3,418 research outputs found

    Content Replication and Placement Schemes for Wireless Mesh Networks

    No full text
    Recently, Wireless Mesh Networks (WMNs) have attracted much of interest from both academia and industry, due to their potential to provide an alternative broadband wireless Internet connectivity. However, due to different reasons such as multi-hop forwarding and the dynamic wireless link characteristics, the performance of current WMNs is rather low when clients are soliciting Web contents. Due to the evolution of advanced mobile computing devices; it is anticipated that the demand for bandwidth-onerous popular content (especially multimedia content) in WMNs will dramatically increase in the coming future. Content replication is a popular approach for outsourcing content on behalf of the origin content provider. This area has been well explored in the context of the wired Internet, but has received comparatively less attention from the research community when it comes to WMNs. There are a number of replica placement algorithms that are specifically designed for the Internet. But they do not consider the special features of wireless networks such as insufficient bandwidth, low server capacity, contention to access the wireless medium, etc. This thesis studies the technical challenges encountered when transforming the traditional model of multi-hop WMNs from an access network into a content network. We advance the thesis that support from packet relaying mesh routers to act as replica servers for popular content such as media streaming, results in significant performance improvement. Such support from infrastructure mesh routers benefits from knowledge of the underlying network topology (i.e., information about the physical connections between network nodes is available at mesh routers). The utilization of cross-layer information from lower layers opens the door to developing efficient replication schemes that account for the specific features of WMNs (e.g., contention between the nodes to access the wireless medium and traffic interference). Moreover, this can benefit from the underutilized resources (e.g., storage and bandwidth) at mesh routers. This utilization enables those infrastructure nodes to participate in content distribution and play the role of replica servers. In this thesis, our main contribution is the design of two lightweight, distributed, and scalable object replication schemes for WMNs. The first scheme follows a hierarchical approach, while the second scheme follows a flat one. The challenge is to replicate content as close as possible to the requesting clients and thus, reduce the access latency per object, while minimizing the number of replicas. The two schemes aim to address the questions of where and how many replicas should be placed in the WMN. In our schemes, we consider the underlying topology joint with link-quality metrics to improve the quality of experience. We show using simulation tests that the schemes significantly enhance the performance of a WMN in terms of reducing the access cost, bandwidth consumption and computation/communication cost

    Scalability of broadcast performance in wireless network-on-chip

    Get PDF
    Networks-on-Chip (NoCs) are currently the paradigm of choice to interconnect the cores of a chip multiprocessor. However, conventional NoCs may not suffice to fulfill the on-chip communication requirements of processors with hundreds or thousands of cores. The main reason is that the performance of such networks drops as the number of cores grows, especially in the presence of multicast and broadcast traffic. This not only limits the scalability of current multiprocessor architectures, but also sets a performance wall that prevents the development of architectures that generate moderate-to-high levels of multicast. In this paper, a Wireless Network-on-Chip (WNoC) where all cores share a single broadband channel is presented. Such design is conceived to provide low latency and ordered delivery for multicast/broadcast traffic, in an attempt to complement a wireline NoC that will transport the rest of communication flows. To assess the feasibility of this approach, the network performance of WNoC is analyzed as a function of the system size and the channel capacity, and then compared to that of wireline NoCs with embedded multicast support. Based on this evaluation, preliminary results on the potential performance of the proposed hybrid scheme are provided, together with guidelines for the design of MAC protocols for WNoC.Peer ReviewedPostprint (published version

    Enabling high-bandwidth vehicular content distribution

    Full text link

    Asymptotic Laws for Joint Content Replication and Delivery in Wireless Networks

    Full text link
    We investigate on the scalability of multihop wireless communications, a major concern in networking, for the case that users access content replicated across the nodes. In contrast to the standard paradigm of randomly selected communicating pairs, content replication is efficient for certain regimes of file popularity, cache and network size. Our study begins with the detailed joint content replication and delivery problem on a 2D square grid, a hard combinatorial optimization. This is reduced to a simpler problem based on replication density, whose performance is of the same order as the original. Assuming a Zipf popularity law, and letting the size of content and network both go to infinity, we identify the scaling laws and regimes of the required link capacity, ranging from O(\sqrt{N}) down to O(1)
    • 

    corecore