2 research outputs found

    LANDFORM PERCEPTION ACCURACY IN SHADED RELIEF MAPS: A REPLICATION STUDY CONFIRMS THAT NNW LIGHTING IS BETTER THAN NW AGAINST THE RELIEF INVERSION EFFECT

    Get PDF
    Relief inversion effect is a perceptual phenomenon that leads to an inverted perception of convex and concave shapes. This perceptual inversion occurs in scenes where the shading/shadows act as the main depth cue. In visuospatial displays, such as shaded relief maps, the positioning of the shadows in the northern slopes, thus when light source placed broadly in south, mislead the cognitive system based on the ‘light from above prior’ assumption (Mamassian and Goutcher 2001). Thus, assuming the light must come from above, our mind creates an illusion, and we perceive the landforms incorrectly. To judge the 3D spatial relationships in terrain representations correctly, the relief inversion effect must be avoided. Cartographic convention against this effect is to place the light source at northwest (NW), whereas a recent study demonstrated that north-north-west (NNW), or even north yields more precise results (Biland and Çöltekin, 2016). Since this finding goes against decades of convention, to establish its validity further, we attempted replicating the results with a different sample in South Africa. In this paper, we present our findings, which broadly confirm that the NNW (or also N) is better than NW against the relief inversion effect

    A correction technique for false topographic perception of remote-sensing images based on an inverse topographic correction technique

    No full text
    <p>The false topographic perception phenomenon (FTPP) refers to the visual misperception in remote-sensing images that certain types of terrains are visually interpreted as other types in rugged lands, for example, valleys as ridges and troughs as peaks. For this reason, the FTPP can influence the visualization and interpretation of images to a great extent. To scrutinize this problem, the paper firstly reviews and tests the existing FTPP-correction techniques and identifies the inverse slope-matching technique as an effective approach to visually enhance remote-sensing images and retain the colour information. The paper then proposes an improved FTPP-correction procedure that incorporates other image-processing techniques (e.g. linear stretch, histogram matching, and flat-area replacement) to enhance the performance of this technique. A further evaluation of the proposed technique is conducted by applying the technique to various study areas and using different types of remote-sensing images. The result indicates the method is relatively robust and will be a significant extension to geovisual analytics in digital earth research.</p
    corecore