6,933 research outputs found

    The global hydrology education resource

    Get PDF
    This article is a selective overview of a range of contemporary teaching resources currently available globally for university hydrology educators, with an emphasis on web-based resources. Major governmental and scientific organizations relevant to the promotion of hydrology teaching are briefly introduced. Selected online teaching materials are then overviewed, i.e. PowerPoint presentations, course materials, and multimedia. A range of websites offering free basic hydrology modelling software are mentioned, together with some data file sources which could be used for teaching. Websites offering a considerable range of general hydrology links are also noted, as are websites providing international and national data sets which might be incorporated into teaching exercises. Finally, some discussion is given on reference material for different modes of hydrology teaching, including laboratory and field exercises

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    THE RELEVANCE OF INFORMATION COMMUNICATION TECHNOLOGIES (ICTs) IN AGROFORESTRY PRACTICES

    Get PDF
    Heathcote (2000) posited that “Within half a century, computers and information technology have changed the world andaffected millions of lives in ways that no one could have foreseen”. The great impacts, contributions to knowledge,importance and economic achievements that have emerged from the fields of computer science (information science) andelectronic engineering, in the 21st century, are revolutionary and mind boggling (Bamgbade,2011). This paper explores theextent to which ICT applications have improved agro-forestry practices and discussed areas of application such as forestryand environmental management, species identification, research publication, ICT in agroforestry education, plant pathologystudies, wood anatomy, biometrics, Data management, modeling, analysis and miningKeywords: ICTs, Agroforestry, Impact, Management, Computers, Practices and Applications

    Exploration of Reaction Pathways and Chemical Transformation Networks

    Full text link
    For the investigation of chemical reaction networks, the identification of all relevant intermediates and elementary reactions is mandatory. Many algorithmic approaches exist that perform explorations efficiently and automatedly. These approaches differ in their application range, the level of completeness of the exploration, as well as the amount of heuristics and human intervention required. Here, we describe and compare the different approaches based on these criteria. Future directions leveraging the strengths of chemical heuristics, human interaction, and physical rigor are discussed.Comment: 48 pages, 4 figure

    Water Resource Systems Analysis - University of Kentucky, Lexington

    Get PDF
    Graduate course in water resource systems analysis offered at University of Kentucky, Lexington in Fall 2015

    A machine learning taxonomic classifier for science publications

    Get PDF
    Dissertação de mestrado integrado em Engineering and Management of Information SystemsThe evolution in scientific production, associated with the growing interdomain collaboration of knowledge and the increasing co-authorship of scientific works remains supported by processes of manual, highly subjective classification, subject to misinterpretation. The very taxonomy on which this same classification process is based is not consensual, with governmental organizations resorting to taxonomies that do not keep up with changes in scientific areas, and indexers / repositories that seek to keep up with those changes. We find a reality distinct from what is expected and that the domains where scientific work is recorded can easily be misrepresentative of the work itself. The taxonomy applied today by governmental bodies, such as the one that regulates scientific production in Portugal, is not enough, is limiting, and promotes classification in areas close to the desired, therefore with great potential for error. An automatic classification process based on machine learning algorithms presents itself as a possible solution to the subjectivity problem in classification, and while it does not solve the issue of taxonomy mismatch this work shows this possibility with proved results. In this work, we propose a classification taxonomy, as well as we develop a process based on machine learning algorithms to solve the classification problem. We also present a set of directions for future work for an increasingly representative classification of evolution in science, which is not intended as airtight, but flexible and perhaps increasingly based on phenomena and not just disciplines.A evolução na produção de ciência, associada à crescente colaboração interdomínios do conhecimento e à também crescente coautoria de trabalhos permanece suportada por processos de classificação manual, subjetiva e sujeita a interpretações erradas. A própria taxonomia na qual assenta esse mesmo processo de classificação não é consensual, com organismos estatais a recorrerem a taxonomias que não acompanham as alterações nas áreas científicas, e indexadores/repositórios que procuram acompanhar essas mesmas alterações. Verificamos uma realidade distinta do espectável e que os domínios onde são registados os trabalhos científicos podem facilmente estar desenquadrados. A taxonomia hoje aplicada pelos organismos governamentais, como o caso do organismo que regulamenta a produção científica em Portugal, não é suficiente, é limitadora, e promove a classificação em domínios aproximados do desejado, logo com grande potencial para erro. Um processo de classificação automática com base em algoritmos de machine learning apresenta-se como uma possível solução para o problema da subjetividade na classificação, e embora não resolva a questão do desenquadramento da taxonomia utilizada, é apresentada neste trabalho como uma possibilidade comprovada. Neste trabalho propomos uma taxonomia de classificação, bem como nós desenvolvemos um processo baseado em machine learning algoritmos para resolver o problema de classificação. Apresentamos ainda um conjunto de direções para trabalhos futuros para uma classificação cada vez mais representativa da evolução nas ciências, que não pretende ser hermética, mas flexível e talvez cada vez mais baseada em fenómenos e não apenas em disciplinas

    The Relevance of Information Communication Technologies (ICTs) In Agroforestry Practices

    Get PDF
    This paper x-rays the relevance of ICTs in Agroforestry practices. Existing areas of applications such as forest andenvironmental management, specie identification and research publications are identified. The paper also looked into futurepossible usage of ICT and concludes that while the application of ICTs to Agroforestry practices in the 21st century is oftremendous importance it is important to know that there are still more areas where ICT would be applicable in Agroforestrywhich are yet to be discoveredKeywords – ICTs, Agroforestry, Applications, Fuzzy Logic, Environmental management

    Air Force Institute of Technology Research Report 1999

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, and Engineering Physics

    Data Representation Methods For Environmentally Conscious Product Design

    Get PDF
    The challenge of holistically integrating environmental sustainability considerations with design decision-making requires novel representations for design and sustainability-related data that allow designers to understand correlations among them. Challenges such as (1) lack of suitable data & information models, (2) methods that simultaneously consider environmental sustainability as well as design constraints, and (3) uncertainty models for characterizing subjectivity in environmental sustainability-based decision making, pose serious impediments towards this goal
    corecore