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Sufficient conditions of consensus (synchronization) in networks described by digraphs and consisting of identical deterministic
SIMO systems are derived. Identical and nonidentical control gains (positive arc weights) are considered. Connection between
admissible digraphs and nonsmooth hypersurfaces (sufficient gain boundary) is established. Necessary and sufficient conditions
for static consensus by output feedback in networks consisting of certain class of double integrators are rediscovered. Scalability for

circle digraph in terms of gain magnitudes is studied. Examples and results of numerical simulations are presented.

1. Introduction

Control of multiagent systems has attracted significant inter-
est in last decade since it has a great technical importance [1-
5] and relates to biological systems [6].

In consensus problems agents communicate via decen-
tralized controllers using relative measurements with a final
goal to achieve common behaviour (synchronization) which
can evolve in time. Many approaches have been developed for
different problem settings.

Laplace matrix, its spectrum, and eigenspace play crucial
role in description and analysis of consensus problems.
Laplace matrix has broad applications, for example, [7].
Not all possible digraph topologies can provide consensus
over dynamical networks. Admissible digraph topologies and
connection with algebraic properties of Laplace matrix have
been found in [8]. Tree structure analysis and properties of
Laplace matrix spectrum of digraphs are also studied by these
authors. Work [9] contains examples of out-forests as well as
useful graph theoretical concepts and can be recommended
as an entry reading to the research of these authors on
algebraic digraph theory and consensus problems.

Concept of synchronization region in complex plane for
networks consisting of linear dynamical systems is intro-
duced in [10]. In [11] this concept is used for analysis of
synchronization with leader. Problem is solved using Linear
Quadratic Regulator approach in cases when full state is

available for measurement and when it is not. In the last case
observers are constructed.

Analysis of consensus with scalar coupling strengths [10,
11] is fruitful in a sense that conditions on gains (which
depend on connection topology and single agent properties)
give more insight to problem. A lot of works on topic consider
dynamic couplings; however, for certain type of connections
it might happen that tunable parameters will exceed upper
bound on possible control gains, that is, not meet physical
limitations. So, necessary and sufficient conditions on con-
sensus achievement for different connection types in terms
of coupling strengths are needed.

Celebrated Kalman-Yakubovich-Popov Lemma (Positive
Real Lemma) establishes important connection between pas-
sivity (positive-realness) of transfer function x(s) and matrix
relations on its minimal state-space realization (A, B, C); see
[12, 13]. Positive Real Lemma is a basis for Passification
Method [14, 15] (“Feedback Kalman-Yakubovich Lemma”)
which answers question when a linear system can be made
passive, that is, strictly positive real (SPR) by static output
feedback. Powerful idea of rendering system into passive by
feedback has been also studied for nonlinear systems, for
example, [13, 16, 17].

In consensus-type problems considering SPR agents with
stable (Hurwitz) matrix A leads to a synchronous behaviour
when all states go to zero. The latter is undesirable in essence,
since such behaviour can be reached by local control without



communication. So, instead of SPR systems it is possible
to consider passifiable systems, with an opportunity that
a study is extendable to nonlinear systems. Also, Passifi-
cation Method allows avoiding constructing observers for
reaching full-state consensus by output feedback. Observers
implementation increases dimension of overall phase space
and complexity of a dynamic network. However, finding a
passification matrix (vector g) is long standing open problem;
still set of passifiable systems is nonempty.

In this paper Passification Method is used to synthesize a
decentralized control law and to derive sufficient conditions
of full-state synchronization by relative output feedbacks in
networks described by digraphs with Linear Time Invariant
dynamical nodes in continuous time. Assumptions made on
network topology are minimal. Synchronous behaviour is
described, including case of nonidentical gains. It is deter-
mined that boundary of sufficient gain region geometrically
is a hypersurface in corresponding gain space. For certain
three-node network this geometrical observation connects
algebraic properties of Laplace matrix with constructed
hypersurface. Namely, Jordan block appears in a direction of
a cusp (nonsmooth) extremal point of the hypersurface.

Necessary and suflicient conditions for static consensus
by output feedback in networks consisting of certain class
of double integrators have been rediscovered. Conditions are
given in terms of Laplace matrix spectrum.

Scalability in a circle digraphs in terms of gain (coupling
strength) is studied. It is shown that common gain in large
cycle digraphs consisting of double integrators should grow
not slower than quadratically in number of agents.

Results of numerical simulations in 3- and 20-node
double-integrator networks are presented.

Neighbouring papers, which influenced this work, are
cited before Conclusions.

2. Theoretical Study

2.1. Preliminaries and Notations. Notations, some terms of
graph theory, and Passification Lemma are listed in this
section.

2.1.1. Notations. Notation | - |, stands for Euclidian norm.
For two symmetric matrices M;, M, inequality M, > M,
means that matrix M, — M, is positive definite. Notation
col(v,,...,v,) stands for vector (v,,...,v,)". Identity matrix
of size d is denoted by I;. Vector 1, = (1,1,...,1) is
vector of size d and consisting of ones. Vector 0, is defined
similarly. Matrix diag(v,,...,v,) is square matrix whose ith
element on main diagonal is v;, i = 1,...,d; other entries are
zeroes. Notation ® stands for Kronecker product of matrices.
Definition and properties of Kronecker product, including
eigenvalues property, can be found in [18, 19]. Direct sum of
matrices [20] is denoted by &.

2.1.2. Terms of Graph Theory. A pair & = (7', &), where 7" is
set of vertices and & € 7" x 7 is set of arcs (ordered pairs)
is called digraph (directed graph). Let 7" have N elements,
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N e N. It is assumed hereafter that graphs do not have self-
loops, that is, for any vertex, « € 7" arc(a, &) ¢ &.

Digraph is called directed tree if all its vertices except
one (called root) have exactly one parent. Let us agree that
in any arc(a, ) € & vertex 8 is parent or neighbour.
Directed spanning tree of a digraph & is a directed tree
formed of all digraph & vertices and some of its arcs such that
there exists path from any vertex to the root vertex in this
tree. Existence of directed spanning tree has connection to
principal achievement of synchronization in consensus-like
problems.

A digraph is called weighted if to any pair of vertices
«, B € & number w(w, B) > 0 is assigned such that

w(e,f)>0 if (a,B) €&,
w(a, f)=0 if (a,p) ¢ &.

@

A digraph in which all nonzero weights are equal to 1 will be
referred to as unit weighted.

An adjacency matrix &/(€) is N x N matrix whose ith,
jth entry is equal to w(e;, «;), 7,j = 1,...,N.

Laplace matrix of digraph € is defined as follows:

L(%) = diag (o (%) - 1) - o (%). )

Matrix L(€) always has zero eigenvalue with corresponding
right eigenvector 1 : L(¥) - 15y = 0 - 1. By construction
and Gershgorin Circle Theorem all nonzero eigenvalues of
L have positive real parts. Let us denote by »(L) € R left
eigenvector of L which is corresponding to zero eigenvalue
and scaled such that v(L)T - 1 ~ = L. It is known that vector
v(L) describes synchronous behaviour if reached.

Suppose that a digraph has directed spanning tree. A set
of digraph vertices is called Leading Set (“basic bicomponent”
in terms of [9]) if subdigraph constructed of them is strongly
connected and no vertex in this set has neighbours in the
remaining part of digraph. Nonzero components of v(L) and
only them correspond to vertices of Leading Set. Definition of
basic bicomponent is wider and applicable for digraphs with
no directed spanning trees.

For illustration, by [21], there are 16 different types of
digraphs which can be constructed on 3 nodes. 12 of them
have directed spanning tree; among these, 5 digraphs have
Leading Set with 3 nodes, 2 digraphs have Leading Set with 2
nodes, and 5 digraphs have Leading Set with 1 node.

2.1.3. Passification Lemma. Problem of linear system passifi-
cation is a problem of finding static linear output feedback
which is making initial system passive. It was solved in
[14, 15] for nonsquare SIMO and MIMO systems including
case of complex parameters. Brief outline of SIMO systems
passification is given below.

Let A, B, C be real matrices of sizesn x n,n x 1, n x [
accordingly. Denote by x(s) = C*(sI — A)™'B, s € C. Let
vector g € R'. If numerator of function g" y(s) is Hurwitz
with degree n — 1 and has positive coefficients then function
9" x(s) is called hyper-minimum-phase.



International Journal of Differential Equations

Lemma 1 (Passification Lemma [14, 15]). The following state-
ments are equivalent.

(1) There exists vector g € R’ such that function ng(s) is
hyper-minimum-phase.

(2) Number », = su 1Re(g" y(iw)) ™! is positive x, >
0 Poer RELG X p 0

0 and for any »x > x, there exists n X n real matrix

H = H" > 0 satisfying the following matrix relations:

HA, + ALH <0,
HB = Cyg, 3)

A, = A—xBg'C".

2.2. Problem Statement and Assumptions. Consider a net-
work consisting of N agents modelled as linear dynamical
systems:

X; (t) = Ax; (t) + Bu, (1),
. 4)
y; (1) =C x; (1),

wherei = 1,...,N, x; € R" is state vector, y; € R’ is output
or measurements vector, u; € R' is input or control, and A, B,
C are real matrices of appropriate size. By associating agents
with N vertices of unit weighted digraph € and introducing
set of arcs one can describe information flow in the network.

Fori =1,..., N let us introduce notation for relative outputs
0= (3®-y0), 5)
jes;

where J/; is a set of ith agents neighbours.

Problem is to design controllers which use relative out-
puts and ensure achievement of the state synchronization
(consensus) of all agents:

tgngo(xi(t)—xj(t)):o, i,j=1,...,N. (6)

In the case of synchronization achievement asymptotical
behaviour of all agents will be described by the same time-
dependant consensus vector which is denoted hereafter by

c(t):

tlirl?o(xi(t)—c(t))zo, i=1,...,N. )

Let us make the following assumption about dynamics of a
single agent.

(A1) There exists vector g € R’ such that transfer function
9" x(s) = g"C*(sI,~A) "' Bis hyper-minimum-phase.

Now let us make an assumption on graph topology.
(A2) Digraph & has at least one directed spanning tree.

Zero eigenvalue of Laplace matrix L has unit multiplicity
iff this assumption holds [8].

3
2.3. Static Identical Control. Denote
L) =minReA,,
r(b) = migRed; (8)

where A ; are eigenvalues of L. Under assumption (A2) zero
eigenvalue is simple. By properties of L other eigenvalues
lie in open right half of complex plane, so r(L) is positive
number.

Suppose that assumption (Al) holds with known vector
g € R Consider the following static consensus controller
with gain k € R', k > 0 which is the same for all agents:

w(t) = —kg'y,(t), i=1,...,N, 9)

where relative output y,(t) has been defined in the previous
section. Denote x(t) = col(x,(?),...,xy(1)).

Theorem 2. Let assumptions (A1) and (A2) hold. Then for all
k such that

P4
k> 2%
10 10)
controller (9) ensures achievement of goal (6) in dynamical

network (4); asymptotical behaviour in the case of goal achieve-
ment is described by the following consensus vector:

c(t) = exp (At) (v(L) ®1,) x(0). (11)

Proof. Closed loop system (4) and (9) can be rewritten in the
following form:

x(t)=(Iy® A—kL®Bg'C")x(t). (12)

Consider nonsingular matrix P (real or complex) such that

0 0
A=
ON—I

T
N1 =~ plLp, (13)
AE

where A, € RWNVXND op A ¢ CINZDXNZD A
eigenvalues of A, have positive real parts. By considering
first (zero) columns of matrices PA = LP and (PT)'AT =
L' (P™)T we can accept that first column of P is 1, and first
row of P! is w(L)".

Let us apply coordinate transformation z(t) = (P™' ®
I,)x(t) and rewrite (12):

z,(t) = Az, (1), (14)
2,(0) = ((Iy,®A) -k(A,®Bg'C"))z, (1), (15

where z = col(z,,z,), z; € R", or z; € C". Note that zero
solution of (15) is globally asymptotically stable iff goal (6) is
achieved.

For simplicity let P, A,, and z(t) be real till the end of
proof. For any fixed k satisfying (10) there exists 0 < &, < 1
such that

oy

sk > m (16)



Eigenvalues of matrix (A , —&,#(L)Iy_,) have positive real
parts. Therefore, according to [22], there exists (N—1)x(N—1)

real matrix Q = Q" > 0 such that the following Lyapunov
inequality holds:

(A, —er (L)) Q+Q(A, —er (L) Iy_y) > 0. (17)

We can rewrite the last inequality:
ALQ+QA, > 2er (L) Q. (18)

By assumption (Al) there exists H = H T'> 0 such that (3)
is true with s = g kr(L), since % > 5,. Considering following
Lyapunov function,

V(z. () =z () (Qe H) 2, (t), (19)

and derivating it along the nonzero trajectories of (15), we
obtain

%V (2. (1) = 2, (1) Mz, (1), (20)

where
M=Qe(A"H+HA)-k(A,Q+QA,)
®(Cgg'C")
<Q®(AH + HA) - 2ke,r (L) Qe (Cgg'C")  (21)
=Qe((A"-»CgB")H + H(A-xBg'C"))
=Q®(ALH+HA,)<0.

Matrix relations (3) have been used here. Last inequality
concludes the proof. O

Assumptions of this theorem are relaxed in comparison
with Theorem 2 from [23]. Proof of Theorem 2 also provides
the following auxiliary result.

Lemma 3. Let assumption (A2) hold. Controller (9) ensures
achievement of goal (6) in dynamical network (4) if and only if
all eigenvalues of matrix

R=(Iy,®A)-k(A,®Bg'C") (22)

have negative real parts. In the case of goal achievement
asymptotical behaviour is described by (11).

2.4. Nonidentical Control and Gain Region. Let the initial
digraph & be unit weighted. Let us fix Laplace matrix L and
consider static control with nonidentical gains k; > 0:

u,(t) = -k;g"y,(t), i=1,...,N. (23)

Without loss of generality we can assume that network
does not have a leader (formally: cardinality of Leading
Set is more than 1), since in leader case we can reduce
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the following consideration of synchronization gain region to
lower dimension N — 1.

Let us denote by k = (ky, ..., ky) and by k = (K.,...,KL)
point which is projection of point k on unit sphere &
k=k-k, k>0,
(24)

where scalar common gain k is radius vector magnitude of

point k. Points k, %' lie in orthant 6 = {(kys... ky) € RN |
k;>0,i=1,...,N}

Denote K’ = diag(k}, k), ...
K'L correspond to the same digraphs which differ only in arc
weights. Equation for closed loop system (4) and (23) can be
rewritten as follows:

, kﬁ\,). Laplace matrices L and

x(t)=(Iy®eA-k(K'LeBg'C"))x(t). (25

By repeating proof of Theorem 2 we can formulate the
following result.

Theorem 4. Let assumptions (Al) and (A2) hold. Then for all
k; = k - k] such that

< "2 _ &0
Z(k") =1, k>m (26)

i=1

controller (23) ensures achievement of goal (6) in dynamical
network (4); asymptotical behaviour in the case of goal achieve-
ment is described by the following consensus vector:

c(t) = exp (Ar) (v (K'L) ® 1,)x(0). 27)

Let us denote by # ¢ O region in orthant such that for
any point (k,, ..., ky) € F in this region control (23) ensures
achievement of the goal (6) in network (4), (23). Consider the
following region:

_~ _~ ~I ~! U,
K. =1keO|k=k-k, k €8, k 0 28
= e sk it} o

which is subset of # : #, ¢ K. Let us consider closed part
of unit sphere

S={k eSlkizei=1..,N}, e>0 (29

Point on &, determines ray (half-line) in © with initial point
at the origin. According to Theorem 4, by moving along
this ray from origin, that is, increasing k, we will reach %,.
Consider map

%O !

h:k 0K,
T r(K'D)

K € Se (30)

which is continuous as a composition of continuous maps
([20], continuous dependence of matrix eigenvalues on



International Journal of Differential Equations

parameters). Image of this map is a subset of boundary
0K ,; therefore, by continuity of map h, boundary 0%, is a
hypersurface in RY. Further, let us consider induced map

! ! !
hy K —|n(K)|,, K eS. (31)
Domain &, is compact, so we can apply Weierstrass

Extreme Value Theorem and arrive at the following lemma.

Lemma5. Map h : &, — h($,) C 0K, is continuous. Map
hy:8, — R' is continuous and has minimum and maximum.

Generally, hypersurface 0.%, is not smooth in all its
points. Alternatively, part of a simplex of appropriate dimen-
sion can be taken instead of sphere part to serve as the domain
for maps hand h,,.

Pairwise ratios of nonidentical gains and common gain
define homogeneous coordinates in orthant. Common gain k
coeflicient relates to reachability of consensus and to speed of
convergence but it does not influence consensus vector. Also,
consensus vector can be changed only by gain ratios variation
within Leading Set of agents; see [24].

3. Double-Integrator Networks

3.1. Agents Description. Suppose that each agent S; in a net-
work is modelled as follows:

5Cl- = Axl + Bui,

Yi= CTxi’

(00
_(1 o)’ (32)

c=(os)

For g = 1 transfer function gT)((s) = CT(sI2 ~A)'B=(s+
1)/s% is hyper-minimum-phase. It can be shown that number
ny = 1.

Firstand second components of x; can describe (or can be
interpreted as) velocity and position. Single system (32) can
be viewed as double integrator with transfer function 1/s* and
proportionally differential (PD) control applied to it.

Since g = 1, static consensus controller (9) has the
following form:

u; (t) = —ky,(t), i=1,...,N. (33)

3.2. Necessary and Sufficient Conditions on Consensus. Let
us denote by LS, Laplace matrix of unit weighted cycle

digraph which is consisting of N nodes §; with exactly N
arcs:

($1:82) U+ U (8758j41) U+++ U (Sv-1>Si)

U(Sn>S;)-

(34)

Eigenvalues of LS are evenly located at circle in complex
plane [25]:

.. 27
le—exp(t-yﬁ),

j=0,...,N-1, i* =-1.

(35)

Theorem 6. Controller (33) ensures achievement of goal (6)
in dynamical network consisting of N double integrators (32)
connected in directed cycle if and only if

1
k> ~cottZ. (36)
2 N

Proof. Let us diagonalize LS. Matrix R from Lemma 3 in our
case is block diagonal:

R=R, ®R,®---®Ry_,, (37)
where
R (_k/\" _Mf) i=1,..,N-1 (38)
;= . 0 ) j=1..., .

So, matrix R is stable iff matrices R; are stable for all j =
1,..., N — L. Characteristic polynomial of Rj is

fi@)=2"+kAz+kA, j=1,..,N-1  (39)

LetkA; = a; +if;, a; B; € R, j = 1,...,N - 1. Taking in
account (35) we can obtain
o = 2k sin’ E,
Bi=-2k (sin E)(cosﬂ>, (40)
J N N

j=1,..,N-1.

Now let argument of f;(2) run on imaginary axis and let
us decompose this polynomial on real and imaginary parts:

i (tw) = ¢; (@) + ty; (), weR’, (41)

where j=1,...,N - 1and

(p.(w):—wz—/}~-w+oc~,
j j j (42)
wj(w):(xj-w+ﬁj.

According to Hermite-Biehler Theorem, polynomial
f ; () is stable iff both of the following conditions are satisfied:

(i) roots of (pj(a)) and 1//j(w) are interlacing;



(ii) Wronskian is positive
@; (wp) - V/} (wo) — ‘P;‘ (wo) - y; (wg) >0 (43)
for at least one value of argument w,.

Wronskian is positive for w, = 0, j = 1,...,N — 1. Root
interlacing property is equivalently transformable to

] ;
k> —cotzﬂ, j=1...
2 N

SN -1 (44)
Right parts of these N — 1 inequalities reach maximum when
j =1 (also when j = N — 1) and this concludes proof. O

Therefore, for a large increasing number of agents N gain
k should grow as N*:
N2

kN_)

N — oo. (45)
272

It is possible to conclude that consensus in large cycle
digraphs is hard to achieve, at least for agents (32), since
arbitrary high gains are not physically realizable.

On the other hand, it is worth noting that cycle digraph
is the graph with minimal number of edges which is deliv-
ering average consensus among all its nodes; it is strongly
connected.

Remark 7 (see [24]). Minimality in edges number causes
simple relations on nonidentical gains and left eigenvector
v(KL(I:\]) components for agents in form (4):

kyvy =kyvy =+ = kyvy. (46)

In other words, all pairs (kj, v;) lie on the same hyperbola.
The following result can be obtained by repeating proof
of Theorem 6.

Theorem 8. Consider network S consisting of N agents (32).
Let a digraph, describing information flow, contain directed
spanning tree. Let Laplace matrix of the digraph have real
spectrum. Controller (33) ensures achievement of goal (6) in
dynamical network consisting of N double integrators (32) if
and only if

k>0. (47)

Proof. For diagonalizable Laplace matrix with real spectrum
statement is following from the well-known fact that poly-
nomial (39) with real coefficients is stable iff its coefficients
are positive. For nondiagonalizable Laplace matrix L let
us transform it to Jordan form. Expansion of matrix R —
zl determinant shows that only determinants R; - zI,
across main diagonal are forming (factorizing) characteristic
polynomial of R. O

Note that undirected graphs (i.e., digraphs with symmet-
ric L) have real spectrum and some class of digraphs have real
spectrum too, for example, directed path graphs [26].

We can formulate similar result for general digraphs.
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Theorem 9. Consider network S consisting of N agents (32).
Let digraph @, describing information flow, contain at least one
directed spanning tree. Let all nonzero eigenvalues of Laplace
matrix L(¥) be denoted by A;, 1 < j < N — 1. Controller
(33) ensures achievement of goal (6) in dynamical network
consisting of N double integrators (32) if and only if

sin® (arg (/\j)) ' (48)

k
g Re)tj

1<j<N-1

Proof. Using similar argumentation as in proofs of Theorems
8 and 6 we arrive at study of polynomial (39) stability with

(xj=k‘Re(/\j),

Bi=k-Im(1;), (49)

Wronskian property does hold for wy = 0. For j=1,...,N -
1 root interlacing property is equivalent to trigonometric
inequality

o+ fjtan (arg (Aj)) > tan’ (arg (Aj)) (50)

or

kRe (/\j) (1 + tan® (arg ()L]))) > tan’ (arg (/\j)). (51)

O

4. Examples and Numerical
Simulations Results

4.1. Three-Node Digraph and Gain Region. Consider digraph
shown in Figure 1 with dynamic nodes described in Sec-
tion 3.1. By Lemma 5 distance from origin to 0%, reaches
minimum. Let us draw 0%,. First, let ¢,0 € R.Lete > 0
besmall,ande < 8 < 1-¢ kj =8, kj = 1 - 0. Let L be
unit weighted. Eigenvalues of matrix diag(0, k), k})L are real:
{0, 6,2 — 26}. Using Theorem 8 we conclude that # = {k, >
0,k; > 0}. Any 6 € [g,1 — €] determines angle

!

k
= arctan — = arctan -, (52)

K, k,

y (8) = arctan

and radius vector p(8) = 1/mingc.;_{0,2 — 26}. Note that
pair (p(6),y(8)) is polar coordinates of boundary 0.%,. We
can conclude that minimum on p(§) is realized on a point
for which § = 2/3 and k, : k; = 2 : 1. Boundary 0%, is
presented in Figure 2. For all (k,, k;) = k- (2,1) matrix K'L

is similar to
2k 1
0 ( > . (53)
0 2k
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S 1 kz SZ
[ ®

FIGURE I: Digraph of 3 nodes.

ky

FIGURE 2: Gain region boundary 0.%,.

Let us consider two cases:
(1) 8 = 1/2, identical gains kgl) = kgl) =0.527 - k;

(2) 8 = 2/3, nonidentical gains kgz) = (2/3) - k, kgz)
(1/3) - k.

By Theorem 4 common gain k is as follows: k = 3/2
#,/r(KPL), K? = diag(0, kgz)’ kgz)). Identical gains are cho-
sen such that [|(K”, K), = 12, k).

25 T T T T

0 5 10 15 20 25
t

FIGURE 3: Performance with identical (e (¢); black line) and
nonidentical (¢ (¢); blue line) gains.

Si6 S17
S
Sa0 ‘ Sis
S

FIGURE 4: Digraph of 20 agents.

Let us choose the following initial conditions:
x, (0) = col (2,-2),
x, (0) = col (-7,3), (54)
x5 (0) = col (1,-3).

Denote by e(t) = Zil llo;(t) — x;,,(£)]l, sum of error norms
or disagreement measure: e (#) error in the first case and
e (t) error in the second case. Results of 25 sec. simulations
are shown in Figure 3.

Note that consensus vector (27) does not change for all
(ky, k3) € K since subsystem S, is leader.
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FIGURE 5: Trajectories of 20 agents on the same phase plane.
Trajectories of S}, ...,S,, colored blue, S,,...,S,5 colored red, and
Sigs- - +» Sy colored green.

4.2. Twenty-Node Digraph and Nonidentical Control. Let us
consider digraph shown in Figure 4 consisting of 20 agents
Si>--+»Sy described in Section 3.1. This dodecahedron-
like digraph has Leading Set consisting of dynamic nodes
Si>--+»S;p which are connected in directed circle. Let us
choose v = k; = k, = = kgyand y = k;; =
ki, = --- = ky,. According to Theorem 6 gain v should be
chosen v > 0.5 - cot?>(1r/10) =~ 4.74. For faster convergence
v let us choose v = 5.5. Simulations show that y can be
chosen considerably less than v. Let us choose ¢ = 1, and let
agents have different initial conditions. Results of numerical
simulation show that such nonidentical gain choice provides
achievement of consensus. All trajectories of 20 agents on the
same phase plane are shown in Figure 5.

Numerical simulations also show that by choosing y = »
and applying Theorem 9 for resulting Laplace matrix one can
obtain lower bound approximation y = v > 4.74.

5. Reference Remarks

Assumptions of Theorem 2 are relaxed in comparison with
Theorem 2 from [23]. Proof of these results uses coordi-
nate transformation as in [27]. Lemma 3 partially succeeds
Theorem 3 from [25]. Theorem 9 is a trigonometric form of
Theorem 1from [28] with different proof, which is potentially
extendable to higher orders of state space.

6. Conclusions

By means of Passification Method sufficient conditions of
consensus with identical and nonidentical gains are derived.
Synchronous behaviour (consensus vector) is described; it
can be affected by nonidentical gains (nonidentity in actu-
ation) within Leading Set. Gain asymptote in growing cycle
digraphs which have lowest communication cost for reaching
average consensus and consisting of double integrators is
studied.
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It is rediscovered that cycle digraph connection with
nonidentical actuation of nodes causes nonidentical impact
on synchronous behaviour. Reachability of synchronization
corresponds to positive scalar—common gain. By construct-
ing boundary of sufficient gain region in 3-node digraph it
is found that Jordan block of Laplace matrix (which affects
transient dynamics) appears in a direction of extremal point.
Comparison of dynamics is a subject of a future study.
Geometrical interpretations which might be useful in theory
and applications were developed.
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