive samples, y, are negative samples, m} =—>x, is the mean
y 2

n.
k i=1
vector of the k positive nearest neighbors of the i" positive feedback sample «, ,

m" = %i‘)-_ is the mean vector of the k negative nearest neighbors of the i" positive

Als‘;x, is the mean vector of the k positive nearest
{ /=l

feedback sample x, ., m =
neighbors of the i™ negative feedback sample y,, and w,, can be computed from
the eigenvectors of §'s, . NDA finds the optimal feature set to maximize the

margin between all positive feedbacks and all negative feedbacks in the input
feature space. Because the original feature dimension is much larger than the
number of the feedback samples, we can always find the subset feature to

discriminant the positive and negative samples.

6.2 SSS Problem in NDA

In RF, the size of the training set is much smaller than the dimension of the
feature vector, thus it may cause the SSS problem. In this Section, we will address
the SSS problem using three methods, the regularization method, the null-space

method, and the new full-space method.

6.2.1 Regularization method

Regularization method, which is proposed by Friedman to deal with the
singularity issue, is implemented by adding small quantities to the diagonal of the
scatter matrices S, and s, . The regularized version of S, and s ., with the

dimension of the original feature space » and the identity matrix I, are:

S5 =(|—,u)§l +/’—:/1'[S.]l (6'3)

S’ =(l—y)S‘ +'7—'rl-[5|]l (6'4)
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where x and » control the shrinkage toward a multiple of the identity matrix. «{]
is the trace operation.
It is well known that regularization method may meet the ill-posed problem.

Hence, we select the null-space to overcome the ill-posed issue.

6.2.2 Null-space method

Null-space linear discriminant analysis (LDA) [8] accepts high-dimensional data
as the input, and optimizes LDA in the null space of within class scatter matrix.

Here, we generalize the null-space idea for NDA. The null space of s, is first
calculated as:

Y'S Y=0 (6-5)
where v are eigenvectors with zero eigenvalues and Y'Y =1. §, is projected onto
the null space of S, :

§"=Y'S Y. (6-6)
The eigenvectors U of §' with largest eigenvalues are selected to form the
transformation matrix as:

W=YU. (6-7)

6.2.3 Full-space method

Null-space method loses the information in the principle space of the within class
scatter matrix. In order to preserve all discriminant information, we compute
features from both the null space and the principle space of s , and then integrate
the two parts with a suitable weighting. A rational choice of the weighting is to
select a small eigenvalue of s, . The algorithm first computes the eigenvalues of
S, as,

Y'SY=D,, (6-8)
where D, = diag(A.dondy 2y, n0) s A, =64, and & is a user selected threshold
value (such as 0.01).

For a given ¢ , the -eigenvalue matrix ©»,_ is replaced by
D, =diag(A,....7, ...A,. A

wnd) . All values, which are smaller than 2, ., are

substituted by 4, . After the substitution, s, is projected onto the space by:
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S =D'V'S YD, (6-9)

Finally, the eigenvectors U of s, with largest eigenvalues are selected to form the
transformation matrix,

W =YD?UD;'". (6-10)

6.3 Experimental results

In this part, a large number of statistical experiments are performed based on
QueryGo. The experiments are simulated by the computer automatically. First,
300 queries are randomly selected from the data, and then RF is done by computer
as: top 5 query relevant and irrelevant images are marked as positive and negative
feedbacks in the top 48 images, respectively.

In this Section, precision and standard deviation (SD) are used to evaluate the
performance of a RF algorithm. Precision is the ratio of the number of relevant
images retrieved to the top N retrieved images. Precision curve is the averaged
precision values of the 300 queries, and SD curve is the SD values of 300 queries’
precision. The precision curve evaluates the effectiveness of a given algorithm
and SD curve evaluates the robustness of the algorithm. In precision and SD
curves. the total feedback times are 9, with 0 feedback referring to the retrieval

based on Euclidean distance measure without RF.

6.3.1 K nearest neighbor evaluation for NDA

The experiment shows NDA is insensitive to the k value of the k-nearest-neighbor.
Figure 1, 2, and 3 show the top 30 retrieved results with 3, 6, and 9 feedback
iterations by the regularization method, null-space method, and full-space method,
respectively. Because all curves are flat, we can draw the conclusion that NDA is

insensitive to the & value in k nearest neighbor.
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Figure 6-3. Full-space method.

6.3.2 SSS problem

Fig. 4 shows the performance of the full-space method, the null-space method,
and the regularization method in NDA to solve the SSS problem. From the left
subfigure in Fig. 4, we can see the precision curve of full-space method is higher
than that of null-space method and regularization method, meanwhile the SD
curve of full-space method is lower than that of null-space method and

regularization method. Hence we can draw the conclusion the new full-space
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method can work better than the existing null-space method and regularization

method. Meanwhile, the null-space method can outperform the regularization

method.
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Figure 6-4. Comparing the full-space method with the null-space method and

regularization method.

6.3.3 Evaluation experiments

We will compare the new full-space NDA with the existing state-of-the-art

algorithms, which are BDA [5], SVM [4], and constrained SVM (CSM) [11].

Results in Fig. 5 shows that the full-space NDA by 3-nearest-neighbor can

significantly improve the CBIR RF compared with all the other algorithms
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Figure 6-5. Evaluation experimental results based on the Corel database with 17,
800 images with 300 queries. (a), (b), and (c) display the retrieval precision in top
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corresponding standard deviation of the precision curve in top 20, 40, and 60
retrieved images respectively.
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Chapter 7

Medical Image Classification

In this Chapter, we conduct the first study on SARS radiographic image
processing as an application of CBIR [94]. In order to distinguish SARS infected
regions from normal lung regions using texture features, we propose several
improvements to the traditional gray-level co-occurrence texture features. We use
a multi-level feature selection approach to extract texture features from a multi-
resolution region based co-occurrence matrix directly for texture classification.
The selected texture features can preserve most of the discriminant information in
the texture image. Satisfactory results are obtained on a large set of chest

radiographic images of SARS patients.

7.1 Introduction

Severe Acute Respiratory Syndrome (SARS) outbreak in Hong Kong started in
March 2003 and quickly spread to many regions around the world. By the end of
the epidemic. there were 1,755 patients infected and 299 deaths in Hong Kong
[56]. The main symptoms of SARS are high fever and dry cough, shortness of
breath or breathing difficulties. SARS may also be associated with other
symptoms including a headache. Because of the highly contagious nature of the
disease and its very fast progress that often threatens the life of the patient, it is
critically important to identify the disease at an early stage. However, since most
of the symptoms are similar to regular pneumonia and fever, it is very difficult to
give an accurate diagnosis of the disease. All currently available methods depend
on laboratory testing of the virus samples from the patient, which is both costly
and time consuming.

In this Chapter, we study the chest radiographs of the SARS patients to investigate
a possible computer-aided approach to distinguish the SARS infected area from
the normal lung area. This can be an important first step toward image based
computer-aided diagnosis. Of course, it is unrealistic to expect accurate diagnosis

only based on automatic computer processing of radiographic images. However,



we do expect our study to be able to assist doctors with their diagnosis in the
future. In addition, since for confirmed patients the chest radiographic images are
taken everyday, we can also compare the progress of the images with previous
patients in the database to monitor the effect of the treatment.

Because SARS regions are irregular, we cannot use shape to distinguish it from
normal areas. So we focus on using texture classification to classify the SARS
region. In this paper, we propose several improvements to the classic texture
model, gray-level co-occurrence matrix [73], to distinguish the subtle SARS
texture. We use a multi-level feature selection approach to extract texture features
from a multi-resolution region based co-occurrence matrix directly for texture
classification. Encouraging results are obtained on a set of chest radiographic

images.

7.2 Region-based Co-occurrence Matrix

Texture Feature

Co-occurrence texture features were proposed by Haralick et al. [73]. For an
image with N by N pixels and G gray levels, the co-occurrence matrix for a
displacement ¢ in a direction ¢ is defined to be a G by G matrix whose entry M(i,
J) is the number of occurrences of transitions from gray level i to gray level j,
given the inter-sample distance d and the direction ¢. The matrix gives a measure
of the joint probability density of the pairs of gray levels that occur at pairs of
points separated by distance d in the direction g. For a coarse texture, d is
relatively small compared to the sizes of the texture elements; the pairs of points
at separation ¢ have similar intensity values. This means the matrix M has large
values near its main diagonal. Conversely, for a fine texture the values in M are
quite uniformly spaced. Thus, a measure of the degree of value spread around the
main diagonal of M should provide a good sense of the texture coarseness.
Similarly, one can extract other features to measure the directional information,
contrast, correlation, ete. Haralick et al. [73] proposed 28 second-order statistic

features that can be measured from this co-occurrence matrix.
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Generally, the co-occurrence matrix is computed from a rectangular region or
image. In our application, however, the regions are not rectangles. In order to
compute the texture features, we develop a region based co-occurrence matrix:

1. Extract the marked SARS infected regions.

2. Find the maximum bounding box of each region.

3. Quantize the region with a given bin number and fill the blank part of the

bounding box with —1.

4. Calculate the co-occurrence matrix P of the filled bounding box, and extract a
sub-matrix p from P, where p_is obtained by deleting the first row and the
first column of p. The region based co-occurrence matrix is:

P,=P,., (7-1)

SARS Region Exiraction Multi-resalution Texture Model

Texture |1 Feature P
Feature [~ ] Selection s
PCA FSFS

Figure 7-1. Flowchart of the multi-resolution non-rectangle region’s co-

occurrence matrix and texture feature extraction.

The size of the texture image is crucial for classification. To preserve more
information of the texture image, we select a series scales to zoom the original
image and the scale vector is: §=[0.10.20.40.60.8 1.0], where s =0.6 means the ratio
between the size of the zoomed image and the original image is 0.6. For each

scale, the region-based co-occurrence matrix and the corresponding statistical

features are calculated,
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7.3 Multi-level Feature Selection

The original texture features computed from the co-occurrence matrix are mostly
based on intuitive observation of the shape and statistics of the matrix [73]. There
are two drawbacks with this approach. First, there is no theoretical proof that,
given a certain number of features, maximum texture information can be extracted
from the co-occurrence matrix. Second. many of these features are highly
correlated with each other. A better approach is to use the co-occurrence matrix as
the texture feature vector directly to preserve all the information in the matrix
instead of developing new functions to extract texture information. However, this
again introduces two problems: the large dimensionality of the feature vector and
the high-degree correlation of the neighborhood features. To alleviate these
problems, we developed an multi-level dominant eigenvector estimation (MDEE)
method to approximate PCA and apply to the co-occurrence matrix directly to
extract texture features [93].

The MDEE cuts a long feature vector into sections of small vectors, and then
performs a PCA on each small vector separately. The selected top features with
large eigenvalues in each section are then combined to form a new feature vector
with a second PCA applied again. Several orders of computation complexity
reduction from the conventional PCA are achieved by this method.

In |65]. a new feature similarity based feature selection (FSFS) method is
developed and shown to perform better than PCA for feature selection. In this

paper. we select the maximal information compression index (4,) as the feature
similarity measure. Let £ be the covariance matrix of random variables x and y.
Define maximal information compression index as 2,(x,y)=smallest eigenvalue of

T, 1.e.,

24, = (\zlr(.\') + \'ill'(."))

(7-2)

~ \/(vur(x) + \ar(.\-)): -4 \ar(.\')\'ar(,v)(l - p(x.y) )

The larger the value of 4, the less of the dependency of the two variables. The
value of 4, is zero means the features are linearly dependent. For feature selection,

FSFS first partitions the original feature set into a number of homogeneous



subsets and select a representative feature from each subset based on the similarity
measure.

However, the FSFS method encounters the same problem as PCA. The
computational complexity of FSFS is O(D*l), where D is the feature dimension
and [ is the size of the data-set. In our study, the feature dimension is 1024x6. The
computational cost is too high for FSFS. In order to overcome this problem, we
propose a similar multi-level approach as the MDEE method. We first apply the
FSFS to feature vector for each image scale, then combine the selected features
and use the FSFS again on the combined feature vector.

The flowchart of our feature selection algorithm is shown in Figure 2. For each
level. we calculate the region-based co-occurrence matrix, and then FSFS or PCA
is applied to the matrix directly to select first level features. We then combine all
the selected features into a new feature vector and the feature selection method is

used again to select the final features.

[ Level 1 ] FSFS/
Features | | PCA i

Level 2 FSFS/
Features | | PCA

.| FSFS/ Selected
vl PGA :i/ Features

saimea 4 papaes bulliquo)

“Level 6 “FSFST
Fealtures |3 PCA IS :

Figure 7-2. Flowchart of the multi-level feature selection method.

7.4 Experimental Results

In this Section, we use the new algorithm to classify the SARS infected region
from the normal lung region in chest radiographic images. We also compare the
new features with traditional co-occurrence features. We use the SVM with
Gaussian Kernel as the classifier since SVM is a very effective binary classifier.

All the parameters are default values in OSUSVM [34].
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7.4.1 Data Set

We use the posteroanterior chest radiographs taken by the department of
Diagnostic Radiology & Organ Imaging of the Prince of Wales Hospital. The
digital images were obtained by digitizing the chest radiographs in the SIEMENS
medical computer system. The original image has a pixel size of about 0.175mm,
a matrix size of about 2000x2400, and a gray level range of 16 bits. The SARS
infected regions and normal regions of all lung radiographs were labeled by
doctors in the hospital as ground truth. Table 1 shows the details of the database

and Figure 3 shows some sample images and SARS infected regions in the

database.
Table 7-1. Image Database
SARS | Normal
Training | 37 37
Testing | 126 38
Total 163 75
Normal Lung Light SARS infected Lurg ~ Severe SARS infected Lung

uoibay SHVS
ayi [3GeT

uoibay SHVYS
ay) Ul WooZ

Figure 7-3. Sample images and SARS infected regions in the database.
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7.4.2 Classification Using Traditional Features

We first use the traditional texture features defined in [73] to classify the images.
Classification results are summarized in Table 2. The results show that the
traditional feature of each co-occurrence direction in each scale cannot
discriminant the SARS and normal lung regions well. Figure 4 shows the results
of using FSFS to select features from all the traditional texture features (the
original feature dimension is 13x6x4=312). The classification result is still less

than satisfactory.

Table 7-2. Traditional feature based classification. The first row is the scale value
of the image and the first column is the direction of the co-occurrence matrix.

0.1 0.2 0.4 0.6 0.8 1.0
0 [0.7927 [ 0.8110 | 0.8110 | 0.2561 | 0.8110 | 0.8171
45 |0.7683 | 0.2500 | 0.2500 | 0.8171 | 0.7927 | 0.8171
90 | 0.7683 | 0.2561 | 0.8354 | 0.2561 | 0.8232 | 0.2561
135 | 0.2439 | 0.2317 | 0.2439 | 0.8171 | 0.8232 | 0.8476

Statistical Co-occurrence Matrix Feature
{———————— —— .

Classification Rate
(e)
(o)}

04

0.3

0.2 ; . : - —
5 10 15 20 25
Feature Dimension

Figure 7-4. Classification results using FSFS to combine traditional co-occurrence
features.
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7.4.3 Classification Using the New Features

Classification results using the multilevel PCA to extract texture features directly
from the co-occurrence matrices are shown in Figure 5. The recognition rate is
significantly improved over the traditional features. This shows that the method
can effectively preserve the discriminant texture information for SARS and
normal lung region classification.

Next. we use the new multi-level FSFS method to extract the texture features
directly from the original co-occurrence matrix. The recognition rate is further
improved as shown in Figure 6. The highest classification rate of the method is

around 97%.

Co-occurrence Matrix Feature
0.965 : r e e e o

0.96 <i
0.955
0.95

0.945 [RESESS=SSSSEE: EF R

0.94
|

|

|
|

092" 76" 10 15 20 25 30 35 40 45 50
Feature Dimension
Figure 7-5. Classification results using multi-level PCA to extract texture features

directly from the co-occurrence matrices.

0.935.

Classification Rate

0.93
0.925
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Co-occurrence Matrix Feature

0.98
0.96
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0.86

Classification Rate

0.84

0.82
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Figure 7-6. Classification results using multi-level FSFS to extract texture features
directly from the co-occurrence matrices.
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Chapter 8

Conclusion

In this thesis, we analysis two popular small sample learning algorithms, the
Support Vector Machine (SVM) and the Biased Discriminant Analysis (BDA), for
relevance feedback (RF) in content-based image retrieval (CBIR).

For SVM based RF, because the SVM classifier is unstable on small size training
set, SVM’s optimal hyper-plane will be deflected when the positive feedback
examples are much fewer than the negative feedback examples, and the dimension
of the low-level feature is much greater than the size of the training set.
Consequently, we develop an Asymmetric Bagging Random Subspace Method for
SVM based RF. With the new learning scheme, all the three problems in SVM
based RF can be overcome to some extent. Extensive experiments on a Corel
Photo database with 17, 800 images show that the new algorithm can improve the
performance (both the accuracy and the efficiency) of RF significantly.

For BDA based RF, we first generalize the ideas of the Direct Linear Discriminant
Analysis (DLDA) and the Null-space Linear Discriminant Analysis (NLDA) for
BDA in the Hilbert space to solve the Small Sample Size (SSS) problem. Because
DLDA and NLDA may lose some discriminant information, we then propose a
full-space method. Finally, we implement the full-space method for kernel BDA.
According to a large number of evaluation experiments in the Corel Photo Gallery,
we can draw the conclusion that the proposed Direct Kernel BDA, Null-space
Kernel BDA. and Full-space Kernel BDA outperform Kernel BDA consistently.
Moreover. BDA based RF assumes that all positive feedbacks form a single
Gaussian distribution. This may not be the case in CBIR. Although kernel BDA
can overcome the drawback to some extent, the kernel parameter tuning makes the
online learning unfeasible. To avoid the parameter tuning problem and the single
Gaussian distribution assumption in BDA, we construct a new nonparametric
discriminant analysis (NDA). To address the small sample size problem in NDA,
we introduce the regularization method and the null-space method. Because the

regularization method may meet the ill-posed problem and the null-space method

68



may lose some discriminant information, we propose here a full-space method.
The proposed full-space NDA is demonstrated to outperform BDA based RF
significantly with a large number of experiments in the Corel database.

Finally, as an application of CBIR and toward assisting doctors to diagnose
Severe Acute Respiratory Syndrome (SARS) patients, we conduct a preliminary
study on texture classification of SARS infected regions in chest radiographic
images. In order to distinguish SARS infected regions from normal lung regions,
we propose several improvements to the traditional gray-level co-occurrence
texture features. We use a multi-level feature selection approach to extract texture
features from a multi-resolution region based co-occurrence matrix directly for
texture classification. The multi-level Feature Similarity-based Feature Selection
algorithm is shown to be very effective in preserving most of the discriminant
information in the texture image. Experiments on a large set of chest radiographic
images of SARS patients give encouraging results. This is a first promising step

toward computer-aided diagnosis of the disease.
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