36 research outputs found

    Improve OR-schedule to reduce number of required beds

    Get PDF
    After surgery most of the surgical patients have to be admitted in a ward in the hospital. Due to financial reasons and an decreasing number of available nurses in the Netherlands over the years, it is important to reduce the bed usage as much as possible. One possible way to achieve this is to create an operating room (OR) schedule that spreads the usage of beds nicely over time, and thereby minimizes the number of required beds. An OR-schedule is given by an assignment of OR-blocks to specific days in the planning horizon and has to fulfill several resource constraints. Due to the stochastic nature of the length of stay of patients, the analytic calculation of the number of required beds for a given OR-schedule is a complex task involving the convolution of discrete distributions. In this paper, two approaches to deal with this complexity are presented. First, a heuristic approach based on local search is given, which takes into account the detailed formulation of the objective. A second approach reduces the complexity by simplifying the objective function. This allows modeling and solving the resulting problem as an ILP. Both approaches are tested on data provided by Hagaziekenhuis in the Netherlands. Furthermore, several what-if scenarios are evaluated. The computational results show that the approach that uses the simplified objective function provides better solutions to the original problem. By using this approach, the number of required beds for the considered instance of HagaZiekenhuis can be reduced by almost 20%

    A decision support system for surgery sequencing at UZ Leuven's day-care department.

    Get PDF
    In this paper, we test the applicability of a decision support system (DSS) that is developed to optimize the sequence of surgeries in the day-care center of the UZ Leuven Campus Gasthuisberg (Belgium). We introduce a multi-objective function in which children and prioritized patients are scheduled as early as possible on the day of surgery, recovery overtime is minimized and recovery workload is leveled throughout the day. This combinatorial optimization problem is solved by applying a pre-processed mixed integer linear programming model. We report on a 10-day case study to illustrate the performance of the DSS. In particular, we compare the schedules provided by the hospital with those that are suggested by the DSS. The results indicate that the DSS leads to both an increased probability of obtaining feasible schedules and an improved quality of the schedules in terms of the objective function value. We further highlight some of the major advantages of the application, such as its visualization and algorithmic performance, but also report on the difficulties that were encountered during the study and the shortcomings that currently delay its implementation in practice, as this information may contribute to the success rate of future software applications in hospitals.Decision support system; Optimization; Visualization; Health care application;

    Integral resource capacity planning for inpatient care services based on hourly bed census predictions

    Get PDF
    The design and operations of inpatient care facilities are typically largely historically shaped. A better match with the changing environment is often possible, and even inevitable due to the pressure on hospital budgets. Effectively organizing inpatient care requires simultaneous consideration of several interrelated planning issues. Also, coordination with upstream departments like the operating theater and the emergency department is much-needed. We present a generic analytical approach to predict bed census on nursing wards by hour, as a function of the Master Surgical Schedule (MSS) and arrival patterns of emergency patients. Along these predictions, insight is gained on the impact of strategic (i.e., case mix, care unit size, care unit partitioning), tactical (i.e., allocation of operating room time, misplacement rules), and operational decisions (i.e., time of admission/discharge). The method is used in the Academic Medical Center Amsterdam as a decision support tool in a complete redesign of the inpatient care operations

    E-HOSPITAL – A digital workbench for hospital operations and services planning using information technology and algebraic languages

    Get PDF
    In this paper, we describe the development of a unified framework and a digital workbench for the strategic, tactical and operational hospital management plan driven by information technology and analytics. The workbench can be used not only by multiple stakeholders in the healthcare delivery setting, but also for pedagogical purposes on topics such as healthcare analytics, services management, and information systems. This tool combines the three classical hierarchical decision-making levels in one integrated environment. At each level, several decision problems can be chosen. Extensions of mathematical models from the literature are presented and incorporated into the digital platform. In a case study using real-world data, we demonstrate how we used the workbench to inform strategic capacity planning decisions in a multi-hospital, multi-stakeholder setting in the United Kingdom

    Cyclical Nurse Scheduling in Shah Alam Hospital Using Goal Programming

    Get PDF
    A shift work schedule is extremely important to obtain the optimum result of work allocation since it involves 24 hours of continuous services. Every nurse could not avoid shift work schedule since their services are very important towards the patients in the hospital. The major objective of the study is to propose a cyclical nurse scheduling in the Coronary Care Unit (CCU) at Shah Alam hospital using Goal Programming. It is to help the head nurse to spend less effort on building new schedules periodically and increase the satisfaction among nurses by providing fairness towards their schedules. There were nine hard constraints and three soft constraints for the nurse scheduling model. The results presented the optimal solution where all goals were achieved thus, it provided a fair schedule for 15 nurses in 15 days. Then, the schedule pattern was rotated among nurses based on the 15 schedules set in 225 days. The first schedule set will be used by the nurse for the first 15 days, then will be continuously rotated for another 15 days until all the nurses reached and experienced every 15 sets of the schedule. The schedule was generated using LINGO software which it took a short time to solve the problem
    corecore