1,732 research outputs found

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Cloudbus Toolkit for Market-Oriented Cloud Computing

    Full text link
    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.Comment: 21 pages, 6 figures, 2 tables, Conference pape

    Fleets: Scalable Services in a Factored Operating System

    Get PDF
    Current monolithic operating systems are designed for uniprocessor systems, and their architecture reflects this. The rise of multicore and cloud computing is drastically changing the tradeoffs in operating system design. The culture of scarce computational resources is being replaced with one of abundant cores, where spatial layout of processes supplants time multiplexing as the primary scheduling concern. Efforts to parallelize monolithic kernels have been difficult and only marginally successful, and new approaches are needed. This paper presents fleets, a novel way of constructing scalable OS services. With fleets, traditional OS services are factored out of the kernel and moved into user space, where they are further parallelized into a distributed set of concurrent, message-passing servers. We evaluate fleets within fos, a new factored operating system designed from the ground up with scalability as the first-order design constraint. This paper details the main design principles of fleets, and how the system architecture of fos enables their construction. We describe the design and implementation of three critical fleets (network stack, page allocation, and file system) and compare with Linux. These comparisons show that fos achieves superior performance and has better scalability than Linux for large multicores; at 32 cores, fos's page allocator performs 4.5 times better than Linux, and fos's network stack performs 2.5 times better. Additionally, we demonstrate how fleets can adapt to changing resource demand, and the importance of spatial scheduling for good performance in multicores
    • …
    corecore