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Abstract

In this paper, we test the applicability of a decision support system (DSS) that is devel-
oped to optimize the sequence of surgeries in the day-care center of the UZ Leuven Campus
Gasthuisberg (Belgium). We introduce a multi-objective function in which children and pri-
oritized patients are scheduled as early as possible on the day of surgery, recovery overtime
is minimized and recovery workload is leveled throughout the day. This combinatorial op-
timization problem is solved by applying a pre-processed mixed integer linear programming
model. We report on a 10-day case study to illustrate the performance of the DSS. In par-
ticular, we compare the schedules provided by the hospital with those that are suggested
by the DSS. The results indicate that the DSS leads to both an increased probability of ob-
taining feasible schedules and an improved quality of the schedules in terms of the objective
function value. We further highlight some of the major advantages of the application, such
as its visualization and algorithmic performance, but also report on the difficulties that were
encountered during the study and the shortcomings that currently delay its implementation
in practice, as this information may contribute to the success rate of future software appli-
cations in hospitals.

Keywords: Decision support system, optimization, visualization, health care application

1 INTRODUCTION

Many reasons can be found to stress the importance of an adequate planning and scheduling

of surgeries. The ageing population and its resulting increase in the demand for health care

services puts a continuous pressure on scarce and costly resources, such as the nursing personnel
∗Corresponding author
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[8]. However, hospitals are not only confronted with an increase in the demand for surgery, they

have also experienced a shift from inpatient surgery to ambulatory surgery or outpatient surgery,

i.e. patients who are admitted and discharged from the hospital on the same working day [15].

Procedures that were previously performed in an inpatient setting, are now performed as day

surgery because of the progress in surgical expertise and the introduction of new anaesthetic

and analgesic medications. The International Association for Ambulatory Surgery [11] forecasts

that at least 75%, if not more, of all procedures will ultimately be carried out in an ambulatory

setting.

Outpatient surgery exhibits particular advantages over inpatient surgery for patients, hospitals

and health care funders [12]. Patients spend less time in the hospital, recover in their own

home and are less exposed to last minute cancelations due to, for instance, emergency admis-

sions. Day surgery also tends to be less stressful, especially for children, and reduces the risk of

cross-infection since they are separated from sicker patients. In short, day surgery leads to an

increased patient satisfaction. Furthermore, as procedures are typically shorter and standard-

ized, uncertainty is reduced and thus hospitals can manage their schedule more efficiently. This

reduced uncertainty increases the applicability of operations research techniques that are at the

core of adequate planning and scheduling policies [14]. It also enables hospitals to improve pa-

tient throughput and to reduce waiting lists (e.g., due to the shortened stay of patients). Health

care funders also benefit from the cost-effectiveness of day surgery [12].

The aim of this study is to examine by means of a case study how decision support systems can

contribute to an improved outpatient surgical schedule. In particular, we describe the sequencing

of patients in the operating rooms of a freestanding ambulatory surgical center. In Section 2 we
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describe the problem setting in detail and introduce the day surgery center of interest. Next,

we introduce in Section 3, a DSS that not only visualizes the problem setting, but also allows

the planner to interact with advanced optimization algorithms. Using this tool, planners can

fully understand their combinatorial problem and obtain noticeable improvements. We list the

data that was gathered to perform the case analysis in Section 4. In Section 5, we examine and

evaluate the performance of the DSS and the underlying algorithmic procedures and report on

findings that cover a two-week time period in March 2008. In Section 6, we address the opinion

of end-users and report on some difficulties that delay the current implementation process of the

application. Section 7 summarizes the major findings of this managerial research contribution.

2 PROBLEM STATEMENT

The surgical day-care center of the UZ Leuven Campus Gasthuisberg (Belgium) accounts for

about 15000 hours of total net operating time and for 13000 ambulatory surgeries annually.

Since this day-care center has the ability to operate independently from the inpatient sections

of the hospital, we refer to it as a freestanding unit or facility. Figure 1 depicts a floor map

of the day-care center. In general, patients follow a common route through the center on their

day of surgery, as indicated by the arrows. The hospital asks patients to arrive at the center

approximately one hour before their planned surgery start. After a short registration at the

reception, they take a place in the waiting room until a nurse accompanies them to the locker

rooms where the patient can change clothes. Next, the patient is transferred to a preparation

area in which pre-surgical interventions are performed, such as the placement of a catheter. Af-

ter preparation, the patient is moved into a specific operating room in order to undergo surgery.

As indicated in Figure 1, the day-care center comprises 8 operating rooms. After surgery, the
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patient is admitted to PACU 1 where he or she stays during the critical awakening phase. When

the patient is conscious, a transfer to PACU 2 (beds) or PACU 3 (chairs) takes place. The

patient stays there until the surgeon gives permission to leave the hospital.

Figure 1: Floor map of the freestanding surgical day-care center of UZ Leuven Campus Gasthuis-
berg

Although the flow of Figure 1 applies to the major share of patients, deviations may occur. Spo-

radically, an inpatient surgery is performed at the day-care center. After surgery, however, these

patients are transferred to other PACU areas in the hospital. Other deviations are, for instance,

triggered by the type of anesthesia that is used. Surgeries that are performed under local or

regional anesthesia do not require a visit to PACU 1. So, patients are immediately transferred

to PACU 2 or PACU 3. Since the duration of the surgeries and the stays in recovery largely vary

by type, sequencing surgeries offers the potential to reduce workload peaks in recovery. Since
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patients in the recovery area may arrive from any of the 8 operating rooms, these operating

rooms cannot be sequenced independently.

The current procedure for scheduling surgical cases at the day-care center is based on two steps:

an assignment step and a sequencing step. In the assignment phase, patients are assigned to days

and surgery slots. The assignment results from a negotiation between patient and surgeon and

is based on their preferences and the amount of free operating slot capacity. A slot represents a

large block of operating room time that is reserved for a specific medical discipline or surgeon.

It should be noted that the patient is at this time unaware of the timing of the surgery, i.e.

when they have to enter the day-care center at the particular agreed-upon day. This decision is

made in the second (sequencing) step. The sequencing of the surgeries within each slot is per-

formed exactly one day in advance. Thus the entire population of patients for that particular

day, varying from 45 to 70 patients, is known to the head nurse. Although the surgeons may

specify a preferred sequence, the head nurse may introduce changes to these sequences to resolve

conflicts that may arise between slots. When an appropriate sequence is determined, patients

are informed about their expected time of arrival. This contact, close to the day of surgery,

significantly reduces no-shows [13]. In this research, however, we assume that the population

of patients for a specific surgery day is known in advance. Thus we restrict the focus to the

sequencing step, i.e. determining the starting times of the surgeries within each operating room

slot. Table 1 lists the specific goals and constraints that are incorporated in the surgical case

sequencing problem of interest. Note that the problem statement does not cover the processes

related to the waiting room, locker rooms, preparation area or PACU 3. Further information

on the description and the motivation of the multiple objectives and constraints is provided in

Cardoen et al. [6].
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The current sequencing approach at the day-care center results from negotiations between the

surgeons and the head nurse. While surgeons limit their scope to their individual preferences,

the head nurse focuses on the quality of the schedule as a whole. Although this negotiation

approach has been used since the opening of the day-care center in 2002, it has some major

disadvantages. Changes made by the head nurse, for example, are often perceived as unfair.

Moreover, these changes are induced by rules of thumb that do not cover complex interactions,

such as the demand for recovery beds, and hence may result in inferior or even unfeasible surgery

schedules (see Section 5). The process is furthermore very time-consuming since the hospital

lacks an efficient DSS that visualizes potential resource conflicts. We hypothesize that the

introduction of the DSS should assist the head nurse in generating fair (i.e. computerized and

thus less subjective) and improved surgery schedules that surpass the manual schedules.

3 DECISION SUPPORT SYSTEM

Although many researchers report on the potential contribution of a DSS for clinical decision

making (see [4] for a recent overview), only limited research efforts have been directed towards

decision support systems for organizational and managerial decision making in hospitals (e.g.,

[1], [2], [3], [16]). With the development of this DSS, we hope to increase the accessibility of

optimization algorithms and facilitate the interpretation of a surgery schedule’s impact on the

daily working practice of the day-care center.
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3.1 Optimization engine

We applied dedicated branch-and-bound [6], branch-and-price [7] and pre-processed mixed inte-

ger linear programming (MILP) [6] to the particular surgical sequencing problem. We examined

both heuristic and exact procedures and tested their performance using an artificial test set.

Results indicated that the MILP procedures outperformed the branch-and-bound procedures in

solution quality. In addition, the pre-processed MILP outperformed the alternative solution ap-

proaches in proving the optimality of solutions. Consequently, we integrated the pre-processed

MILP procedure into the DSS to solve the real instances of Section 5.

One major contribution of the solution procedure is in the way the objectives are normalized and

aggregated into one multi-objective function. In a preprocessing step, we implicitly screen the

entire set of feasible schedules to obtain a lower bound and an upper bound for each individual

objective. The range between the bounds allows for an intuitive normalization of the objectives

to alleviate the different units in which the objectives are expressed (e.g. beds, patients or

periods). This implies that the normalized value of a single objective ranges between 0 (i.e. the

value of the particular objective equals the best possible value contained in the set of feasible

schedules) and 1 (i.e. the value of the particular objective equals the worst possible value

contained in the set of feasible schedules). Section 3.2 introduces a graphical example to illustrate

this reasoning. The normalized objectives are integrated into a multi-objective function by

setting weights. The sum of the weights equals 1, so that the value of the final function also

ranges between 0 and 1. If each single objective achieves its lower bound, the value of the

multi-objective function is equal to 0, regardless the setting of the weights. However, due to the

conflicting nature of the objectives, this is hardly ever the case (see Section 5).
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3.2 Graphical user interface

We embedded the selected algorithm in a graphical user interface (GUI) to facilitate the tran-

sition from data into understandable information. The GUI is coded using the Microsoft Foun-

dation Classes (MFC) of MS Visual C++.NET and is linked with the ILOG CPLEX 10.2

optimization library [10] to execute the algorithmic optimizations. It consists of multiple panes

that visualize the detailed surgery schedule and its resulting slot utilization. The expected re-

source consumption is tracked over time and potential conflicts are highlighted (i.e. constraint

violations). A drag-and-drop function and dialog boxes are included to allow changes added

by the end-user. These adjustments range from patient-specific characteristics (e.g., incomplete

medical tests, expected operating time or MRSA-infection) to the introduction or cancelation of

patients and surgeries for the particular day. Each modification to the surgery schedule is evalu-

ated using the multi-objective function. Figure 2 visualizes the detailed outcome of a schedule’s

performance. The DSS also provides the value for the entire multi-objective function, which

takes the weighting of the individual objectives into account.

Figure 2 illustrates the 7 objectives that were introduced in Section 2 to rate a surgery schedule.

For each objective an absolute value is provided as well as a relative measure. Figure 2 indicates,

for example, that 11 beds are needed in PACU 2 for the proposed schedule. The corresponding

bar for this objective shows that 11 beds is a rather poor performance given the existing set of

feasible surgery schedules. In other words, schedules can be generated for which far less beds

are needed in PACU 2. With respect to objective 5, the opposite reasoning applies: no schedule

can be configured in which recovery overtime can be further reduced. The absence of a bar thus

points at optimality for this particular objective, whereas a bar at its maximum length indicates

9



Figure 2: Representation of the surgery schedule’s performance with respect to the comprised
objectives

that no worse value can be found. We want to stress that the absence of a red bar does not

imply an excellent result as such for the particular objective. However, it means that no feasible

schedule can be found with a better performance regarding that particular objective.

4 DATA REQUIREMENTS

4.1 Data gathering

An extensive amount of data is required to study the daily surgery sequencing problem at

the UZ Leuven Campus Gasthuisberg. Although most of the information was retrieved from
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the hospital information system, data regarding the medical equipment had to be manually

collected. Below, we discuss the data that are necessary to reconstruct the underlying cyclic

master surgery schedule, to list the available medical equipment, and to highlight the features

of both the various surgery types and the set of patients.

� The master surgery schedule specifies the number and type of operating rooms, the hours

that operating rooms are available, and the specialty that has priority for an operating

room [5]. If we refer to these large blocks of operating room time as slots, we may recon-

struct the master surgery schedule of a particular day by aggregating its constituting slots.

For each slot that is registered in the hospital information system, we requested the unique

slot ID, the medical discipline, the operating room to whom the slot is assigned and the

day of the week on which the surgery slot is scheduled. We also captured the duration of

each slot, as this number provides the original capacity of the slot. It allows the decision

maker to verify whether a slot is overloaded with individual surgeries and allows for the

identification of misused human resources (e.g. nurses), since they are scheduled according

to the MSS rather than workload on a specific day.

� Medical equipment : the data file lists for each reusable type of instrument the available

capacity and the duration of the instrument’s sterilization after use in a surgery. Some

instruments, such as towers or lasers, do not require any sterilization, whereas others have

a standard sterilization duration of 240 minutes.

� An example of the required information on surgery types is provided in Table 2. A surgery

type ID is accompanied by a short description that facilitates the recognition of the actual

work content. For each entry in Table 2, the expected operating time (EOT), stay in

PACU 1 and stay in PACU 2 is reported, in addition to a list of the required medical
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(bottleneck) equipment to perform the surgery. The values are averages calculated using

a spreadsheet that includes all surgeries performed in the surgical day-care center from

2004 to May 2008.

� Patient-specific information: For each patient, we retrieve the identification number (ID),

the specific surgery ID (the DSS allows for comorbidity: multiple surgeries for a single

patient can be performed in one surgery session), the date of surgery and the slot in which

the surgery has to be sequenced (slot ID). Multiple parameters are retrieved in order to

calculate the objectives and specify the constraints, such as the date of birth, the request

for a private bed, the occurrence of the MRSA infection, the type of anesthesia, the travel

distance to the day-care center, intake information, etc. Although the center is actually a

freestanding unit for ambulatory surgery, capacity is also used, though rather sporadically,

for inpatients (e.g. one-night stays or short stays).

4.2 Data problems

Trial runs of the DSS indicated some problems with the validity of the data concerning the uti-

lization of the recovery phases, since the application indicated numerous bed capacity conflicts.

This, however, conflicted with the head nurse’s experience. In cooperation with the center, we

identified two main reasons for the deviations. Patients who undergo the same type of surgery

may differ in their recovery needs. The stay in recovery is affected by the type of anesthesia that

is used. We differentiate between general, regional and local anesthesia. Patients with general

anesthesia visit both PACU 1 and PACU 2. Local and regional anesthesia only imply a visit to

PACU 2. Since the type of anesthesia does not solely depend on the type of surgery that has

to be performed, but also on the personal request of the patient, we had to take this attribute

12



Table 2: Example of data file: surgery type information

Surgery ID Discipline
Duration (minutes)

Description Instruments
EOT PACU 1 PACU 2

... ... ... ... ... ... ...
51231 ABD 93 74 145 I: Lap cholecystectomie ABD - klein Doos GE

met peroperatieve ABD - lap CCE
cholangiografie ABD - scopen 5mm

ALG - torens olympus
ALG - RX

6623XDI GYN 62 80 177 I: Laparoscopische GYN - torens storz GYN
sterilisatie

86075 ONC 55 0 0 I: inplanteren ONC - hickmann
Hickman-catheter 3 lumen ALG - RX

... ... ... ... ... ... ...

into consideration for the determination of the recovery durations. Conversely, patients who are

hospitalized skip the visit to PACU 2 and are transferred to their ward in the general hospital.

The results of Section 5 incorporate both corrections based on patient-specific data.

The trial runs also reported an excessive amount of instrument violations, compared to the head

nurse’s experience. We found that one major reason stems from the inaccurate coding of the

surgery types. It is not uncommon that different surgery types may be listed under the same

identification code, even though they require a slightly different set of medical equipment. The

UZ Leuven is currently developing its own, very detailed, coding system to identify the different

surgery types. In the future, these inaccuracies should be eliminated. Additionally, the list

of instruments only refers to the preferred types of instruments needed to perform the surgery

type. Often, a substitute set or instrument (that does not appear on the list of required instru-

ments) can be used to fulfil the surgeon’s needs. Therefore, we adjusted the capacity levels of

instruments in dialogue with the head nurse to incorporate the above situation.
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5 CASE STUDY RESULTS

We tested the DSS on a 1.8 GHz Pentium 4 PC with 2 GB RAM and the Windows XP operating

system. We used data from two regular weeks in March 2008. An overview of the 10 resulting

instances is shown in Table 3. In the remainder of this section, we refer to these schedules as

the original schedules. The number of patients (# patients) ranges from 44 to 64 and are spread

over eight operating rooms (# ORs). Note that the number of slots (# slots) is always larger

than the number of disciplines (# disciplines). If the number of disciplines is smaller than the

number of operating rooms in use, multiple slots of the same discipline are scheduled during

the day. Next to a description of the instances, Table 3 provides an evaluation of the schedule

that was used on the day of surgery by the day-care center. We retrieved the sequence of

surgeries as they were performed in each slot from the hospital information system and checked

the schedule’s feasibility with respect to the bed (Resource conflicts - bed) and instrument

(Resource conflicts - instr) constraints. Table 3 also indicates the number of patients that are

affected by the resource conflicts (Resource conflicts - # patients), if any occur. The results

of the study can be classified into three major categories. First, it is possible that the original

schedule is feasible. Second, the original schedule may not be feasible, but a feasible schedule

for the particular patient population does actually exist. Third, the original schedule is not

feasible, and no feasible schedule for the particular patient population can be generated. In the

next subsections, we discuss these categories in more detail.
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5.1 Feasible Original Schedule

Only one of the ten original schedules was actually feasible, namely Instance 2. Since all con-

straints are satisfied, we are able to evaluate the objectives and to question whether the proposed

sequence can be improved. A comparison of the outcome of the original schedule with the re-

sults for the optimal schedule indicates that the algorithmic search outperforms the knowledge

of the human planner, since the value of the multi-objective function has decreased from 0.283

to 0.132 (see Table 3). Since this value is larger than 0, a trade-off between the objectives exists.

A major improvement in the reduction of the peak use of beds in both PACU 1 (from 6 to 4

beds) and PACU 2 (from 9 to 6 beds) could be identified. This result is not surprising as the

resulting bed occupancy is not shown by the surgery schedule itself and is hence not transparent

to the planner without software support. The original schedule performs similarly to the optimal

schedule with respect to the remaining objectives. Note that we obtained the optimal schedule

using the preprocessed MILP procedure [6] in less than 3 seconds.

5.2 Unfeasible Original Schedule - Feasible Solution Exists

Table 3 lists 6 instances for which the original schedule is infeasible, although a feasible schedule

can be obtained by changing the sequence of surgeries within each slot (Instance 3-7 and 9).

The extent of the constraint violations is expressed by the number of patients with at least one

resource conflict. It should be noted that original schedules that suffer from both instrument

and bed conflicts also exhibit the largest number of conflicted patients (up to 10 patients out

of 55 for Instance 9). No clear structure can be identified in the type of instrument or the type

of bed that causes the conflict during the day: violations occur for PACU 1, PACU 2 as well

as the private beds, while the set of violated instruments is large and comprises instruments

of all kind of medical disciplines. Using the DSS, we were able to identify for each instance
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the optimal surgery schedule. However, the required solution time varies from 1 second to

1921 seconds. We note, however, that in the instance with the long running time, a solution

was obtained in a matter of seconds; a great deal of time was required to prove optimality. A

multi-objective solution value of 0 was obtained for Instance 3, which implies that every single

objective is realized in the best possible way (see Section 3.1). Since the original schedules in

this category are not feasible, we are unable to report on the progress in the objective function

value that is achieved by the algorithmic search. One may question if we could not assess the

value of the original schedules without taking the constraint violations into account. However,

if we would relax the constraints (i.e. act as if there are no constraint violations and rate the

particular surgery sequences), we would obtain a solution value that is by no means comparable

with the optimized solution value that is reported in Table 3. Relaxing the constraints would

widen the set of possible schedule configurations and hence affect the lower and upper bounds

of the objectives. In other words, the lower and upper bounds of the objectives would differ

between the two settings, which makes a comparison based on the normalized objective function

deceptive. We refer to Cardoen et al. [6] for a mathematical clarification of the normalization

function.

5.3 Unfeasible Original Schedule - No Feasible Solution Exists

The final category consists of 3 instances for which no feasible solution exists (Instance 1, 8

and 10). The original schedule determined by the human planner was also unfeasible. One

should note that these instances do not necessarily result in a larger amount of patients with

schedule violations, compared with the instances of the previous paragraph. The problem in

Instance 10, which only affected two patients, was that a morning slot that begins at 7.45 a.m.

solely consists of patients who need an X-ray during the surgery. However, this service is only
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provided from 9 a.m. These problems, however, cannot be handled by the algorithms and re-

quire structural changes such as a switch of patients to other slots or the modification of slot

starting times to make the schedule feasible. This category of instances is troublesome in prac-

tice but the DSS can assist the human planner in identifying viable solutions, i.e. making the

general surgery setting feasible. A combination of a trial-and-error approach and the built-in

optimization algorithms should enable the head nurse to avoid operational problems in the fu-

ture; the DSS reported on the non-existence of a feasible schedule in each case in about 1 second.

It is interesting to note how the planner currently, i.e., without software support, deals with the

(expected) occurrence of violations. Today, the screening and checking of the planning is mainly

focused on the unavailability of medical equipment. Two possible solutions are explored when

an infeasibility is encountered. Either the head nurse tries to acquire the necessary equipment

from inpatient operating rooms or, instruments are cleaned by hand instead of using machines,

which decreases the required sterilization duration from 240 to 20 minutes. Next to the medical

equipment, problems arise with the use of the recovery bed spaces. Up to now, the planner does

not adapt the surgery schedule to account for the limited available bed capacity. Table 3 confirms

that this frequently leads to congestion in the PACU areas. To avoid operating room blocking,

i.e., a new patient can only enter the operating room when the previous one is transferred to the

PACU area, patients are prematurely dismissed by the anesthetist from the recovery areas. This

practice has a negative impact on the resulting service quality. When no solution is available, the

planner may cancel one or more surgeries. This, however, depends on many considerations. The

outpatient surgeries, for instance, have priority over those of inpatients. Also surgeon-specific

and patient-specific characteristics must be taken into account. Patients who had to change

their medication in preparation of the surgery, for instance, are hardly ever cancelled.
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6 DISCUSSION

Table 4 lists the main strengths of the DSS, such as the ability of end-users to direct the purchase

of equipment and to justify resulting investments. However, the DSS still faces shortcomings that

currently delay the actual implementation in the short term. In the next paragraphs we briefly

discuss the necessity of improving the coding system, integrating information, and increasing

management commitment.

Table 4: End-user evaluation of the decision support system

Strength Weakness

• visualization leads to understanding • doubtful accuracy estimations
• time gain for local heads of the center • inaccurate linkage medical equipment
• user-friendly application • no linkage with electronic patient file
• testing and comparing alternatives • no online instrument
• developed in multidisciplinary setting
• discussion facilitator
• justification instrument

6.1 Improved Coding System

The DSS is able to determine the optimal sequence of surgeries within each slot of the surgery

schedule, based on estimated surgery durations. As indicated by practitioners, one might ques-

tion whether these sequences are still reasonable if deviations from the estimated surgery de-

viations occur (i.e. the robustness of the proposed schedules). Accordingly, we registered the

sequence of surgeries that was determined by the optimal schedule of Instance 2 (see Section

5.1) and replaced the estimated durations with the actual realized durations. At first glance, the

results appeared promising, since the realized schedule did not encounter any resource conflicts

and more or less corresponded to the predicted values of the objectives. However, we noticed
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two major exceptions. There was a deviation of 2 beds in the peak demand for PACU 2. We

also noticed that the actual durations resulted in recovery overtime, which was not a problem

in the schedule based on estimated durations.

While the surgical workload of the day was estimated to amount to 3555 minutes, its realization

amounted to 4205 minutes. We examined the origin of the mismatch between the estimate and

the realization of surgeries and identified two possible reasons. First, it might be possible that

the surgeries inherently exhibit a significant amount of variability, although the procedures of the

surgical day-care center are rather short and quite standardized (hypothesis 1). If this is the case,

we cannot easily justify the deterministic scheduling approach of the optimization procedures.

Second, it might be possible that the durations are quite stable, but that the estimate is not

accurate (hypothesis 2). We examined both hypotheses in detail for one particular surgery type

of the discipline Otolaryngology: Operations on the nose, mouth and Pharynx, with surgery ID

= 23.09 and description = Removal and restoration of teeth - Extraction of other tooth. A total

of 1063 observations were available. The distribution of the surgery durations is well-described

by a gamma function with shape κ = 29.4 and scale θ = 2.44. The surgery durations are

highly variable (hypothesis 1). However, the estimated duration is not uniform for each patient.

Surgeons appear to adapt the estimated surgery duration according to the characteristics of

the specific patient. Note that this observation confirms the need for a better segmentation of

surgery types and the development of a more detailed coding system, as the patient population

for an intervention of type 23.09 is very heterogeneous (14 different estimates for the duration

of the same surgery type). As such, the impact of the stochasticity can be strongly reduced

through the application of a correct segmentation. Although the concept of adapting the surgery

estimates to the patient-specific properties (segment) is worthwhile, the analysis turned out that
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surgeons underestimate the surgery duration by 15 minutes on average. In other words, their

estimates do not match the actual durations. One major cause for this underestimation stems

from the role of the UZ Leuven as a teaching hospital. The time that is required to perform

a surgery depends on the agent who leads the surgery: trainees require significantly more time

than professors to perform the same task. In Instance 2, there was one supervisor for the three

operating rooms, which implies the presence of two trainees. Although the current hospital

information system allows surgeons to specify whether a trainee will perform the surgery (and

consequently automatically increase the estimated duration of the surgery), this option has not

been used. Based on the above discussion, we believe that hypothesis 2 constitutes the main

reason of the current mismatch between actual and estimated surgery durations. Moreover,

hospital management should be able to deal with this issue in the near future when the new

coding system is introduced. Improving the coding system is also a prerequisite to eliminate the

inaccuracy related to medical equipment planning.

6.2 Information Integration

Practitioners also report a missing link between the DSS and the electronic patient files recorded

in the hospital information system. This linkage would enable a fully automated inclusion of

data into the model. The surgical day-care center, though, already applies a tracking tool

that monitors the progress of the surgeries during the day. Linking the DSS to the tracking

tool alleviates the current problem of automated data exchange. Moreover, it would enable

online (real-time) scheduling since surgery durations could be updated continuously. This would

significantly improve the accuracy of the predictions that can be made for the future use of

resources and thus help identify potential resource conflicts during the day. When needed, the

sequences of surgeries that still are to be performed can be re-optimized under certain conditions.
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6.3 Commitment of Hospital Management

Hospital management should be aware of the organizational impact resulting from changes in

the operating theater practice. Recently, Hans and Nieberg [9] report on an educational tool

that is applied to the operating theater setting to introduce the contribution of planning and

scheduling concepts to the care managers of the future. Equivalently, the DSS can be used

to improve the understanding of an operating theater’s complex scheduling context and hence

commit management to prioritize investments.

7 CONCLUSION

In this paper, we examined whether theoretical operating room sequencing algorithms can ef-

fectively be applied in practice. We presented a decision support system aimed at facilitating

both the interaction with the settings of the problem and the interpretation of the results. We

reported on the important data gathering phase and provided case study results at the surgical

day-care center of the UZ Leuven Campus Gasthuisberg. By using the DSS and thus adapting

the sequence of surgeries within the slots, we were able to improve the surgery schedule quality

compared to the original schedules. If no feasible schedule could be obtained, the DSS proved

to be a valuable instrument for testing structural changes such as a new assignment of surgeries

to slots or a modification of slot starting times. Although the case study results are promising,

the actual implementation of the application seems to be difficult. We discussed some major

reasons for this observation, such as the coding system or the linkage with the electronic patient

files. Alleviating these pitfalls should improve both the speed of implementing the DSS and

the accuracy of the predicted resource consumption patterns. The key to these improvements,

however, depends on the hospital manager’s decisions.
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