766 research outputs found

    IMPROVING QoS OF VoWLAN VIA CROSS-LAYER BASED ADAPTIVE APPROACH

    Get PDF
    Voice over Internet Protocol (VoIP) is a technology that allows the transmission of voice packets over Internet Protocol (IP). Recently, the integration of VoIP and Wireless Local Area Network (WLAN), and known as Voice over WLAN (VoWLAN), has become popular driven by the mobility requirements ofusers, as well as by factor of its tangible cost effectiveness. However, WLAN network architecture was primarily designed to support the transmission of data, and not for voice traffic, which makes it lack ofproviding the stringent Quality ofService (QoS) for VoIP applications. On the other hand, WLAN operates based on IEEE 802.11 standards that support Link Adaptive (LA) technique. However, LA leads to having a network with multi-rate transmissions that causes network bandwidth variation, which hence degrades the voice quality. Therefore, it is important to develop an algorithm that would be able to overcome the negative effect of the multi-rate issue on VoIP quality. Hence, the main goal ofthis research work is to develop an agent that utilizes IP protocols by applying a Cross-Layering approach to eliminate the above-mentioned negative effect. This could be expected from the interaction between Medium Access Control (MAC) layer and Application layer, where the proposed agent adapts the voice packet size at the Application layer according to the change of MAC transmission data rate to avoid network congestion from happening. The agent also monitors the quality of conversations from the periodically generated Real Time Control Protocol (RTCP) reports. If voice quality degradation is detected, then the agent performs further rate adaptation to improve the quality. The agent performance has been evaluated by carrying out an extensive series ofsimulation using OPNET Modeler. The obtained results of different performance parameters are presented, comparing the performance ofVoWLAN that used the proposed agent to that ofthe standard network without agent. The results ofall measured quality parameters hav

    Voice Call Capacity Over Wireless Mesh Networks

    Get PDF
    The goal of this thesis is to understand the voice call carrying capacity of an IEEE 802.11b/e based ad hoc network. We begin with the modelling of conversational speech and define a six state semi-Markov voice model based on ITU-T P59 recommendation. We perform a theoretical analysis of the voice model and compare it with results obtained via simulations. Using a Java based IEEE 802.11 medium access layer simulator, we determine the upper-bound for the number of voice calls carried by an ad hoc network. We use a linear topology with the ideal carrier sensing range and evaluate the number of calls carried using packet loss and packet delay as metrics. We observe that, for one, two, three and four hop, 5.5 Mbps IEEE 802.11 wireless links have an upper-bound of eight, six, five, and three voice calls respectively. We then consider a carrier sensing range and a path loss model and compare them with the ideal case. We observe, after considering a carrier sensing range with path loss model, there is a reduction in the number of calls carried by the linear networks. One, two, three and four hop 5.5 Mbps IEEE 802.11 wireless links support eight, five, four, and two voice calls respectively, when a carrier sensing range and a path loss model is considered. We also find that by adopting packet dropping policies at the nodes, we improve the call carrying capacity and quality of service on the network. In our simulations of a two hop network in path loss conditions, we find that, by adopting a time delay based packet dropping policy at the nodes, the number of calls supported simultaneously increased from five to six. In a four hop linear network we find that by total packet loss is reduced by 20%, adopting a random packet dropping policy and by 50% adopting a time delay based packet dropping policy. Although there is no change in number of calls supported, load on the network is reduced

    Advanced Wireless LAN

    Get PDF
    The past two decades have witnessed starling advances in wireless LAN technologies that were stimulated by its increasing popularity in the home due to ease of installation, and in commercial complexes offering wireless access to their customers. This book presents some of the latest development status of wireless LAN, covering the topics on physical layer, MAC layer, QoS and systems. It provides an opportunity for both practitioners and researchers to explore the problems that arise in the rapidly developed technologies in wireless LAN

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    VOIP WITH ADAPTIVE RATE IN MULTI- TRANSMISSION RATE WIRELESS LANS

    Get PDF
    “Voice over Internet Protocol (VoIP)” is a popular communication technology that plays a vital role in term of cost reduction and flexibility. However, like any emerging technology, there are still some issues with VoIP, namely providing good Quality of Service (QoS), capacity consideration and providing security. This study focuses on the QoS issue of VoIP, specifically in “Wireless Local Area Networks (WLAN)”. IEEE 802.11 is the most popular standard of wireless LANs and it offers different transmission rates for wireless channels. Different transmission rates are associated with varying available bandwidth that shall influence the transmission of VoIP traffic

    IMPROVING QoS OF VoWLAN VIA CROSS-LAYER BASED ADAPTIVE APPROACH

    Get PDF
    Voice over Internet Protocol (VoIP) is a technology that allows the transmission of voice packets over Internet Protocol (IP). Recently, the integration of VoIP and Wireless Local Area Network (WLAN), and known as Voice over WLAN (VoWLAN), has become popular driven by the mobility requirements ofusers, as well as by factor of its tangible cost effectiveness. However, WLAN network architecture was primarily designed to support the transmission of data, and not for voice traffic, which makes it lack ofproviding the stringent Quality ofService (QoS) for VoIP applications. On the other hand, WLAN operates based on IEEE 802.11 standards that support Link Adaptive (LA) technique. However, LA leads to having a network with multi-rate transmissions that causes network bandwidth variation, which hence degrades the voice quality. Therefore, it is important to develop an algorithm that would be able to overcome the negative effect of the multi-rate issue on VoIP quality. Hence, the main goal ofthis research work is to develop an agent that utilizes IP protocols by applying a Cross-Layering approach to eliminate the above-mentioned negative effect. This could be expected from the interaction between Medium Access Control (MAC) layer and Application layer, where the proposed agent adapts the voice packet size at the Application layer according to the change of MAC transmission data rate to avoid network congestion from happening. The agent also monitors the quality of conversations from the periodically generated Real Time Control Protocol (RTCP) reports. If voice quality degradation is detected, then the agent performs further rate adaptation to improve the quality. The agent performance has been evaluated by carrying out an extensive series ofsimulation using OPNET Modeler. The obtained results of different performance parameters are presented, comparing the performance ofVoWLAN that used the proposed agent to that ofthe standard network without agent. The results ofall measured quality parameters hav

    Prediction assisted fast handovers for seamless IP mobility

    Get PDF
    Word processed copy.Includes bibliographical references (leaves 94-98).This research investigates the techniques used to improve the standard Mobile IP handover process and provide proactivity in network mobility management. Numerous fast handover proposals in the literature have recently adopted a cross-layer approach to enhance movement detection functionality and make terminal mobility more seamless. Such fast handover protocols are dependent on an anticipated link-layer trigger or pre-trigger to perform pre-handover service establishment operations. This research identifies the practical difficulties involved in implementing this type of trigger and proposes an alternative solution that integrates the concept of mobility prediction into a reactive fast handover scheme
    corecore