66,771 research outputs found

    Projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks

    Full text link
    We study projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks. We relax some limitations of previous work, where projective-anticipating and projective-lag synchronization can be achieved only on two coupled chaotic systems. In this paper, we can realize projective-anticipating and projective-lag synchronization on complex dynamical networks composed by a large number of interconnected components. At the same time, although previous work studied projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In this paper, the dynamics of the nodes of the complex networks are time-delayed chaotic systems without the limitation of the partial-linearity. Based on the Lyapunov stability theory, we suggest a generic method to achieve the projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random dynamical networks and find both the existence and sufficient stability conditions. The validity of the proposed method is demonstrated and verified by examining specific examples using Ikeda and Mackey-Glass systems on Erdos-Renyi networks.Comment: 14 pages, 6 figure

    Galaxy Masses

    Get PDF
    Galaxy masses play a fundamental role in our understanding of structure formation models. This review addresses the variety and reliability of mass estimators that pertain to stars, gas, and dark matter. The different sections on masses from stellar populations, dynamical masses of gas-rich and gas-poor galaxies, with some attention paid to our Milky Way, and masses from weak and strong lensing methods, all provide review material on galaxy masses in a self-consistent manner.Comment: 145 pages, 28 figures, to appear in Reviews of Modern Physics. Figure 22 is missing here, and Figs. 15, 26-28 are at low resolution. This version has a slightly different title and some typos fixed in Chapter 5. For the full review with figures, please consult: http://www.astro.queensu.ca/~courteau/GalaxyMasses_28apr2014.pd
    corecore