3,555 research outputs found

    A database for fine grained activity detection of cooking activities

    Full text link

    P-CNN: Pose-based CNN Features for Action Recognition

    Get PDF
    This work targets human action recognition in video. While recent methods typically represent actions by statistics of local video features, here we argue for the importance of a representation derived from human pose. To this end we propose a new Pose-based Convolutional Neural Network descriptor (P-CNN) for action recognition. The descriptor aggregates motion and appearance information along tracks of human body parts. We investigate different schemes of temporal aggregation and experiment with P-CNN features obtained both for automatically estimated and manually annotated human poses. We evaluate our method on the recent and challenging JHMDB and MPII Cooking datasets. For both datasets our method shows consistent improvement over the state of the art.Comment: ICCV, December 2015, Santiago, Chil

    Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos

    Full text link
    Every moment counts in action recognition. A comprehensive understanding of human activity in video requires labeling every frame according to the actions occurring, placing multiple labels densely over a video sequence. To study this problem we extend the existing THUMOS dataset and introduce MultiTHUMOS, a new dataset of dense labels over unconstrained internet videos. Modeling multiple, dense labels benefits from temporal relations within and across classes. We define a novel variant of long short-term memory (LSTM) deep networks for modeling these temporal relations via multiple input and output connections. We show that this model improves action labeling accuracy and further enables deeper understanding tasks ranging from structured retrieval to action prediction.Comment: To appear in IJC

    Temporal Localization of Fine-Grained Actions in Videos by Domain Transfer from Web Images

    Full text link
    We address the problem of fine-grained action localization from temporally untrimmed web videos. We assume that only weak video-level annotations are available for training. The goal is to use these weak labels to identify temporal segments corresponding to the actions, and learn models that generalize to unconstrained web videos. We find that web images queried by action names serve as well-localized highlights for many actions, but are noisily labeled. To solve this problem, we propose a simple yet effective method that takes weak video labels and noisy image labels as input, and generates localized action frames as output. This is achieved by cross-domain transfer between video frames and web images, using pre-trained deep convolutional neural networks. We then use the localized action frames to train action recognition models with long short-term memory networks. We collect a fine-grained sports action data set FGA-240 of more than 130,000 YouTube videos. It has 240 fine-grained actions under 85 sports activities. Convincing results are shown on the FGA-240 data set, as well as the THUMOS 2014 localization data set with untrimmed training videos.Comment: Camera ready version for ACM Multimedia 201

    Second-order Temporal Pooling for Action Recognition

    Full text link
    Deep learning models for video-based action recognition usually generate features for short clips (consisting of a few frames); such clip-level features are aggregated to video-level representations by computing statistics on these features. Typically zero-th (max) or the first-order (average) statistics are used. In this paper, we explore the benefits of using second-order statistics. Specifically, we propose a novel end-to-end learnable feature aggregation scheme, dubbed temporal correlation pooling that generates an action descriptor for a video sequence by capturing the similarities between the temporal evolution of clip-level CNN features computed across the video. Such a descriptor, while being computationally cheap, also naturally encodes the co-activations of multiple CNN features, thereby providing a richer characterization of actions than their first-order counterparts. We also propose higher-order extensions of this scheme by computing correlations after embedding the CNN features in a reproducing kernel Hilbert space. We provide experiments on benchmark datasets such as HMDB-51 and UCF-101, fine-grained datasets such as MPII Cooking activities and JHMDB, as well as the recent Kinetics-600. Our results demonstrate the advantages of higher-order pooling schemes that when combined with hand-crafted features (as is standard practice) achieves state-of-the-art accuracy.Comment: Accepted in the International Journal of Computer Vision (IJCV

    Action Recognition by Hierarchical Mid-level Action Elements

    Full text link
    Realistic videos of human actions exhibit rich spatiotemporal structures at multiple levels of granularity: an action can always be decomposed into multiple finer-grained elements in both space and time. To capture this intuition, we propose to represent videos by a hierarchy of mid-level action elements (MAEs), where each MAE corresponds to an action-related spatiotemporal segment in the video. We introduce an unsupervised method to generate this representation from videos. Our method is capable of distinguishing action-related segments from background segments and representing actions at multiple spatiotemporal resolutions. Given a set of spatiotemporal segments generated from the training data, we introduce a discriminative clustering algorithm that automatically discovers MAEs at multiple levels of granularity. We develop structured models that capture a rich set of spatial, temporal and hierarchical relations among the segments, where the action label and multiple levels of MAE labels are jointly inferred. The proposed model achieves state-of-the-art performance in multiple action recognition benchmarks. Moreover, we demonstrate the effectiveness of our model in real-world applications such as action recognition in large-scale untrimmed videos and action parsing

    Unsupervised Human Action Detection by Action Matching

    Full text link
    We propose a new task of unsupervised action detection by action matching. Given two long videos, the objective is to temporally detect all pairs of matching video segments. A pair of video segments are matched if they share the same human action. The task is category independent---it does not matter what action is being performed---and no supervision is used to discover such video segments. Unsupervised action detection by action matching allows us to align videos in a meaningful manner. As such, it can be used to discover new action categories or as an action proposal technique within, say, an action detection pipeline. Moreover, it is a useful pre-processing step for generating video highlights, e.g., from sports videos. We present an effective and efficient method for unsupervised action detection. We use an unsupervised temporal encoding method and exploit the temporal consistency in human actions to obtain candidate action segments. We evaluate our method on this challenging task using three activity recognition benchmarks, namely, the MPII Cooking activities dataset, the THUMOS15 action detection benchmark and a new dataset called the IKEA dataset. On the MPII Cooking dataset we detect action segments with a precision of 21.6% and recall of 11.7% over 946 long video pairs and over 5000 ground truth action segments. Similarly, on THUMOS dataset we obtain 18.4% precision and 25.1% recall over 5094 ground truth action segment pairs.Comment: IEEE International Conference on Computer Vision and Pattern Recognition CVPR 2017 Workshop
    • …
    corecore