25,662 research outputs found

    Efficient methods of automatic calibration for rainfall-runoff modelling in the Floreon+ system

    Get PDF
    Calibration of rainfall-runoff model parameters is an inseparable part of hydrological simulations. To achieve more accurate results of these simulations, it is necessary to implement an efficient calibration method that provides sufficient refinement of the model parameters in a reasonable time frame. In order to perform the calibration repeatedly for large amount of data and provide results of calibrated model simulations for the flood warning process in a short time, the method also has to be automated. In this paper, several local and global optimization methods are tested for their efficiency. The main goal is to identify the most accurate method for the calibration process that provides accurate results in an operational time frame (typically less than 1 hour) to be used in the flood prediction Floreon(+) system. All calibrations were performed on the measured data during the rainfall events in 2010 in the Moravian-Silesian region (Czech Republic) using our in-house rainfall-runoff model.Web of Science27441339

    Memories for Life: A Review of the Science and Technology

    No full text
    This paper discusses scientific, social and technological aspects of memory. Recent developments in our understanding of memory processes and mechanisms, and their digital implementation, have placed the encoding, storage, management and retrieval of information at the forefront of several fields of research. At the same time, the divisions between the biological, physical and the digital worlds seem to be dissolving. Hence opportunities for interdisciplinary research into memory are being created, between the life sciences, social sciences and physical sciences. Such research may benefit from immediate application into information management technology as a testbed. The paper describes one initiative, Memories for Life, as a potential common problem space for the various interested disciplines

    An Ontology-Based Recommender System with an Application to the Star Trek Television Franchise

    Full text link
    Collaborative filtering based recommender systems have proven to be extremely successful in settings where user preference data on items is abundant. However, collaborative filtering algorithms are hindered by their weakness against the item cold-start problem and general lack of interpretability. Ontology-based recommender systems exploit hierarchical organizations of users and items to enhance browsing, recommendation, and profile construction. While ontology-based approaches address the shortcomings of their collaborative filtering counterparts, ontological organizations of items can be difficult to obtain for items that mostly belong to the same category (e.g., television series episodes). In this paper, we present an ontology-based recommender system that integrates the knowledge represented in a large ontology of literary themes to produce fiction content recommendations. The main novelty of this work is an ontology-based method for computing similarities between items and its integration with the classical Item-KNN (K-nearest neighbors) algorithm. As a study case, we evaluated the proposed method against other approaches by performing the classical rating prediction task on a collection of Star Trek television series episodes in an item cold-start scenario. This transverse evaluation provides insights into the utility of different information resources and methods for the initial stages of recommender system development. We found our proposed method to be a convenient alternative to collaborative filtering approaches for collections of mostly similar items, particularly when other content-based approaches are not applicable or otherwise unavailable. Aside from the new methods, this paper contributes a testbed for future research and an online framework to collaboratively extend the ontology of literary themes to cover other narrative content.Comment: 25 pages, 6 figures, 5 tables, minor revision

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given
    corecore