6 research outputs found

    A design methodology for optimally folded, pipelined architectures in VLSI applications using projective space lattices

    No full text
    Semi-parallel, or folded, VLSI architectures are used whenever hardware resources need to be saved. Most recent applications that are based on Projective Geometry (PG) based balanced bipartite graphs also fall in this category. Many of these applications are actively being researched upon, especially in the area of coding theory and matrix computations. Almost all these applications need bipartite graphs of the order of tens of thousands in practice, whose nodes represent parallel processing. To reduce its implementation cost, reducing amount of hardware resources is an important engineering objective. In this paper, we provide a high-level, top-down design methodology to design optimal semi-parallel architectures for applications, whose Data Flow Graph (DFG) is based on PG bipartite graph. Unlike many other folding schemes, the topology of connections between physical elements nodes does not change at runtime in this methodology. Hence the folding scheme achieves the best possible throughput, in lack of any overhead of shuffling data across memories while scheduling another computation on the same processing unit. Another advantage is the ease of implementation. To lessen the throughput loss due to folding, we also incorporate a multi-tier pipelining strategy in the design methodology. A C++-based synthesis tool has been developed and tested for automatic generation of RTL models, and is publicly available. A specific high-performance design of a low-density parity check (LDPC) decoder based on this methodology was worked out in past, and has been patent pending. (C) 2013 Elsevier B.V. All rights reserved

    Space Station Systems: a Bibliography with Indexes (Supplement 8)

    Get PDF
    This bibliography lists 950 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore