214 research outputs found

    A control basis for learning multifingered grasps

    Get PDF

    Robotic Grasping: A Generic Neural Network Architecture

    Get PDF

    A Developmental Organization for Robot Behavior

    Get PDF
    This paper focuses on exploring how learning and development can be structured in synthetic (robot) systems. We present a developmental assembler for constructing reusable and temporally extended actions in a sequence. The discussion adopts the traditions of dynamic pattern theory in which behavior is an artifact of coupled dynamical systems with a number of controllable degrees of freedom. In our model, the events that delineate control decisions are derived from the pattern of (dis)equilibria on a working subset of sensorimotor policies. We show how this architecture can be used to accomplish sequential knowledge gathering and representation tasks and provide examples of the kind of developmental milestones that this approach has already produced in our lab

    Robot Composite Learning and the Nunchaku Flipping Challenge

    Full text link
    Advanced motor skills are essential for robots to physically coexist with humans. Much research on robot dynamics and control has achieved success on hyper robot motor capabilities, but mostly through heavily case-specific engineering. Meanwhile, in terms of robot acquiring skills in a ubiquitous manner, robot learning from human demonstration (LfD) has achieved great progress, but still has limitations handling dynamic skills and compound actions. In this paper, we present a composite learning scheme which goes beyond LfD and integrates robot learning from human definition, demonstration, and evaluation. The method tackles advanced motor skills that require dynamic time-critical maneuver, complex contact control, and handling partly soft partly rigid objects. We also introduce the "nunchaku flipping challenge", an extreme test that puts hard requirements to all these three aspects. Continued from our previous presentations, this paper introduces the latest update of the composite learning scheme and the physical success of the nunchaku flipping challenge

    Planning hand-arm grasping motions with human-like appearance

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksFinalista de l’IROS Best Application Paper Award a la 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, ICROS.This paper addresses the problem of obtaining human-like motions on hand-arm robotic systems performing pick-and-place actions. The focus is set on the coordinated movements of the robotic arm and the anthropomorphic mechanical hand, with which the arm is equipped. For this, human movements performing different grasps are captured and mapped to the robot in order to compute the human hand synergies. These synergies are used to reduce the complexity of the planning phase by reducing the dimension of the search space. In addition, the paper proposes a sampling-based planner, which guides the motion planning ollowing the synergies. The introduced approach is tested in an application example and thoroughly compared with other state-of-the-art planning algorithms, obtaining better results.Peer ReviewedAward-winningPostprint (author's final draft

    FRoGGeR: Fast Robust Grasp Generation via the Min-Weight Metric

    Full text link
    Many approaches to grasp synthesis optimize analytic quality metrics that measure grasp robustness based on finger placements and local surface geometry. However, generating feasible dexterous grasps by optimizing these metrics is slow, often taking minutes. To address this issue, this paper presents FRoGGeR: a method that quickly generates robust precision grasps using the min-weight metric, a novel, almost-everywhere differentiable approximation of the classical epsilon grasp metric. The min-weight metric is simple and interpretable, provides a reasonable measure of grasp robustness, and admits numerically efficient gradients for smooth optimization. We leverage these properties to rapidly synthesize collision-free robust grasps - typically in less than a second. FRoGGeR can refine the candidate grasps generated by other methods (heuristic, data-driven, etc.) and is compatible with many object representations (SDFs, meshes, etc.). We study FRoGGeR's performance on over 40 objects drawn from the YCB dataset, outperforming a competitive baseline in computation time, feasibility rate of grasp synthesis, and picking success in simulation. We conclude that FRoGGeR is fast: it has a median synthesis time of 0.834s over hundreds of experiments.Comment: Accepted at IROS 2023. The arXiv version contains the appendix, which does not appear in the conference versio
    corecore