11,874 research outputs found

    Computing on Masked Data to improve the Security of Big Data

    Full text link
    Organizations that make use of large quantities of information require the ability to store and process data from central locations so that the product can be shared or distributed across a heterogeneous group of users. However, recent events underscore the need for improving the security of data stored in such untrusted servers or databases. Advances in cryptographic techniques and database technologies provide the necessary security functionality but rely on a computational model in which the cloud is used solely for storage and retrieval. Much of big data computation and analytics make use of signal processing fundamentals for computation. As the trend of moving data storage and computation to the cloud increases, homeland security missions should understand the impact of security on key signal processing kernels such as correlation or thresholding. In this article, we propose a tool called Computing on Masked Data (CMD), which combines advances in database technologies and cryptographic tools to provide a low overhead mechanism to offload certain mathematical operations securely to the cloud. This article describes the design and development of the CMD tool.Comment: 6 pages, Accepted to IEEE HST Conferenc

    Aspects of a Watermark Solution

    Get PDF
    Although watermarking is a relatively new technology, there are many ways of applying it on an electronic data set with the purpose of ensuring copyright integrity and authenticity of the electronic data. But, bearing in mind the evolution of information technology and of communication, a watermark may be the target of several attacks which aim at its robustness, its form and even at its removal. In order to reduce these threats, this paper proposes a solution - digital watermarking completed by a hash function which has an important role in the authenticity of the content of a message and in the security of the transmission of this message through computer networks which are the main support of collaborative systems.Digital Watermarking, Hash Functions, Digital Information Security, Collaborative Systems

    Developing a Framework to Implement Public Key Infrastructure Enabled Security in XML Documents

    No full text
    This paper concentrates on proposing a framework to implement the PKI enables security in XML documents, by defining a common framework and processing rules that can be shared across applications using common tools, avoiding the need for extensive customization of applications to add security. The Framework reuses the concepts, algorithms and core technologies of legacy security systems while introducing changes necessary to support extensible integration with XML. This allows interoperability with a wide range of existing infrastructures and across deployments. Currently no strict security models and mechanisms are available that can provide specification and enforcement of security policies for XML documents. Such models are crucial in order to facilitate a secure dissemination of XML documents, containing information of different sensitivity levels, among (possibly large) user communities

    Year 2010 Issues on Cryptographic Algorithms

    Get PDF
    In the financial sector, cryptographic algorithms are used as fundamental techniques for assuring confidentiality and integrity of data used in financial transactions and for authenticating entities involved in the transactions. Currently, the most widely used algorithms appear to be two-key triple DES and RC4 for symmetric ciphers, RSA with a 1024-bit key for an asymmetric cipher and a digital signature, and SHA-1 for a hash function according to international standards and guidelines related to the financial transactions. However, according to academic papers and reports regarding the security evaluation for such algorithms, it is difficult to ensure enough security by using the algorithms for a long time period, such as 10 or 15 years, due to advances in cryptanalysis techniques, improvement of computing power, and so on. To enhance the transition to more secure ones, National Institute of Standards and Technology (NIST) of the United States describes in various guidelines that NIST will no longer approve two-key triple DES, RSA with a 1024-bit key, and SHA-1 as the algorithms suitable for IT systems of the U.S. Federal Government after 2010. It is an important issue how to advance the transition of the algorithms in the financial sector. This paper refers to issues regarding the transition as Year 2010 issues in cryptographic algorithms. To successfully complete the transition by 2010, the deadline set by NIST, it is necessary for financial institutions to begin discussing the issues at the earliest possible date. This paper summarizes security evaluation results of the current algorithms, and describes Year 2010 issues, their impact on the financial industry, and the transition plan announced by NIST. This paper also shows several points to be discussed when dealing with Year 2010 issues.Cryptographic algorithm; Symmetric cipher; Asymmetric cipher; Security; Year 2010 issues; Hash function
    • 

    corecore