2,895 research outputs found

    Cooperative Local Repair in Distributed Storage

    Full text link
    Erasure-correcting codes, that support local repair of codeword symbols, have attracted substantial attention recently for their application in distributed storage systems. This paper investigates a generalization of the usual locally repairable codes. In particular, this paper studies a class of codes with the following property: any small set of codeword symbols can be reconstructed (repaired) from a small number of other symbols. This is referred to as cooperative local repair. The main contribution of this paper is bounds on the trade-off of the minimum distance and the dimension of such codes, as well as explicit constructions of families of codes that enable cooperative local repair. Some other results regarding cooperative local repair are also presented, including an analysis for the well-known Hadamard/Simplex codes.Comment: Fixed some minor issues in Theorem 1, EURASIP Journal on Advances in Signal Processing, December 201

    Static consensus in passifiable linear networks

    Get PDF
    Sufficient conditions of consensus (synchronization) in networks described by digraphs and consisting of identical determenistic SIMO systems are derived. Identical and nonidentical control gains (positive arc weights) are considered. Connection between admissible digraphs and nonsmooth hypersurfaces (sufficient gain boundary) is established. Necessary and sufficient conditions for static consensus by output feedback in networks consisting of certain class of double integrators are rediscovered. Scalability for circle digraph in terms of gain magnitudes is studied. Examples and results of numerical simulations are presented.Comment: 13 pages, 5 figure

    Assortative Mixing Equilibria in Social Network Games

    Full text link
    It is known that individuals in social networks tend to exhibit homophily (a.k.a. assortative mixing) in their social ties, which implies that they prefer bonding with others of their own kind. But what are the reasons for this phenomenon? Is it that such relations are more convenient and easier to maintain? Or are there also some more tangible benefits to be gained from this collective behaviour? The current work takes a game-theoretic perspective on this phenomenon, and studies the conditions under which different assortative mixing strategies lead to equilibrium in an evolving social network. We focus on a biased preferential attachment model where the strategy of each group (e.g., political or social minority) determines the level of bias of its members toward other group members and non-members. Our first result is that if the utility function that the group attempts to maximize is the degree centrality of the group, interpreted as the sum of degrees of the group members in the network, then the only strategy achieving Nash equilibrium is a perfect homophily, which implies that cooperation with other groups is harmful to this utility function. A second, and perhaps more surprising, result is that if a reward for inter-group cooperation is added to the utility function (e.g., externally enforced by an authority as a regulation), then there are only two possible equilibria, namely, perfect homophily or perfect heterophily, and it is possible to characterize their feasibility spaces. Interestingly, these results hold regardless of the minority-majority ratio in the population. We believe that these results, as well as the game-theoretic perspective presented herein, may contribute to a better understanding of the forces that shape the groups and communities of our society
    corecore