418 research outputs found

    Path Coupling Using Stopping Times and Counting Independent Sets and Colourings in Hypergraphs

    Full text link
    We give a new method for analysing the mixing time of a Markov chain using path coupling with stopping times. We apply this approach to two hypergraph problems. We show that the Glauber dynamics for independent sets in a hypergraph mixes rapidly as long as the maximum degree Delta of a vertex and the minimum size m of an edge satisfy m>= 2Delta+1. We also show that the Glauber dynamics for proper q-colourings of a hypergraph mixes rapidly if m>= 4 and q > Delta, and if m=3 and q>=1.65Delta. We give related results on the hardness of exact and approximate counting for both problems.Comment: Simpler proof of main theorem. Improved bound on mixing time. 19 page

    On the optimality of the uniform random strategy

    Full text link
    The concept of biased Maker-Breaker games, introduced by Chv\'atal and Erd{\H o}s, is a central topic in the field of positional games, with deep connections to the theory of random structures. For any given hypergraph H{\cal H} the main questions is to determine the smallest bias q(H)q({\cal H}) that allows Breaker to force that Maker ends up with an independent set of H{\cal H}. Here we prove matching general winning criteria for Maker and Breaker when the game hypergraph satisfies a couple of natural `container-type' regularity conditions about the degree of subsets of its vertices. This will enable us to derive a hypergraph generalization of the HH-building games, studied for graphs by Bednarska and {\L}uczak. Furthermore, we investigate the biased version of generalizations of the van der Waerden games introduced by Beck. We refer to these generalizations as Rado games and determine their threshold bias up to constant factors by applying our general criteria. We find it quite remarkable that a purely game theoretic deterministic approach provides the right order of magnitude for such a wide variety of hypergraphs, when the generalizations to hypergraphs in the analogous setup of sparse random discrete structures are usually quite challenging.Comment: 26 page

    Alternative polynomial-time algorithm for Bipartite Matching

    Full text link
    If GG is a bipartite graph, Hall's theorem \cite{H35} gives a condition for the existence of a matching of GG covering one side of the bipartition. This theorem admits a well-known algorithmic proof involving the repeated search of augmenting paths. We present here an alternative algorithm, using a game-theoretic formulation of the problem. We also show how to extend this formulation to the setting of balanced hypergraphs

    Variations on a game

    Get PDF

    Sequential legislative lobbying

    Get PDF
    In this paper, we analyze the equilibrium of a sequential game-theoretical model of lobbying, due to Groseclose and Snyder (1996), describing a legislature that vote over two alternatives, where two opposing lobbies, Lobby 0 and Lobby 1, compete by bidding for legislators’ votes. In this model, the lobbyist moving first suffers from a second mover advantage and will make an offer to a panel of legislators only if it deters any credible counter-reaction from his opponent, i.e., if he anticipates to win the battle. This paper departs from the existing literature in assuming that legislators care about the consequence of their votes rather than their votes per se. Our main focus is on the calculation of the smallest budget that he needs to win the game and on the distribution of this budget across the legislators. We study the impact of the key parameters of the game on these two variables and show the connection of this problem with the combinatorics of sets and notions from cooperative game theory.Lobbying; cooperative games; noncooperative games

    Radio Resource Allocation for Device-to-Device Underlay Communication Using Hypergraph Theory

    Full text link
    Device-to-Device (D2D) communication has been recognized as a promising technique to offload the traffic for the evolved Node B (eNB). However, the D2D transmission as an underlay causes severe interference to both the cellular and other D2D links, which imposes a great technical challenge to radio resource allocation. Conventional graph based resource allocation methods typically consider the interference between two user equipments (UEs), but they cannot model the interference from multiple UEs to completely characterize the interference. In this paper, we study channel allocation using hypergraph theory to coordinate the interference between D2D pairs and cellular UEs, where an arbitrary number of D2D pairs are allowed to share the uplink channels with the cellular UEs. Hypergraph coloring is used to model the cumulative interference from multiple D2D pairs, and thus, eliminate the mutual interference. Simulation results show that the system capacity is significantly improved using the proposed hypergraph method in comparison to the conventional graph based one.Comment: 27 pages,10 figure
    • …
    corecore