4,223 research outputs found

    CMOS Architectures and circuits for high-speed decision-making from image flows

    Get PDF
    We present architectures, CMOS circuits and CMOS chips to process image flows at very high speed. This is achieved by exploiting bio-inspiration and performing processing tasks in parallel manner and concurrently with image acquisition. A vision system is presented which makes decisions within sub-msec range. This is very well suited for defense and security applications requiring segmentation and tracking of rapidly moving objects

    Programmable retinal dynamics in a CMOS mixed-signal array processor chip

    Get PDF
    The low-level image processing that takes place in the retina is intended to compress the relevant visual information to a manageable size. The behavior of the external layers of the biological retina has been successfully modelled by a Cellular Neural Network, whose evolution can be described by a set of coupled nonlinear differential equations. A mixed-signal VLSI implementation of the focal-plane low-level image processing based upon this biological model constitutes a feasible and cost effective alternative to conventional digital processing in real-time applications. For these reasons, a programmable array processor prototype chip has been designed and fabricated in a standard 0.5μm CMOS technology. The integrated system consists of a network of two coupled layers, containing 32 × 32 elementary processors, running at different time constants. Involved image processing algorithms can be programmed on this chip by tuning the appropriate interconnections weights. Propagative, active wave phenomena and retina-like effects can be observed in this chip. Design challenges, trade-offs, the buildings blocks and some test results are presented in this paper.Office of Naval Research (USA) N00014-00-10429European Community IST-1999-19007Ministerio de Ciencia y Tecnología TIC1999-082

    An Event-Driven Multi-Kernel Convolution Processor Module for Event-Driven Vision Sensors

    Get PDF
    Event-Driven vision sensing is a new way of sensing visual reality in a frame-free manner. This is, the vision sensor (camera) is not capturing a sequence of still frames, as in conventional video and computer vision systems. In Event-Driven sensors each pixel autonomously and asynchronously decides when to send its address out. This way, the sensor output is a continuous stream of address events representing reality dynamically continuously and without constraining to frames. In this paper we present an Event-Driven Convolution Module for computing 2D convolutions on such event streams. The Convolution Module has been designed to assemble many of them for building modular and hierarchical Convolutional Neural Networks for robust shape and pose invariant object recognition. The Convolution Module has multi-kernel capability. This is, it will select the convolution kernel depending on the origin of the event. A proof-of-concept test prototype has been fabricated in a 0.35 m CMOS process and extensive experimental results are provided. The Convolution Processor has also been combined with an Event-Driven Dynamic Vision Sensor (DVS) for high-speed recognition examples. The chip can discriminate propellers rotating at 2 k revolutions per second, detect symbols on a 52 card deck when browsing all cards in 410 ms, or detect and follow the center of a phosphor oscilloscope trace rotating at 5 KHz.Unión Europea 216777 (NABAB)Ministerio de Ciencia e Innovación TEC2009-10639-C04-0

    Neuromorphic analogue VLSI

    Get PDF
    Neuromorphic systems emulate the organization and function of nervous systems. They are usually composed of analogue electronic circuits that are fabricated in the complementary metal-oxide-semiconductor (CMOS) medium using very large-scale integration (VLSI) technology. However, these neuromorphic systems are not another kind of digital computer in which abstract neural networks are simulated symbolically in terms of their mathematical behavior. Instead, they directly embody, in the physics of their CMOS circuits, analogues of the physical processes that underlie the computations of neural systems. The significance of neuromorphic systems is that they offer a method of exploring neural computation in a medium whose physical behavior is analogous to that of biological nervous systems and that operates in real time irrespective of size. The implications of this approach are both scientific and practical. The study of neuromorphic systems provides a bridge between levels of understanding. For example, it provides a link between the physical processes of neurons and their computational significance. In addition, the synthesis of neuromorphic systems transposes our knowledge of neuroscience into practical devices that can interact directly with the real world in the same way that biological nervous systems do

    A Bio-Inspired Two-Layer Mixed-Signal Flexible Programmable Chip for Early Vision

    Get PDF
    A bio-inspired model for an analog programmable array processor (APAP), based on studies on the vertebrate retina, has permitted the realization of complex programmable spatio-temporal dynamics in VLSI. This model mimics the way in which images are processed in the visual pathway, what renders a feasible alternative for the implementation of early vision tasks in standard technologies. A prototype chip has been designed and fabricated in 0.5 μm CMOS. It renders a computing power per silicon area and power consumption that is amongst the highest reported for a single chip. The details of the bio-inspired network model, the analog building block design challenges and trade-offs and some functional tests results are presented in this paper.Office of Naval Research (USA) N-000140210884European Commission IST-1999-19007Ministerio de Ciencia y Tecnología TIC1999-082

    ACE16K: A 128×128 focal plane analog processor with digital I/O

    Get PDF
    This paper presents a new generation 128×128 focal-plane analog programmable array processor (FPAPAP), from a system level perspective, which has been manufactured in a 0.35 μm standard digital 1P-5M CMOS technology. The chip has been designed to achieve the high-speed and moderate-accuracy (8b) requirements of most real time early-vision processing applications. It is easily embedded in conventional digital hosting systems: external data interchange and control are completely digital. The chip contains close to four millions transistors, 90% of them working in analog mode, and exhibits a relatively low power consumption-<4 W, i.e. less than 1 μW per transistor. Computing vs. power peak values are in the order of 1 TeraOPS/W, while maintained VGA processing throughputs of 100 frames/s are possible with about 10-20 basic image processing tasks on each frame

    On the AER Convolution Processors for FPGA

    Get PDF
    Image convolution operations in digital computer systems are usually very expensive operations in terms of resource consumption (processor resources and processing time) for an efficient Real-Time application. In these scenarios the visual information is divided into frames and each one has to be completely processed before the next frame arrives in order to warranty the real-time. A spike-based philosophy for computing convolutions based on the neuro-inspired Address-Event- Representation (AER) is achieving high performances. In this paper we present two FPGA implementations of AER-based convolution processors for relatively small Xilinx FPGAs (Spartan-II 200 and Spartan-3 400), which process 64x64 images with 11x11 convolution kernels. The maximum equivalent operation rate that can be reached is 163.51 MOPS for 11x11 kernels, in a Xilinx Spartan 3 400 FPGA with a 50MHz clock. Formulations, hardware architecture, operation examples and performance comparison with frame-based convolution processors are presented and discussed.Ministerio de Ciencia e Innovación TEC2006-11730-C03-02Ministerio de Ciencia e Innovación TEC2009-10639-C04-02Junta de Andalucía P06-TIC-0141

    Second-order neural core for bioinspired focal-plane dynamic image processing in CMOS

    Get PDF
    Based on studies of the mammalian retina, a bioinspired model for mixed-signal array processing has been implemented on silicon. This model mimics the way in which images are processed at the front-end of natural visual pathways, by means of programmable complex spatio-temporal dynamic. When embedded into a focal-plane processing chip, such a model allows for online parallel filtering of the captured image; the outcome of such processing can be used to develop control feedback actions to adapt the response of photoreceptors to local image features. Beyond simple resistive grid filtering, it is possible to program other spatio-temporal processing operators into the model core, such as nonlinear and anisotropic diffusion, among others. This paper presents analog and mixed-signal very large-scale integration building blocks to implement this model, and illustrates their operation through experimental results taken from a prototype chip fabricated in a 0.5-μm CMOS technology.European Union IST 2001 38097Ministerio de Ciencia y Tecnología TIC 2003 09817 C02 01Office of Naval Research (USA) N00014021088

    FPGA Implementations Comparison of Neuro-cortical Inspired Convolution Processors for Spiking Systems

    Get PDF
    Image convolution operations in digital computer systems are usually very expensive operations in terms of resource consumption (processor resources and processing time) for an efficient Real-Time application. In these scenarios the visual information is divided in frames and each one has to be completely processed before the next frame arrives. Recently a new method for computing convolutions based on the neuro-inspired philosophy of spiking systems (Address-Event-Representation systems, AER) is achieving high performances. In this paper we present two FPGA implementations of AERbased convolution processors that are able to work with 64x64 images and programmable kernels of up to 11x11 elements. The main difference is the use of RAM for integrators in one solution and the absence of integrators in the second solution that is based on mapping operations. The maximum equivalent operation rate is 163.51 MOPS for 11x11 kernels, in a Xilinx Spartan 3 400 FPGA with a 50MHz clock. Formulations, hardware architecture, operation examples and performance comparison with frame-based convolution processors are presented and discussed.Ministerio de Ciencia e Innovación TEC2006-11730-C03-02Junta de Andalucía P06-TIC-0141

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world
    corecore