27,376 research outputs found

    Handling convexity-like constraints in variational problems

    Full text link
    We provide a general framework to construct finite dimensional approximations of the space of convex functions, which also applies to the space of c-convex functions and to the space of support functions of convex bodies. We give estimates of the distance between the approximation space and the admissible set. This framework applies to the approximation of convex functions by piecewise linear functions on a mesh of the domain and by other finite-dimensional spaces such as tensor-product splines. We show how these discretizations are well suited for the numerical solution of problems of calculus of variations under convexity constraints. Our implementation relies on proximal algorithms, and can be easily parallelized, thus making it applicable to large scale problems in dimension two and three. We illustrate the versatility and the efficiency of our approach on the numerical solution of three problems in calculus of variation : 3D denoising, the principal agent problem, and optimization within the class of convex bodies.Comment: 23 page

    Polynomial Meshes: Computation and Approximation

    Get PDF
    We present the software package WAM, written in Matlab, that generates Weakly Admissible Meshes and Discrete Extremal Sets of Fekete and Leja type, for 2d and 3d polynomial least squares and interpolation on compact sets with various geometries. Possible applications range from data fitting to high-order methods for PDEs

    Interpolation and Extrapolation of Toeplitz Matrices via Optimal Mass Transport

    Full text link
    In this work, we propose a novel method for quantifying distances between Toeplitz structured covariance matrices. By exploiting the spectral representation of Toeplitz matrices, the proposed distance measure is defined based on an optimal mass transport problem in the spectral domain. This may then be interpreted in the covariance domain, suggesting a natural way of interpolating and extrapolating Toeplitz matrices, such that the positive semi-definiteness and the Toeplitz structure of these matrices are preserved. The proposed distance measure is also shown to be contractive with respect to both additive and multiplicative noise, and thereby allows for a quantification of the decreased distance between signals when these are corrupted by noise. Finally, we illustrate how this approach can be used for several applications in signal processing. In particular, we consider interpolation and extrapolation of Toeplitz matrices, as well as clustering problems and tracking of slowly varying stochastic processes
    • …
    corecore