890 research outputs found

    Cross-Layer Optimization of Network Performance over MIMO Wireless Mobile Channels

    Get PDF
    In the information theory, the channel capacity states the maximum amount of information which can be reliably transmitted over the communication channel. In the specific case of multiple-input multiple-output (MIMO) wireless systems, it is well recognized that the instantaneous capacity of MIMO systems is a random Gaussian process. Time variation of the capacity leads to the outages at instances when it falls below the transmission rate. The frequency of such events is known as outage probability. The cross-layer approach proposed in this work focuses on the effects of MIMO capacity outages on the network performance, providing a joint optimization of the MIMO communication system. For a constant rate transmission, the outage probability sensibly affects the amount of information correctly received at destination. Theoretically, the limit of the ergodic capacity in MIMO time-variant channels can be achieved by adapting the transmission rate to the capacity variation. With an accurate channel state information, the capacity evolution can be predicted by a suitable autoregressive model based on the capacity time correlation. Taking into consideration the joint effects of channel outage at the physical layer and buffer overflow at the medium access control (MAC) layer, the optimal transmission strategy is derived analytically through the Markov decision processes (MDP) theory. The adaptive policy obtained by MDP is optimal and maximizes the amount of information correctly received at the destination MAC layer (throughput of the system). Analytical results demonstrate the significant improvements of the optimal variable rate strategy compared to a constant transmission rate strategy, in terms of both system throughput and probability of data loss

    Adaptive Modulation and Coding and Cooperative ARQ in a Cognitive Radio System

    Full text link
    In this paper, a joint cross-layer design of adaptive modulation and coding (AMC) and cooperative automatic repeat request (C-ARQ) scheme is proposed for a secondary user in a shared-spectrum environment. First, based on the statistical descriptions of the channel, closed-form expressions of the average spectral efficiency (SE) and the average packet loss rate (PLR) are presented. Then, the cross-layer scheme is designed, with the aim of maximizing the average SE while maintaining the average PLR under a prescribed level. An optimization problem is formed, and a sub-optimal solution is found: the target packet error rates (PER) for the secondary system channels are obtained and the corresponding sub-optimal AMC rate adaptation policy is derived based on the target PERs. Finally, the average SE and the average PLR performance of the proposed scheme are presented

    Queue-Architecture and Stability Analysis in Cooperative Relay Networks

    Full text link
    An abstraction of the physical layer coding using bit pipes that are coupled through data-rates is insufficient to capture notions such as node cooperation in cooperative relay networks. Consequently, network-stability analyses based on such abstractions are valid for non-cooperative schemes alone and meaningless for cooperative schemes. Motivated from this, this paper develops a framework that brings the information-theoretic coding scheme together with network-stability analysis. This framework does not constrain the system to any particular achievable scheme, i.e., the relays can use any cooperative coding strategy of its choice, be it amplify/compress/quantize or any alter-and-forward scheme. The paper focuses on the scenario when coherence duration is of the same order of the packet/codeword duration, the channel distribution is unknown and the fading state is only known causally. The main contributions of this paper are two-fold: first, it develops a low-complexity queue-architecture to enable stable operation of cooperative relay networks, and, second, it establishes the throughput optimality of a simple network algorithm that utilizes this queue-architecture.Comment: 16 pages, 1 figur

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems
    • …
    corecore