1,066 research outputs found

    A hierarchical genetic disparity estimation algorithm for multiview image synthesis

    Get PDF

    Rule-Based Approach to Binocular Stereopsis

    Get PDF
    This research is motivated by a desire to integrate some of the diverse, yet complimentary, developments that have taken place during the past few years in the area of passive stereo vision. On the one hand, we have approaches based on matching zero-crossings along epipolar lines, and, on the other, people have proposed techniques that match directly higher level percepts, such as line elements and other geometrical forms. Our rule-based program is a modest attempt at integrating these different approaches into a single program. Such integration was made necessary by the fact that no single method by itself appears capable of generating usable range maps of a scene

    3D Reconstruction through Segmentation of Multi-View Image Sequences

    Get PDF
    We propose what we believe is a new approach to 3D reconstruction through the design of a 3D voxel volume, such that all the image information and camera geometry are embedded into one feature space. By customising the volume to be suitable for segmentation, the key idea that we propose is the recovery of a 3D scene through the use of globally optimal geodesic active contours. We also present an extension to this idea by proposing the novel design of a 4D voxel volume to analyse the stereo motion problem in multi-view image sequences

    Contribution towards a fast stereo dense matching.

    Get PDF
    Stereo matching is important in the area of computer vision as it is the basis of the reconstruction process. Many applications require 3D reconstruction such as view synthesis, robotics... The main task of matching uncalibrated images is to determine the corresponding pixels and other features where the motion between these images and the camera parameters is unknown. Although some methods have been carried out over the past two decades on the matching problem, most of these methods are not practical and difficult to implement. Our approach considers a reliable image edge features in order to develop a fast and practical method. Therefore, we propose a fast stereo matching algorithm combining two different approaches for matching as the image is segmented into two sets of regions: edge regions and non-edge regions. We have used an algebraic method that preserves disparity continuity at the object continuous surfaces. Our results demonstrate that we gain a speed dense matching while the implementation is kept simple and straightforward.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .Z42. Source: Masters Abstracts International, Volume: 44-03, page: 1420. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Disambiguating Multi–Modal Scene Representations Using Perceptual Grouping Constraints

    Get PDF
    In its early stages, the visual system suffers from a lot of ambiguity and noise that severely limits the performance of early vision algorithms. This article presents feedback mechanisms between early visual processes, such as perceptual grouping, stereopsis and depth reconstruction, that allow the system to reduce this ambiguity and improve early representation of visual information. In the first part, the article proposes a local perceptual grouping algorithm that — in addition to commonly used geometric information — makes use of a novel multi–modal measure between local edge/line features. The grouping information is then used to: 1) disambiguate stereopsis by enforcing that stereo matches preserve groups; and 2) correct the reconstruction error due to the image pixel sampling using a linear interpolation over the groups. The integration of mutual feedback between early vision processes is shown to reduce considerably ambiguity and noise without the need for global constraints

    Mono and stereoscopic image analysis for detecting the transverse profile of worn-out rails

    Get PDF
    The purpose of this paper is to suggest a new procedure for reconstructing the transverse profile of rails in operation by means of image-processing technique. This methodological approach is based on the “information” contained in high-resolution photographic images of tracks and on specific algorithms which allow to obtain the exact geometric profile of the rails and therefore to measure the state of the rail-head extrados wear. The analyses and the results concern rails taken from railway lines under upgrading by means of mono- and stereoscopic methods which are appropriate to be employed in laboratory applications or in high-efficiency surveys in situ

    A Survey of Multimedia Technologies and Robust Algorithms

    Full text link
    Multimedia technologies are now more practical and deployable in real life, and the algorithms are widely used in various researching areas such as deep learning, signal processing, haptics, computer vision, robotics, and medical multimedia processing. This survey provides an overview of multimedia technologies and robust algorithms in multimedia data processing, medical multimedia processing, human facial expression tracking and pose recognition, and multimedia in education and training. This survey will also analyze and propose a future research direction based on the overview of current robust algorithms and multimedia technologies. We want to thank the research and previous work done by the Multimedia Research Centre (MRC), the University of Alberta, which is the inspiration and starting point for future research.Comment: arXiv admin note: text overlap with arXiv:2010.1296
    • …
    corecore