64,359 research outputs found

    A Deep Learning Architecture for Sentiment Analysis

    Get PDF
    The fabulous results of Deep Convolution Neural Networks in computer vision and image analysis have recently attracted considerable attention from researchers of other application domains as well. In this paper we present NgramCNN, a neural network architecture we designed for sentiment analysis of long text documents. It uses pretrained word embeddings for dense feature representation and a very simple single-layer classifier. The complexity is encapsulated in feature extraction and selection parts that benefit from the effectiveness of convolution and pooling layers. For evaluation we utilized different kinds of emotional text datasets and achieved an accuracy of 91.2 % accuracy on the popular IMDB movie reviews. NgramCNN is more accurate than similar shallow convolution networks or deeper recurrent networks that were used as baselines. In the future, we intent to generalize the architecture for state of the art results in sentiment analysis of variable-length texts

    Diving Deep into Sentiment: Understanding Fine-tuned CNNs for Visual Sentiment Prediction

    Get PDF
    Visual media are powerful means of expressing emotions and sentiments. The constant generation of new content in social networks highlights the need of automated visual sentiment analysis tools. While Convolutional Neural Networks (CNNs) have established a new state-of-the-art in several vision problems, their application to the task of sentiment analysis is mostly unexplored and there are few studies regarding how to design CNNs for this purpose. In this work, we study the suitability of fine-tuning a CNN for visual sentiment prediction as well as explore performance boosting techniques within this deep learning setting. Finally, we provide a deep-dive analysis into a benchmark, state-of-the-art network architecture to gain insight about how to design patterns for CNNs on the task of visual sentiment prediction.Comment: Preprint of the paper accepted at the 1st Workshop on Affect and Sentiment in Multimedia (ASM), in ACM MultiMedia 2015. Brisbane, Australi

    From Pixels to Sentiment: Fine-tuning CNNs for Visual Sentiment Prediction

    Get PDF
    Visual multimedia have become an inseparable part of our digital social lives, and they often capture moments tied with deep affections. Automated visual sentiment analysis tools can provide a means of extracting the rich feelings and latent dispositions embedded in these media. In this work, we explore how Convolutional Neural Networks (CNNs), a now de facto computational machine learning tool particularly in the area of Computer Vision, can be specifically applied to the task of visual sentiment prediction. We accomplish this through fine-tuning experiments using a state-of-the-art CNN and via rigorous architecture analysis, we present several modifications that lead to accuracy improvements over prior art on a dataset of images from a popular social media platform. We additionally present visualizations of local patterns that the network learned to associate with image sentiment for insight into how visual positivity (or negativity) is perceived by the model.Comment: Accepted for publication in Image and Vision Computing. Models and source code available at https://github.com/imatge-upc/sentiment-201

    A sentiment information collector–extractor architecture based neural network for sentiment analysis

    Get PDF
    Sentiment analysis, also known as opinion mining is a key natural language processing (NLP) task that receives much attention these years, where deep learning based neural network models have achieved great success. However, the existing deep learning models cannot effectively make use of the sentiment information in the sentence for sentiment analysis. In this paper, we propose a Sentiment Information Collector–Extractor architecture based Neural Network (SICENN) for sentiment analysis consisting of a Sentiment Information Collector (SIC) and a Sentiment Information Extractor (SIE). The SIC based on the Bi-directional Long Short Term Memory structure aims at collecting the sentiment information in the sentence and generating the information matrix. The SIE takes the information matrix as input and extracts the sentiment information precisely via three different sub-extractors. A new ensemble strategy is applied to combine the results of different sub-extractors, making the SIE more universal and outperform any single sub-extractor. Experiments results show that the proposed architecture outperforms the state-of-the-art methods on three datasets of different language

    Combination of Domain Knowledge and Deep Learning for Sentiment Analysis of Short and Informal Messages on Social Media

    Full text link
    Sentiment analysis has been emerging recently as one of the major natural language processing (NLP) tasks in many applications. Especially, as social media channels (e.g. social networks or forums) have become significant sources for brands to observe user opinions about their products, this task is thus increasingly crucial. However, when applied with real data obtained from social media, we notice that there is a high volume of short and informal messages posted by users on those channels. This kind of data makes the existing works suffer from many difficulties to handle, especially ones using deep learning approaches. In this paper, we propose an approach to handle this problem. This work is extended from our previous work, in which we proposed to combine the typical deep learning technique of Convolutional Neural Networks with domain knowledge. The combination is used for acquiring additional training data augmentation and a more reasonable loss function. In this work, we further improve our architecture by various substantial enhancements, including negation-based data augmentation, transfer learning for word embeddings, the combination of word-level embeddings and character-level embeddings, and using multitask learning technique for attaching domain knowledge rules in the learning process. Those enhancements, specifically aiming to handle short and informal messages, help us to enjoy significant improvement in performance once experimenting on real datasets.Comment: A Preprint of an article accepted for publication by Inderscience in IJCVR on September 201
    • …
    corecore