5 research outputs found

    Quantifying the Effects of Maintenance - a Literature Review of Maintenance Models

    Get PDF
    To secure future competitiveness, manufacturing companies have started a digital transformation where equipment and systems become more complex. To handle the complexity and enable higher levels of automation, maintenance organization is expected to take a key role. However, there are well-known challenges in industry to quantify the effects of maintenance, and thereby argue for maintenance investments. To quantify the effects, researchers have developed several models, but their application is limited in industry. This paper presents a structured literature review of existing maintenance models and discusses how to increase their applicability for practitioners in industry

    Semiparametric estimate of the efficiency of imperfect maintenance actions for a gamma deteriorating system

    Get PDF
    International audienceA system is considered, which is deteriorating over time according to a non homogeneous gamma process with unknown parameters. The system is subject to periodic and instantaneous imperfect maintenance actions (repairs). Each imperfect repair removes a proportion ρ of the accumulated degradation since the previous repair. The parameter ρ hence appears as a measure for the maintenance efficiency. This model is called arithmetic reduction of degradation of order 1. The system is inspected right before each maintenance action, thus providing some multivariate measurement of the successively observed deterioration levels. Based on these data, a semiparametric estimator of ρ is proposed, considering the parameters of the underlying gamma process as nuisance parameters. This estimator is mainly based on the range of admissible ρ's, which depends on the data. Under technical assumptions, consistency results are obtained, with surprisingly high convergence rates (up to exponential). The case where several i.i.d. systems are observed is next envisioned. Consistency results are obtained for the efficiency estimator, as the number of systems tends to infinity, with a convergence rate that can be higher or lower than the classical square root rate. Finally, the performances of the estimators are illustrated on a few numerical examples

    복잡한 공학 시스템에 대한 오경보를 고려한 리질리언스 해석 및 설계 방법론 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 공과대학 기계항공공학부, 2018. 2. 윤병동.it estimates a healthy engineered to be faulty, resulting unnecessary system shutdown, inspection, and – in the case of incorrect inspection – unnecessary system repair or replacement. Although false alarms make a system unavailable with capital loss, it has not been considered in resilience engineering. To cope with false alarm problems, this research is elaborated to advance the resilience engineering considering false alarms. Specifically, this consists of three research thrusts: 1) resilience analysis considering false alarms, 2) resilience-driven system design considering false alarms (RDSD-FA), and 3) resilience-driven system design considering time-dependent false alarms (RDSD-TFA). In the first research thrust, a resilience measure is newly formulated considering false alarms. This enables the evaluation of resilience decrease due to false alarms, resulting in accurate analysis of system resilience. Based upon the new resilience measure, RDSD-FA is proposed in the second research thrust. This aims at designing a resilient system to satisfy a target resilience level while minimizing life-cycle cost. This is composed of three hierarchical tasks: resilience allocation problem, reliability-based design optimization (RBDO), and PHM design. The third research thrust presents RDSD-TFA that considers time-dependent variability of an engineered system. This makes one to estimate life-cycle cost in an accurate and rigorous manner, and to design an engineered system more precisely while minimizing its life-cycle cost. The framework of RDSD-TFA consists of four tasks: system analysis, PHM analysis, life-cycle simulation, and design optimization. Through theoretical analysis and case studies, the significance of false alarms in engineering resilience and the effectiveness of the proposed ideas are demonstrated.공학 시스템은 생애주기에 걸쳐 다양한 불확실성에 노출되며, 이로 인해 목표 성능을 충족시키지 못할 경우 사회적, 경계적, 인적 소실을 야기하게 된다. 이에 대한 해결 방안 중 하나로 리질리언스 주도 설계 기술 (resilience-driven system design이하 RDSD)이 개발되었다. RDSD는 건전성 예측 및 관리 기술 (prognostics & health management이하 PHM)을 설계에 도입함으로써 비용 효율적인 고장 예방을 가능케 하였다. 하지만, RDSD는 PHM의 고장 오경보 현상을 고려하지 않는 한계점을 갖는다. 고장 오경보는 건전한 시스템을 고장이라 추정하는 현상으로, 불필요한 시스템 정지 및 검사 비용을 야기하여, PHM과 RDSD의 기술적 효용성을 떨어트리게 된다. 따라서, RDSD의 기술적 약진과 실적용을 도모하기 위해서는 고장 오경보 현상을 해결해야 한다. 본 논문에서는 고장 오경보의 고려를 통해 리질리언스 해석 및 설계 방법론을 개선하고자 하며, 이를 위해 세 가지 연구 주제를 제안한다. 첫 번째 주제는 오경보를 고려한 리질리언스 분석으로, 공학 시스템의 리질리언스 시나리오 분석에 기반해 리질리언스 지수를 새롭게 정식화 한다. 이 지수는 고장 오경보로 인한 리질리언스의 저하를 분석함으로써, 정확한 리질리언스 추정을 가능케 한다. 두 번째 주제는 고장 오경보를 고려한 리질리언스 주도 설계 방법론이다. 이는 3단계의 계층적 요소로 구성된다. 먼저 목표 리질리언스 지수를 만족하면서 생애주기비용을 최소화하기 위해, 목표 신뢰도와 목표 오경보 및 유실경보율을 최적화한다. 이후 신뢰성 기반 최적 설계 (reliability-based design optimization)를 통해 목표 신뢰도를 확보하고, PHM 설계를 통해 할당된 목표 오경보 및 유실경보율을 충족시킨다. 세 번째 주제는 시변(時變) 오경보를 고려한 리질리언스 주도 설계 방법론이다. 기존의 설계 방법론들은 시스템의 건전성 상태를 시불변(時不變)하다 간주하였으나, 실제 시스템은 운행에 따라 점진적으로 건전성이 저하된다. 본 연구에서는 시변성을 분석하기 위해 시변 오경보율 및 유실경보율에 대한 개념을 새롭게 제안하였으며, 생애주기 시뮬레이션을 통한 총 유지보수 비용 분석 방법론을 개발하였다. 이를 통해 생애주기비용을 보다 엄밀하고 정확하게 추정할 수 있게 되었으며, 이를 최소화하는 방향으로 시스템과 PHM의 설계를 최적화였다. 본 연구에서 제안한 방법론들은 이론적 분석과 사례 연구를 통해 그 효용성을 입증하였다.Most engineered systems are designed with a passive and fixed design capacity and, therefore, may become unreliable in the presence of adverse events. In order to handle this issue, the resilience-driven system design (RDSD) has been proposed to make engineered systems adaptively reliable by incorporating the prognostics and health management (PHM) method. PHM tracks the health degradation of an engineered system, and provides health state information supporting decisions on condition-based maintenance. Meanwhile, one of the issues awaiting solution in the field of PHM, as well as in RDSD, is to address false alarms. A false alarm is an erroneous report on the health state of an engineered systemChapter 1. Introduction 1 1.1 Motivation 1 1.2 Research Scope and Overview 3 1.3 Dissertation Layout 6 Chapter 2. Literature Review 7 2.1 Resilience Engineering (Analysis and Design) 7 2.1.1 Resilience Analysis for Mechanical Systems 8 2.1.2 Resilience-Driven System Design (RDSD) for Mechanical Systems 15 2.2 False and Missed Alarms in Prognostics and Health Management 27 2.2.1 Definition of False and Missed Alarms 27 2.2.2 Quantification of False and Missed Alarms 32 2.3 Summary and Discussion 35 Chapter 3. Resilience Analysis Considering False Alarms 37 3.1 Resilience Measure Considering False Alarms 37 3.2 Case Studies 42 3.2.1 Numerical ample 42 3.2.2 Electro-Hydrtatic Actuator (EHA) 44 3.3 Summary and Discussion 53 Chapter 4. Resilience-Driven System Design Considering False Alarms (RDSD-FA) 55 4.1 Overview of RDSD-FA Framework 55 4.2 Resilience Allocation Problem Considering False Alarms 56 4.3 Prognostics and Health Management (PHM) Design Considering False Alarms 60 4.4 Case study: Electro-Hydrostatic Actuator (EHA) 61 4.4.1 Step 1: Resilience Allocation Considering False Alarms 61 4.4.2 Step 2: Reliability-Based Design Optimization 64 4.4.3 Step 3: PHM Design Considering False Alarms 68 4.4.4 Comparison of Design Results from RDSD and RDSD-FA 73 4.5 Summary and Discussion 75 Chapter 5. Resilience-Driven System Design Considering Time-Dependent False Alarms (RDSD-TFA) 77 5.1 Time-Dependent False and Missed Alarms in PHM 79 5.2 Resilience-Driven System Design Considering Time-Dependent False Alarms (RDSD-TFA) 83 5.2.1 Overview of RDSD-TFA Framework 83 5.2.2 Task 1: System Analysis 86 5.2.3 Task 2: PHM Analysis 89 5.2.4 Task 3: Life-Cycle Simulation 91 5.2.5 Task 4: Design Optimization 97 5.3 Case studies 98 5.3.1 Numerical Example of Life-Cycle Simulation 98 5.3.2 Electro-Hydrostatic Actuator (EHA) 107 5.4 Summary and Discussion 123 Chapter 6. Conclusions 126 6.1 Summary and Contributions 126 6.2 Suggestions for Future Research 129 References 132 Appendix 154 Abstract(Korean) 157Docto

    Uma sistemática para análise de degradação de sistemas técnicos

    Get PDF
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Mecânica, Florianópolis, 2016.Todo produto ou sistema não está livre de falhas. De modo geral, é esperado que o sistema se degrade com o passar do tempo, logo é provável que o mesmo tenha as condições funcionais afetadas por algum processo de degradação. Percebe-se que as falhas, salvo alguns casos, não acontecem de maneira abrupta, mas sim perpassam por estados que podem produzir efeitos no sistema, tais como: aumento de vibração, temperatura, ruído, folgas, interrupção da função e entre outros. Estes efeitos trazem informações sobre os processos de degradação e podem ser utilizados como referenciais para tomadas de decisão, tanto para questões operacionais e de manutenção quanto para questões de projeto do sistema. É a partir da análise de falha em componentes, subsistemas ou sistemas técnicos, que se conhece o processo de falha (mecanismos, modos de falha, causas e efeitos) e se é capaz de sistematizar estas tomadas de decisão. Dentro deste contexto, este trabalho aborda o desenvolvimento de uma sistemática para organizar, analisar e caracterizar o processo de degradação em sistemas técnicos. O intuito foi construir procedimentos a partir de técnicas que ajude o entendimento da degradação, facilite a aplicação e organize as informações para tomada de decisão em nível de projeto ou de manutenção. Fez-se uma aplicação em sistemas hidráulicos para testar a abordagem proposta. Com os resultados obtidos, foi possível constatar que a abordagem desenvolvida ajuda na estruturação e documentação das informações acerca do processo de degradação de sistemas técnicos com vistas a auxiliar os projetistas na incorporação de barreiras para mitigar os processos de falhas e também os mantenabilistas nas ações de mantenabilidade, principalmente em nível do planejamento das manutenções preventivas e preditivas.Abstract : Every product or system is not fault-free. In general, it is expected that the system degrades with time, so it is likely that the functional conditions of the system will affected by some degradation process. It is notable, that the failures, except for some cases, do not happen abruptly, but cut across by several states that produce various effects on the system, such as increasing vibration, temperature, noise and others. These effects may be used as points for decision making for operational, maintenance and system design issues. Through the failure analysis of components, subsystems or technical systems it is possible to know the process of failure (mechanisms, failure modes, causes and effects) and to systematize the decision-making. Within this context, this dissertation addresses the development of a systematic to organize, analyze and characterize the degradation process in technical systems. The aim was created procedures based on techniques that it provides the understanding of the degradation, facilitate the application and organize the information for decision making on the design or maintenance level. An application was made to verify the proposed systematic. With the results, one can see that the developed systematic helps to structure and document the information about technical systems degradation process serving as basis to designer on the incorporation of barriers to mitigate the failure?s process and the maintenance staff in their action, mainly in the level of the planning of preventive and predictive maintenance
    corecore