9 research outputs found

    Advance of the Access Methods

    Get PDF
    The goal of this paper is to outline the advance of the access methods in the last ten years as well as to make review of all available in the accessible bibliography methods

    Dynamic Vector and Raster Integrated Data Model Based on Code-Points

    Full text link
    With the rapid development of remote sensing technology, the integration of raster data and vector data becomes more and more important. Raster data rnodels are used in tessellation spaces and vector data models are used in discrete spaces respectively. The relationships between tessellation space and discrete space have to be established for integrated data models. The minimum cells where both raster and vector data could be processed have to be defined. As it is very easy to establish relationships between vector points and corresponding raster cells, we defined those raster cells as Code-Points, the minimum cells where both raster and vector data could be processed. All vector elements such as lines, faces and bodies are composed directly or indirectly of Code-Points. This can be done by using interpolation algorithms to Code-Points in real-time. We have developed an integrated data model based on above procedures. In addition, we have developed a geometric primitive library for 3-Dimensional objects in order to improve the processing speed. This library could be hardware realized as a graphic accelerator card. If the conversion between vector and raster could be done in real time, the integrated data model could be used for operational integration of remote sensing and GIS. ? Springer-Verlag 2002.EI

    A Survey on Spatial Indexing

    Get PDF
    Spatial information processing has been a centre of attention of research in the previous decade. In spatial databases, data related with spatial coordinates and extents are retrieved based on spatial proximity. A large number of spatial indexes have been proposed to make ease of efficient indexing of spatial objects in large databases and spatial data retrieval. The goal of this paper is to review the advance techniques of the access methods. This paper tries to classify the existing multidimensional access methods, according to the types of indexing, and their performance over spatial queries. K-d trees out performs quad tress without requiring additional memory usage

    Explorative coastal oceanographic visual analytics : oceans of data

    Get PDF
    The widely acknowledged challenge to data analysis and understanding, resulting from the exponential increase in volumes of data generated by increasingly complex modelling and sampling systems, is a problem experienced by many researchers, including ocean scientists. The thesis explores a visualization and visual analytics solution for predictive studies of coastal shelf and estuarine modelled, hydrodynamics undertaken to understand sea level rise, as a contribution to wider climate change studies, and to underpin coastal zone planning, flood prevention and extreme event management. But these studies are complex and require numerous simulations of estuarine hydrodynamics, generating extremely large datasets of multi-field data. This type\ud of data is acknowledged as difficult to visualize and analyse, as its numerous attributes present significant computational challenges, and ideally require a wide range of approaches to provide the necessary insight. These challenges are not easily overcome with the current visualization and analysis methodologies employed by coastal shelf hydrodynamic researchers, who use several software systems to generate graphs, each taking considerable time to operate, thus it is difficult to explore different scenarios and explore the data interactively and visually. The thesis, therefore, develops novel visualization and visual analytics techniques to help researchers overcome the limitations of existing methods (for example in understanding key tidal components); analyse data in a timely manner and explore different scenarios. There were a number of challenges to this: the size of the data, resulting in lengthy computing time, also many data values becoming plotted on one pixel (overplotting). The thesis presents: (1) a new visualization framework (VINCA) using caching and hierarchical aggregation techniques to make the data more interactive, plus explorative, coordinated multiple views, to enable the scientists to explore the data. (2) A novel estuarine transect profiler and flux tool, which provides instantaneous flux calculations across an estuary. Measures of flux are of great significance in oceanographic studies, yet are notoriously difficult and time consuming to calculate with the commonly used tools. This derived data is added back into the database for further investigation and analysis. (3) New views, including a novel, dynamic, spatially aggregated Parallel Coordinate Plots (Sa-PCP), are developed to provide different perspectives of the spatial, time dependent data, also methodologies for developing high-quality (journal ready) output from the visualization tool. Finally, (4) the dissertation explored the use of hierarchical data-structures and caching techniques to enable fast analysis on a desktop computer and to overcome the overplotting challenge for this data
    corecore