8,405 research outputs found

    Aerial-Ground collaborative sensing: Third-Person view for teleoperation

    Full text link
    Rapid deployment and operation are key requirements in time critical application, such as Search and Rescue (SaR). Efficiently teleoperated ground robots can support first-responders in such situations. However, first-person view teleoperation is sub-optimal in difficult terrains, while a third-person perspective can drastically increase teleoperation performance. Here, we propose a Micro Aerial Vehicle (MAV)-based system that can autonomously provide third-person perspective to ground robots. While our approach is based on local visual servoing, it further leverages the global localization of several ground robots to seamlessly transfer between these ground robots in GPS-denied environments. Therewith one MAV can support multiple ground robots on a demand basis. Furthermore, our system enables different visual detection regimes, and enhanced operability, and return-home functionality. We evaluate our system in real-world SaR scenarios.Comment: Accepted for publication in 2018 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR

    A design procedure for the handling qualities optimization of the X-29A aircraft

    Get PDF
    A design technique for handling qualities improvement was developed for the X-29A aircraft. As with any new aircraft, the X-29A control law designers were presented with a relatively high degree of uncertainty in their mathematical models. The presence of uncertainties, and the high level of static instability of the X-29A caused the control law designers to stress stability and robustness over handling qualities. During flight test, the mathematical models of the vehicle were validated or corrected to match the vehicle dynamic behavior. The updated models were then used to fine tune the control system to provide fighter-like handling characteristics. A design methodology was developed which works within the existing control system architecture to provide improved handling qualities and acceptable stability with a minimum of cost in both implementation as well as software verification and validation

    Project Dawdler: a Proposal in Response to a Low Reynolds Number Station Keeping Mission

    Get PDF
    In direct response to Request for Proposals: Flight at very low Reynolds numbers - a station keeping mission, the members of Design Squad E present Project Dawdler: a remotely-piloted airplane supported by an independently controlled take-off cart. A brief introduction to Project Dawdler's overall mission and design, is given. The Dawdler is a remotely-piloted airplane designed to fly in an environmentally-controlled closed course at a Reynolds number of 10(exp 5) and at a cruise velocity of 25 ft/s. The two primary goals were to minimize the flight Reynolds number and to maximize the loiter time. With this in mind, the general design of the airplane was guided by the belief that a relatively light aircraft producing a fairly large amount of lift would be the best approach. For this reason the Dawdler utilizes a canard rather than a conventional tail for longitudinal control, primarily because the canard contributes a positive lift component. The Dawdler also has a single vertical tail mounted behind the wing for lateral stability, half of which is used as a rudder for yaw control. Due to the fact that the power required to take-off and climb to altitude is much greater than that required for cruise flight and simple turning maneuvers, it was decided that a take-off cart be used. Based on the current design, there are two unknowns which could possibly threaten the success of Project Dawdler. First, the effect of the fully-movable canard with its large appropriation of total lift on the performance of the plane, and secondly, the ability of the take-off procedure to go as planned are examined. These are questions which can only be answered by a prototype

    Solar UAV for long endurance flights

    Get PDF
    The project have been done during the four months stay in Lithuania by Marc Olmo and LLibert Chamizo. The aim of the project was to obtain an Unmanned Aerial Vehicle powered by solar energy that was able to flight for as long as possible it within the limitations which are the budget, the time and the technological limitations. During the limited time, the team have been working in all the necessary phases to build a real scale and fully functional Solar UAV. This phases were the following; Theoretical Calculations, Design, Simulation, Building, Tests of the Airframe, Solar Energy Circuit Design and Building 2nd phase tests and Conclusion Obtaining. Through all the process several technical and engineering decisions have been made leading the team to obtain a fully functional 4,4m wingspan fixed wing UAV with a TOW of 5,5 Kg which is perfectly pilotable The final achievements have been a UAV capable of long endurance flight within daytime. The model achieved was able to maintain level, climb and turn perfectly using just the power gathered by the solar cells in its wing. During the development of the project the possibility of the multiday flight have been discussed leading to the conclusion that it's viable but not within the frame of this project. There have been done several tests under actual mission parameters loading the plane with the weight it would be carried during the missions that are most likely solar uav related such as mapping or surveillance. The final result have been correct and lead to an optimistic opinion about the whole Solar UAV paradigm and about the prototype modification and improvement in the near future to achieve even better results (which have been overviewed and planned in the actual report). A fatal error drove the airplane to a nosedive fall with disastrous consequences, the whole project feels and success though it's undoubtable

    Conceptual design of a two-stage-to-orbit vehicle

    Get PDF
    A conceptual design study of a two-stage-to-orbit vehicle is presented. Three configurations were initially investigated with one configuration selected for further development. The major objective was to place a 20,000-lb payload into a low Earth orbit using a two-stage vehicle. The first stage used air-breathing engines and employed a horizontal takeoff, while the second stage used rocket engines to achieve a 250-n.m. orbit. A two-stage-to-orbit vehicle seems a viable option for the next-generation space shuttle

    Aerodynamics, Stability and Control of the 1903 Wright Flyer

    Get PDF
    The Los Angeles Chapter of the American Institute of Aero and Astronautics is building two replicas of the 1903 Wright Flyer airplane; one to wind-tunnel test and display, and a modified one to fly. As part of this project the aerodynamic characteristics of the Flyer are being analyzed by modern wind-tunnel and analytical techniques. Tnis paper describes the Wright Flyer Project, and compares key results from small-scale wind-tunnel tests and from vortex-lattice computations for this multi-biplane canard configuration. Analyses of the stability and control properties are summarized and their implications for closed-loop control by a pilot are derived using quasilinear pilot-vehicle analysis and illustrated by simulation time histories. It is concluded that, although the Wrights were very knowledgeable and ingenious with respect to aircraft controls and their interactions (e.g., the good effects of their wing-warp-to-rudder linkage are validated), they were largely ignorant of dynamic stability considerations. The paper shows that the 1903 Flyer was readily controllable about all axes but was intrinsically unstable in pitch and roll, and it could barely be stabilized by a skilled pilot
    • …
    corecore