10 research outputs found

    Connectivity Preservation in Distributed Control of Multi-Agent Systems

    Get PDF
    The problem of designing bounded distributed connectivity preserving control strategies for multi-agent systems is studied in this work. In distributed control of multi-agent systems, each agent is required to measure some variables of other agents, or a subset of them. Such variables include, for example, relative positions, relative velocities, and headings of the neighboring agents. One of the main assumptions in this type of systems is the connectivity of the corresponding network. Therefore, regardless of the overall objective, the designed control laws should preserve the network connectivity, which is usually a distance-dependent condition. The designed controllers should also be bounded because in practice the actuators of the agents can only handle finite forces or torques. This problem is investigated for two cases of single-integrator agents and unicycles, using a novel class of distributed potential functions. The proposed controllers maintain the connectivity of the agents that are initially in the connectivity range. Therefore, if the network is initially connected, it will remain connected at all times. The results are first developed for a static information flow graph, and then extended to the case of dynamic edge addition. Connectivity preservation for problems involving static leaders is covered as well. The potential functions are chosen to be smooth, resulting in bounded control inputs. These functions are subsequently used to develop connectivity preserving controllers for the consensus and containment problems. Collision avoidance is investigated as another relevant problem, where a bounded distributed swarm aggregation strategy with both connectivity preservation and collision avoidance properties is presented. Simulations are provided throughout the work to support the theoretical findings

    Connectivity Preservation in Nonholonomic Multi-Agent Systems: A Bounded Distributed Control Strategy

    Get PDF
    This technical note is concerned with the connectivity preservation of a group of unicycles using a novel distributed control scheme. The proposed local controllers are bounded, and are capable of maintaining the connectivity of those pairs of agents which are initially within the connectivity range. This means that if the network of agents is initially connected, it will remain connected at all times under this control law. Each local controller is designed in such a way that when an agent is about to lose connectivity with a neighbor, the lowest-order derivative of the agent's position that is neither zero nor perpendicular to the edge connecting the agent to the corresponding neighbor, makes an acute angle with this edge, which is shown to result in shrinking the edge. The proposed methodology is then used to develop bounded connectivity preserving control strategies for the consensus problem as one of the unprecedented contributions of this work. The theoretical results are validated by simulation

    Simultaneous deployment and tracking multi-robot strategies with connectivity maintenance

    Get PDF
    Multi-robot teams composed of ground and aerial vehicles have gained attention during the last few years. We present a scenario where both types of robots must monitor the same area from different view points. In this paper, we propose two Lloyd-based tracking strategies to allow the ground robots (agents) to follow the aerial ones (targets), keeping the connectivity between the agents. The first strategy establishes density functions on the environment so that the targets acquire more importance than other zones, while the second one iteratively modifies the virtual limits of the working area depending on the positions of the targets. We consider the connectivity maintenance due to the fact that coverage tasks tend to spread the agents as much as possible, which is addressed by restricting their motions so that they keep the links of a minimum spanning tree of the communication graph. We provide a thorough parametric study of the performance of the proposed strategies under several simulated scenarios. In addition, the methods are implemented and tested using realistic robotic simulation environments and real experiments

    Simultaneous Deployment and Tracking Multi-Robot Strategies with Connectivity Maintenance

    Get PDF
    Multi robot teams composed by ground and aerial vehicles have gained attention during the last years. We present a scenario where both types of robots must monitor the same area from different view points. In this paper we propose two Lloyd-based tracking strategies to allow the ground robots (agents) follow the aerial ones (targets), keeping the connectivity between the agents. The first strategy establishes density functions on the environment so that the targets acquire more importance than other zones, while the second one iteratively modifies the virtual limits of the working area depending on the positions of the targets. We consider the connectivity maintenance due to the fact that coverage tasks tend to spread the agents as much as possible, which is addressed by restricting their motions so that they keep the links of a Minimum Spanning Tree of the communication graph. We provide a thorough parametric study of the performance of the proposed strategies under several simulated scenarios. In addition, the methods are implemented and tested using realistic robotic simulation environments and real experiments

    Error Analysis in Multi-Agent Control Systems

    Get PDF
    Any cooperative control scheme relies on some measurements which are often assumed to be exact to simplify the analysis. However, it is known that in practice all measured quantities are subject to error, which can deteriorate the overall performance of the network significantly. This work proposes a new measurement error analysis in the control of multi-agent systems. In particular, the connectivity preservation of multi-agent systems with state-dependent error in distance measurements is considered. It is assumed that upper bounds on the measurement error and its rate of change are available. A general class of distributed control strategies is then proposed for the distance-dependent connectivity preservation of the agents in the network. It is shown that if two neighboring agents are initially located in the connectivity range, they are guaranteed to remain connected at all times. Furthermore, the formation control problem for a team of single-integrator agents subject to distance measurement error is investigated using navigation functions. Collision, obstacle and boundary avoidance are important features of the proposed strategy. Conditions on the magnitude of the measurement error and its rate of change are derived under which a new error-dependent formation can be achieved anywhere in the space. The effectiveness of the proposed control strategies in consensus and containment problems is demonstrated by simulation

    Structural Controllability of Multi-Agent Systems Subject to Partial Failure

    Get PDF
    Formation control of multi-agent systems has emerged as a topic of major interest during the last decade, and has been studied from various perspectives using different approaches. This work considers the structural controllability of multi-agent systems with leader-follower architecture. To this end, graphical conditions are first obtained based on the information flow graph of the system. Then, the notions of p-link, q-agent, and joint-(p,q) controllability are introduced as quantitative measures for the controllability of the system subject to failure in communication links or/and agents. Necessary and sufficient conditions for the system to remain structurally controllable in the case of the failure of some of the communication links or/and loss of some agents are derived in terms of the topology of the information flow graph. Moreover, a polynomial-time algorithm for determining the maximum number of failed communication links under which the system remains structurally controllable is presented. The proposed algorithm is analogously extended to the case of loss of agents, using the node-duplication technique. The above results are subsequently extended to the multiple-leader case, i.e., when more than one agent can act as the leader. Then, leader localization problem is investigated, where it is desired to achieve p-link or q-agent controllability in a multi-agent system. This problem is concerned with finding a minimal set of agents whose selection as leaders results in a p-link or q-agent controllable system. Polynomial-time algorithms to find such minimal sets for both undirected and directed information flow graphs are presented

    Structural conrollability of multi-agent systems subject to partial failure

    Get PDF
    Formation control of multi-agent systems has emerged as a topic of major interest during the last decade, and has been studied from various perspectives using different approaches. This work considers the structural controllability of multi-agent systems with leader-follower architecture. To this end, graphical conditions are first obtained based on the information flow graph of the system. Then, the notions of p -link, q- agent, and joint-(p, q ) controllability are introduced as quantitative measures for the controllability of the system subject to failure in communication links or/and agents. Necessary and sufficient conditions for the system to remain structurally controllable in the case of the failure of some of the communication links or/and loss of some agents are derived in terms of the topology of the information flow graph. Moreover, a polynomial-time algorithm for determining the maximum number of failed communication links under which the system remains structurally controllable is presented. The proposed algorithm is analogously extended to the case of loss of agents, using the node-duplication technique. The above results are subsequently extended to the multiple-leader case, i.e., when more than one agent can act as the leader. Then, leader localization problem is investigated, where it is desired to achieve p -link or q -agent controllability in a multi-agent system. This problem is concerned with finding a minimal set of agents whose selection as leaders results in a p -link or q -agent controllable system. Polynomial-time algorithms to find such minimal sets for both undirected and directed information flow graphs are presente

    Consensus Algorithms for Estimation and Discrete Averaging in Networked Control Systems

    Get PDF
    In this thesis several topics on consensus and gossip algorithms for multi-agent systems are addressed. An agent is a dynamical system that can be fully described by a state-space representation of its dynamics. A multi-agent system is a network of agents whose pattern of interactions or couplings is described by a graph. Consensus problems in multi-agent systems consist in the study of local interaction rules between the agents such that as global emergent behavior the network converges to the so called "consensus" or "agreement" state where the value of each agent's state is the same and it is possibly a function of the initial network state, for instance the average. A consensus algorithm is thus a set of local interaction rules that solve the consensus problem under some assumptions on the network topology. A gossip algorithm is a set of local state update rules between the agents that, disregarding their objective, are supposed to be implemented in a totally asynchronous way between pairs of neighboring agents, thus resembling the act of "gossiping" in a crowd of people. In this thesis several algorithms based on gossip that solve the consensus and other related problems are presented. In the �first part, several solutions to the consensus problem based on gossip under different sets of assumptions are proposed. In the fi�rst case, it is assumed that the state of the agents is discretized and represents a collection of tasks of different size. In the second case, under the same discretization assumptions of the �rst case, it is assumed that the network is represented by a Hamiltonian graph and it is shown how under this assumption the convergence speed can be improved. In the third case, a solution for the consensus problem for networks represented by arbitrary strongly connected directed graphs is proposed, assuming that the state of the agents is a real number. In the fourth case, a coordinate-free consensus algorithm based on gossip is designed and applied to a network of vehicles able to sense the relative distance between each other but with no access to absolute position information or to a common coordinate system. The proposed algorithm is then used to build in a decentralized way a common reference frame for the network of vehicles. In the second part, a novel local interaction rule based on the consensus equation is proposed together with an algorithm to estimate in a decentralized way the spectrum of the Laplacian matrix that encodes the network topology. As emergent behavior, each agent's state oscillates only at frequencies corresponding to the eigenvalues of the Laplacian matrix thus mapping the spectrum estimation problem into a signal processing problem solvable using the Fourier Transform. It is further shown that the constant component of the emergent behavior in the frequency domain solves the consensus on the average problem. The spectrum estimation algorithm is then applied to leader-follower networks of mobile vehicles to infer in a decentralized way properties such as controllability, osservability and other topological features of the network such as its topology. Finally, a fault detection and recovery technique for sensor networks based on the so called motion-probes is presented to address the inherent lack of robustness against outlier agents in networks implementing consensus algorithms to solve the distributed averaging problem

    Control law and state estimators design for multi-agent system with reduction of communications by event-triggered approach

    Get PDF
    A large amount of research work has been recently dedicated to the study of Multi-Agent System and cooperative control. Applications to mobile robots, like unmanned air vehicles (UAVs), satellites, or aircraft have been tackled to insure complex mission such as exploration or surveillance. However, cooperative tasking requires communication between agents, and for a large number of agents, the number of communication exchanges may lead to network saturation, increased delays or loss of transferred packets, from the interest in reducing them. In event-triggered strategy, a communication is broadcast when a condition, based on chosen parameters and some threshold, is fulfilled. The main difficulty consists in determining the communication triggering condition (CTC) that will ensure the completion of the task assigned to the MAS. In a distributed strategy, each agent maintains an estimate value of others agents state to replace missing information due to limited communication. This thesis focuses on the development of distributed control laws and estimators for multi-agent system to limit the number of communication by using event-triggered strategy in the presence of perturbation with two main topics, i.e. consensus and formation control. The first part addresses the problem of distributed event-triggered communications for consensus of a multi-agent system with both general linear dynamics and state perturbations. To decrease the amount of required communications, an accurate estimator of the agent states is introduced, coupled with an estimator of the estimation error, and adaptation of communication protocol. By taking into account the control input of the agents, the proposed estimator allows to obtain a consensus with fewer communications than those obtained by a reference method. The second part proposes a strategy to reduce the number of communications for displacement-based formation control while following a desired reference trajectory. Agent dynamics are described by Euler-Lagrange models with perturbations and uncertainties on the model parameters. Several estimator structures are proposed to rebuilt missing information. The proposed distributed communication triggering condition accounts for inter-agent displacements and the relative discrepancy between actual and estimated agent states. A single a priori trajectory has to be evaluated to follow the desired path. Effect of state perturbations on the formation and on the communications are analyzed. Finally, the proposed methods have been adapted to consider packet dropouts and communication delays. For both type
    corecore