1,894 research outputs found

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Redundancy of stereoscopic images: Experimental Evaluation

    Full text link
    With the recent advancement in visualization devices over the last years, we are seeing a growing market for stereoscopic content. In order to convey 3D content by means of stereoscopic displays, one needs to transmit and display at least 2 points of view of the video content. This has profound implications on the resources required to transmit the content, as well as demands on the complexity of the visualization system. It is known that stereoscopic images are redundant, which may prove useful for compression and may have positive effect on the construction of the visualization device. In this paper we describe an experimental evaluation of data redundancy in color stereoscopic images. In the experiments with computer generated and real life and test stereo images, several observers visually tested the stereopsis threshold and accuracy of parallax measuring in anaglyphs and stereograms as functions of the blur degree of one of two stereo images and color saturation threshold in one of two stereo images for which full color 3D perception with no visible color degradations is maintained. The experiments support a theoretical estimate that one has to add, to data required to reproduce one of two stereoscopic images, only several percents of that amount of data in order to achieve stereoscopic perception
    • …
    corecore