106 research outputs found

    Learning Deep CNN Denoiser Prior for Image Restoration

    Full text link
    Model-based optimization methods and discriminative learning methods have been the two dominant strategies for solving various inverse problems in low-level vision. Typically, those two kinds of methods have their respective merits and drawbacks, e.g., model-based optimization methods are flexible for handling different inverse problems but are usually time-consuming with sophisticated priors for the purpose of good performance; in the meanwhile, discriminative learning methods have fast testing speed but their application range is greatly restricted by the specialized task. Recent works have revealed that, with the aid of variable splitting techniques, denoiser prior can be plugged in as a modular part of model-based optimization methods to solve other inverse problems (e.g., deblurring). Such an integration induces considerable advantage when the denoiser is obtained via discriminative learning. However, the study of integration with fast discriminative denoiser prior is still lacking. To this end, this paper aims to train a set of fast and effective CNN (convolutional neural network) denoisers and integrate them into model-based optimization method to solve other inverse problems. Experimental results demonstrate that the learned set of denoisers not only achieve promising Gaussian denoising results but also can be used as prior to deliver good performance for various low-level vision applications.Comment: Accepted to CVPR 2017. Code: https://github.com/cszn/ircn

    Universal Denoising Networks : A Novel CNN Architecture for Image Denoising

    Full text link
    We design a novel network architecture for learning discriminative image models that are employed to efficiently tackle the problem of grayscale and color image denoising. Based on the proposed architecture, we introduce two different variants. The first network involves convolutional layers as a core component, while the second one relies instead on non-local filtering layers and thus it is able to exploit the inherent non-local self-similarity property of natural images. As opposed to most of the existing deep network approaches, which require the training of a specific model for each considered noise level, the proposed models are able to handle a wide range of noise levels using a single set of learned parameters, while they are very robust when the noise degrading the latent image does not match the statistics of the noise used during training. The latter argument is supported by results that we report on publicly available images corrupted by unknown noise and which we compare against solutions obtained by competing methods. At the same time the introduced networks achieve excellent results under additive white Gaussian noise (AWGN), which are comparable to those of the current state-of-the-art network, while they depend on a more shallow architecture with the number of trained parameters being one order of magnitude smaller. These properties make the proposed networks ideal candidates to serve as sub-solvers on restoration methods that deal with general inverse imaging problems such as deblurring, demosaicking, superresolution, etc.Comment: Camera ready paper to appear in the Proceedings of CVPR 201

    Image inpainting with gradient attention

    Get PDF
    We present a novel modification of context encoder loss function, which results in more accurate and plausible inpainting. For this purpose, we introduce gradient attention loss component of loss function, to suppress the common problem of inconsistency in shapes and edges between the inpainted region and its context. To this end, the mean absolute error is computed not only for the input and output images, but also for their derivatives. Therefore, model concentrates on areas with larger gradient, which are crucial for accurate reconstruction. The positive effects on inpainting results are observed both for fully-connected and fully-convolutional models tested on MNIST and CelebA datasets
    corecore