507 research outputs found

    Automating security monitoring and analysis for Space Station Freedom's electric power system

    Get PDF
    Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A new approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks

    NAM: Non-Adversarial Unsupervised Domain Mapping

    Full text link
    Several methods were recently proposed for the task of translating images between domains without prior knowledge in the form of correspondences. The existing methods apply adversarial learning to ensure that the distribution of the mapped source domain is indistinguishable from the target domain, which suffers from known stability issues. In addition, most methods rely heavily on `cycle' relationships between the domains, which enforce a one-to-one mapping. In this work, we introduce an alternative method: Non-Adversarial Mapping (NAM), which separates the task of target domain generative modeling from the cross-domain mapping task. NAM relies on a pre-trained generative model of the target domain, and aligns each source image with an image synthesized from the target domain, while jointly optimizing the domain mapping function. It has several key advantages: higher quality and resolution image translations, simpler and more stable training and reusable target models. Extensive experiments are presented validating the advantages of our method.Comment: ECCV 201

    Decoupled Contrastive Learning

    Full text link
    Contrastive learning (CL) is one of the most successful paradigms for self-supervised learning (SSL). In a principled way, it considers two augmented "views" of the same image as positive to be pulled closer, and all other images as negative to be pushed further apart. However, behind the impressive success of CL-based techniques, their formulation often relies on heavy-computation settings, including large sample batches, extensive training epochs, etc. We are thus motivated to tackle these issues and establish a simple, efficient, yet competitive baseline of contrastive learning. Specifically, we identify, from theoretical and empirical studies, a noticeable negative-positive-coupling (NPC) effect in the widely used InfoNCE loss, leading to unsuitable learning efficiency concerning the batch size. By removing the NPC effect, we propose decoupled contrastive learning (DCL) loss, which removes the positive term from the denominator and significantly improves the learning efficiency. DCL achieves competitive performance with less sensitivity to sub-optimal hyperparameters, requiring neither large batches in SimCLR, momentum encoding in MoCo, or large epochs. We demonstrate with various benchmarks while manifesting robustness as much less sensitive to suboptimal hyperparameters. Notably, SimCLR with DCL achieves 68.2% ImageNet-1K top-1 accuracy using batch size 256 within 200 epochs pre-training, outperforming its SimCLR baseline by 6.4%. Further, DCL can be combined with the SOTA contrastive learning method, NNCLR, to achieve 72.3% ImageNet-1K top-1 accuracy with 512 batch size in 400 epochs, which represents a new SOTA in contrastive learning. We believe DCL provides a valuable baseline for future contrastive SSL studies.Comment: Accepted by ECCV202

    Pooling-Invariant Image Feature Learning

    Full text link
    Unsupervised dictionary learning has been a key component in state-of-the-art computer vision recognition architectures. While highly effective methods exist for patch-based dictionary learning, these methods may learn redundant features after the pooling stage in a given early vision architecture. In this paper, we offer a novel dictionary learning scheme to efficiently take into account the invariance of learned features after the spatial pooling stage. The algorithm is built on simple clustering, and thus enjoys efficiency and scalability. We discuss the underlying mechanism that justifies the use of clustering algorithms, and empirically show that the algorithm finds better dictionaries than patch-based methods with the same dictionary size
    corecore