2,889 research outputs found

    Access and metro network convergence for flexible end-to-end network design

    Get PDF
    This paper reports on the architectural, protocol, physical layer, and integrated testbed demonstrations carried out by the DISCUS FP7 consortium in the area of access - metro network convergence. Our architecture modeling results show the vast potential for cost and power savings that node consolidation can bring. The architecture, however, also recognizes the limits of long-reach transmission for low-latency 5G services and proposes ways to address such shortcomings in future projects. The testbed results, which have been conducted end-to-end, across access - metro and core, and have targeted all the layers of the network from the application down to the physical layer, show the practical feasibility of the concepts proposed in the project

    Performance Evaluation of Video Server Replication in Metro/Access Networks

    Get PDF
    Internet traffic is increasingly becoming a media-streaming traffic. Especially, Video-on-Demand (VoD) services are pushing the demand for broadband connectivity to the Internet, and optical fiber technology is being deployed in the access network to keep up with such increasing demand. To provide a more scalable network architecture for video delivery, network operators are currently considering novel metro/access network architectures which can accommodate replicated video servers directly in their infrastructure. When servers for VoD delivery are placed nearer to the end users, part of the traffic can be offloaded from the core segment of the network, and the end users can experience better Quality of Service (QoS). While the deployment of caching systems for traffic offloading has been studied in the core network, no work has already investigated the potential performance gains by replicating the content in the metro/access segment of the network, even closer to the users. In our work, we will compare the performance of video server replication in different metro/access network architectures, i.e. a metro ring architecture and a tree-based architecture, by considering both active and passive technologies. We will evaluate using both simulative and analytical methodologies how content providers could benefit from the deployment of replicas of video servers in terms of blocking probability of the VoD requests

    Energy-Efficient VoD content delivery and replication in integrated metro/access networks

    Get PDF
    Today's growth in the demand for access bandwidth is driven by the success of the Video-on-Demand (VoD) bandwidth-consuming service. At the current pace at which network operators increase the end users' access bandwidth, and with the current network infrastructure, a large amount of video traffic is expected to flood the core/metro segments of the network in the near future, with the consequent risk of congestion and network disruption. There is a growing body of research studying the migration of content towards the users. Further, the current trend towards the integration of metro and access segments of the network makes it possible to deploy Metro Servers (MSes) that may serve video content directly from the novel integrated metro/access segment to keep the VoD traffic as local as possible. This paper investigates a potential risk of this solution, which is the increase in the overall network energy consumption. First, we identify a detailed power model for network equipment and MSes, accounting for fixed and load-proportional contributions. Then, we define a novel strategy for controlling whether to switch MSes and network interfaces on and off so as to strike a balance between the energy consumption for content transport through the network and the energy consumption for processing and storage in the MSes. By means of simulations and taking into account real values for the equipment power consumption, we show that our strategy is effective in providing the least energy consumption for any given traffic load
    • …
    corecore