2,915 research outputs found

    A Two-Stage Approach for Routing Multiple Unmanned Aerial Vehicles with Stochastic Fuel Consumption

    Full text link
    The past decade has seen a substantial increase in the use of small unmanned aerial vehicles (UAVs) in both civil and military applications. This article addresses an important aspect of refueling in the context of routing multiple small UAVs to complete a surveillance or data collection mission. Specifically, this article formulates a multiple-UAV routing problem with the refueling constraint of minimizing the overall fuel consumption for all of the vehicles as a two-stage stochastic optimization problem with uncertainty associated with the fuel consumption of each vehicle. The two-stage model allows for the application of sample average approximation (SAA). Although the SAA solution asymptotically converges to the optimal solution for the two-stage model, the SAA run time can be prohibitive for medium- and large-scale test instances. Hence, we develop a tabu-search-based heuristic that exploits the model structure while considering the uncertainty in fuel consumption. Extensive computational experiments corroborate the benefits of the two-stage model compared to a deterministic model and the effectiveness of the heuristic for obtaining high-quality solutions.Comment: 18 page

    Two-Echelon Vehicle and UAV Routing for Post-Disaster Humanitarian Operations with Uncertain Demand

    Full text link
    Humanitarian logistics service providers have two major responsibilities immediately after a disaster: locating trapped people and routing aid to them. These difficult operations are further hindered by failures in the transportation and telecommunications networks, which are often rendered unusable by the disaster at hand. In this work, we propose two-echelon vehicle routing frameworks for performing these operations using aerial uncrewed autonomous vehicles (UAVs or drones) to address the issues associated with these failures. In our proposed frameworks, we assume that ground vehicles cannot reach the trapped population directly, but they can only transport drones from a depot to some intermediate locations. The drones launched from these locations serve to both identify demands for medical and other aids (e.g., epi-pens, medical supplies, dry food, water) and make deliveries to satisfy them. Specifically, we present two decision frameworks, in which the resulting optimization problem is formulated as a two-echelon vehicle routing problem. The first framework addresses the problem in two stages: providing telecommunications capabilities in the first stage and satisfying the resulting demands in the second. To that end, two types of drones are considered. Hotspot drones have the capability of providing cell phone and internet reception, and hence are used to capture demands. Delivery drones are subsequently employed to satisfy the observed demand. The second framework, on the other hand, addresses the problem as a stochastic emergency aid delivery problem, which uses a two-stage robust optimization model to handle demand uncertainty. To solve the resulting models, we propose efficient and novel solution approaches

    OPTIMIZATION MODELS AND METHODOLOGIES TO SUPPORT EMERGENCY PREPAREDNESS AND POST-DISASTER RESPONSE

    Get PDF
    This dissertation addresses three important optimization problems arising during the phases of pre-disaster emergency preparedness and post-disaster response in time-dependent, stochastic and dynamic environments. The first problem studied is the building evacuation problem with shared information (BEPSI), which seeks a set of evacuation routes and the assignment of evacuees to these routes with the minimum total evacuation time. The BEPSI incorporates the constraints of shared information in providing on-line instructions to evacuees and ensures that evacuees departing from an intermediate or source location at a mutual point in time receive common instructions. A mixed-integer linear program is formulated for the BEPSI and an exact technique based on Benders decomposition is proposed for its solution. Numerical experiments conducted on a mid-sized real-world example demonstrate the effectiveness of the proposed algorithm. The second problem addressed is the network resilience problem (NRP), involving an indicator of network resilience proposed to quantify the ability of a network to recover from randomly arising disruptions resulting from a disaster event. A stochastic, mixed integer program is proposed for quantifying network resilience and identifying the optimal post-event course of action to take. A solution technique based on concepts of Benders decomposition, column generation and Monte Carlo simulation is proposed. Experiments were conducted to illustrate the resilience concept and procedure for its measurement, and to assess the role of network topology in its magnitude. The last problem addressed is the urban search and rescue team deployment problem (USAR-TDP). The USAR-TDP seeks an optimal deployment of USAR teams to disaster sites, including the order of site visits, with the ultimate goal of maximizing the expected number of saved lives over the search and rescue period. A multistage stochastic program is proposed to capture problem uncertainty and dynamics. The solution technique involves the solution of a sequence of interrelated two-stage stochastic programs with recourse. A column generation-based technique is proposed for the solution of each problem instance arising as the start of each decision epoch over a time horizon. Numerical experiments conducted on an example of the 2010 Haiti earthquake are presented to illustrate the effectiveness of the proposed approach

    Optimal logistics scheduling with dynamic information in emergency response: case studies for humanitarian objectives

    Get PDF
    The mathematical model of infectious disease is a typical problem in mathematical modeling, and the common infectious disease models include the susceptible-infected (SI) model, the susceptible-infected-recovered model (SIR), the susceptible-infected-recovered-susceptible model (SIRS) and the susceptible-exposed-infected-recovered (SEIR) model. These models can be used to predict the impact of regional return to work after the epidemic. In this paper, we use the SEIR model to solve the dynamic medicine demand information in humanitarian relief phase. A multistage mixed integer programming model for the humanitarian logistics and transport resource is proposed. The objective functions of the model include delay cost and minimum running time in the time-space network. The model describes that how to distribute and deliver medicine resources from supply locations to demand locations with an efficient and lower-cost way through a transportation network. The linear programming problem is solved by the proposed Benders decomposition algorithm. Finally, we use two cases to calculate model and algorithm. The results of the case prove the validity of the model and algorithm

    The State-of-the-Art Survey on Optimization Methods for Cyber-physical Networks

    Full text link
    Cyber-Physical Systems (CPS) are increasingly complex and frequently integrated into modern societies via critical infrastructure systems, products, and services. Consequently, there is a need for reliable functionality of these complex systems under various scenarios, from physical failures due to aging, through to cyber attacks. Indeed, the development of effective strategies to restore disrupted infrastructure systems continues to be a major challenge. Hitherto, there have been an increasing number of papers evaluating cyber-physical infrastructures, yet a comprehensive review focusing on mathematical modeling and different optimization methods is still lacking. Thus, this review paper appraises the literature on optimization techniques for CPS facing disruption, to synthesize key findings on the current methods in this domain. A total of 108 relevant research papers are reviewed following an extensive assessment of all major scientific databases. The main mathematical modeling practices and optimization methods are identified for both deterministic and stochastic formulations, categorizing them based on the solution approach (exact, heuristic, meta-heuristic), objective function, and network size. We also perform keyword clustering and bibliographic coupling analyses to summarize the current research trends. Future research needs in terms of the scalability of optimization algorithms are discussed. Overall, there is a need to shift towards more scalable optimization solution algorithms, empowered by data-driven methods and machine learning, to provide reliable decision-support systems for decision-makers and practitioners

    Operating Room Scheduling Optimization Based on a Fuzzy Uncertainty Approach and Metaheuristic Algorithms

    Get PDF
    Today, planning and scheduling problems are the most significant issues in the world and make a great impact on improving organizational productivity and serving systems such as medical and healthcare providers. Since operating room planning is a major problem in healthcare organizations, the optimization of medical staff and equipment plays an essential role. Thus, this study presents a multi-objective mathematical model with a new categorization (preoperative, intraoperative, and postoperative) to minimize operating room scheduling and the risk of using equipment. Time constraints in healthcare systems and medical equipment limited capacity are the most significant considered limitation in the present study. In this regard, since the duration of patient preparation and implementation of treatment processes occur in three states of optimistic, pessimistic, and normal, the introduced parameters are examined relying on a fuzzy uncertainty analysis of the problem. Hence, the model is measured in a real numerical solution sample in a medical center to evaluate and confirm the proposed mathematical model. Then, two meta-heuristic algorithms (NRGA and NSGAII) are implemented on the mathematical model to analyze the proposed model. Finally, the research results indicate that the NSGA-II is more efficient in the operating room scheduling problem

    Stochastic Cyclic Inventory Routing with Supply Uncertainty: A Case in Green-Hydrogen Logistics

    Get PDF
    Hydrogen can be produced from water, using electricity. The hydrogen can subsequently be kept in inventory in large quantities, unlike the electricity itself. This enables solar and wind energy generation to occur asynchronously from its usage. For this reason, hydrogen is expected to be a key ingredient for reaching a climate-neutral economy. However, the logistics for hydrogen are complex. Inventory policies must be determined for multiple locations in the network, and transportation of hydrogen from the production location to customers must be scheduled. At the same time, production patterns of hydrogen are intermittent, which affects the possibilities to realize the planned transportation and inventory levels. To provide policies for efficient transportation and storage of hydrogen, this paper proposes a parameterized cost function approximation approach to the stochastic cyclic inventory routing problem. Firstly, our approach includes a parameterized mixed integer programming (MIP) model which yields fixed and repetitive schedules for vehicle transportation of hydrogen. Secondly, buying and selling decisions in case of underproduction or overproduction are optimized further via a Markov decision process (MDP) model, taking into account the uncertainties in production and demand quantities. To jointly optimize the parameterized MIP and the MDP model, our approach includes an algorithm that searches the parameter space by iteratively solving the MIP and MDP models. We conduct computational experiments to validate our model in various problem settings and show that it provides near-optimal solutions. Moreover, we test our approach on an expert-reviewed case study at two hydrogen production locations in the Netherlands. We offer insights for the stakeholders in the region and analyze the impact of various problem elements in these case studies
    • …
    corecore