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ABSTRACT

Ramanujan, Devarajan. Ph.D., Purdue University, December 2015. Data Represen-
tation Methods for Environmentally Conscious Product Design. Major Professor:
Karthik Ramani, School of Mechanical Engineering.

The challenge of holistically integrating environmental sustainability consider-

ations with design decision-making requires novel representations for design and

sustainability-related data that allow designers to understand correlations among

them. Challenges such as (1) lack of suitable data & information models, (2) meth-

ods that simultaneously consider environmental sustainability as well as design con-

straints, and (3) uncertainty models for characterizing subjectivity in environmental

sustainability-based decision making, pose serious impediments towards this goal.

A wide body of previous research has focused on developing computational meth-

ods for modeling environmental impacts and indicators for products and processes.

However, a significant majority of these methods stop short of providing a decision-

making framework based on the calculated metrics. Additionally, most of these meth-

ods are built from the stand point of an environmental sustainability expert. They

stop short of creating data representations that contextualize this information to de-

signers and other stakeholders in product lifecycle management. Such gaps create a

significant cognitive barrier which can prevent decision makers from integrating envi-

ronmental sustainability considerations within product design. Imminent regulations

that limit the environmental impact of products and services will compound these

knowledge gaps as decision makers will begin utilizing existing tools without a well de-

fined understanding of assessment results. More importantly, only using assessment-

focused tools prevents decision makers from developing insights about correlations

between environmental impact indicators and design parameters. Without this un-

derstanding, designers cannot apply findings from environmental assessment to design
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processes. Addressing these gaps necessitates methods for representing environmen-

tal sustainability data in a manner that makes it congruent to the design process.

To this end, this thesis explores (1) novel data representations, (2) decision-making

methods, and (3) exploration-support tools that facilitate integration of design and

environmental sustainability-related parameters for eco-conscious product design.

We start our discussion by looking at existing tools and methods for integrat-

ing environmental sustainability assessment within product design. Next, we discuss

decision-making models for eco-conscious design and methods for evaluating uncer-

tainties in this context. Following this, we make the case for information visualization-

based tools for environmentally conscious exploration of design alternatives. A con-

sistent theme within this thesis is translating learnings from research into educational

and industrial practice. Realizing a more sustainable world requires training engineers

and students in concepts of decision-making for environmental sustainability. Along

these lines, we conclude the thesis by discussing a guided discovery-based instruc-

tion framework for teaching environmental sustainability in existing undergraduate

mechanical engineering curricula.
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1. INTRODUCTION

1.1 Motivation

Design engineers can make significant contributions to the sustainability challenge

by designing products and processes that satisfy societal needs while minimizing the

associated environmental consequences. Decisions made at the initial product de-

sign phase determine the environmental and economic impacts of future decisions [1].

Therefore, it is critical that engineers shift their focus from meeting cost and perfor-

mance requirements to a balance of economic, environmental, and societal consider-

ations. This is essential for environmental sustainability practices to transform from

end-of-pipe remediation towards an integral part of design and process planning [2–5].

That said, designing products with the objective of minimizing it’s environmental

footprint is by no means an easy task. Engineered products interact with the envi-

ronment through energy and material flows at every stage of the lifecycle; from raw

materials extraction and acquisition, manufacturing, transportation and distribution,

use and maintenance, reuse and recycle, all the way through to disposal and waste

management [6]. Figure 1.1 illustrates material and information flows in a traditional

product lifecycle. The presence of forward and backward flows in both material and

information increases the complexity in the system. This makes environmentally

conscious decision-making a particularly challenging task. This is especially true

for decisions taken at the design stage as very little information about downstream

stages is available. Additionally, current eco-design methods remain incongruent to

the design process [7]. An integrated framework for environmentally-conscious design

requires additional methods and tools that can translate environmental sustainability

assessment to practical design outcomes.
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Figure 1.1. Material and information flows in a product’s lifecycle [8].

As pointed out by Pugh, the wrong choice of concept in a given design situation

can rarely, if ever, be recouped by brilliant detail design [9]. This is also expected

to be the case for environmentally-conscious design. Up until now, design methods

such as Quality Function Deployment (QFD), functional component analysis, and the

Pugh charts have gained prominence in the product design community as a means of

developing better products [10]. Unfortunately, decisions based on these tools typi-

cally rely on experience, intuition, or at best, a few simplified calculations [11]. As a

result, there is a considerable amount of subjectivity introduced into design decisions

which makes them being viewed with skepticism. These tools fail when environmental

performance is considered as a design factor, since a limited amount of experience

and knowledge have been accumulated by the designer. This usually results in de-

signers missing a lifecycle perspective on developed designs [13, 14]. During the past
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Figure 1.2. Specificity of existing tools for supporting decision mak-
ing in the context of environmentally sustainable design. The x-axis
represents the specificity of required lifecycle information for charac-
terizing the environmental performance of the product. The y-axis
represents the specificity of the design variables characteristic of a
particular design stage. This figure is based on a map of existing
eco-design tools by Ramani et al. [12]. Please note that the list of
eco-design tools is by no means comprehensive.

decade, quite a few eco-design tools have been developed with the aim of remedying

the above limitation. Figure 1.2 provides an overview of existing tools for eco-design

based on the specificity of lifecycle information required for conducting the environ-

mental assessment and the design stage at which they can be applied. On a coarse

scale, these tools can be categorized into various levels based on, (1) the nature of

assessment, i.e. qualitative/quantitative, (2) on temporal/spatial scales, and (3) on

their integration of environmental, economic and social systems. There are a variety

of limitations associated with all the types of existing eco-design tools. Robert et

al. [15] suggest that the discontinuity between these various tools has slowed progress

towards achieving sustainable development. Moreover, these tools generally take the

form of standalone applications, which further limit their use in the design stage of
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product development. There are some efforts bridging this limitation by integrating

various technologies such as, (1) life cycle costing and LCA [16], (2) multi-criteria de-

cision making and LCA [17,18], (3) mathematical decision modeling and constrained

optimization approaches [19,20]. However, these methods are limited by the fact that

they are usually expert driven, time intensive, and not flexible. Therefore, it is of

no surprise that they have achieved limited penetration into design practices within

design teaching and the industry [7, 21].

Realizing environmental sustainability in a real-world setting requires a shared

responsibility towards implementation of product design systems that support col-

laborative and dynamic knowledge transfer among the involved stakeholders. How-

ever, product designers often lack access to reliable data regarding the environmental

impacts of products and processes, that are essential for making decisions involving

complex trade-offs between competing objectives [22]. Although data gathered for

lifecycle impact assessment offers one way to bridge this knowledge gap, problems are

often compounded by unfamiliarity with environmental issues among product devel-

opment personnel. In such a setting, methods and tools which augment the capability

of a designer in making the right decisions can prove to be a critical factor for conceiv-

ing a sustainable product. This necessitates further research regarding the acquisition,

manipulation, representation, and user perception of lifecycle data. Exploration and

discovery of lifecycle data offers an untapped potential for product/process innovation

as well as resource optimization. This requires simultaneous consideration of envi-

ronmental as well as business concerns using the concept of multi-criteria decision

analysis for selecting relevant design for environment strategies [23].

With the imminent explosion of data through ubiquitous computing and data

collection hardware, data intelligence through visualization will become a priority for

facilitating eco-conscious decision-making. To meet this need, eco-design tools must

shift from being assessment driven towards an enabler for design exploration. This

requires novel representations for sustainability-related data that allows results from

similar products to be made reusable. These results should be made available to
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Figure 1.3. The overarching goal of this thesis is to explore represen-
tations of product metadata and sustainability related data that can
aid design decision-making. This is divided into four goals (G1–G4)
that focus on supporting various facets of design decision-making.

designers during critical decision-making stages in conceptual and early embodiment

design stages for guiding lifecycle decision-making.

1.2 Research Goals

This thesis discusses methods for representing design metadata and sustainability-

related data to aid eco-conscious design decision-making. Figure 1.3 establishes the

research goals for this thesis. Our overarching goal is to facilitate eco-conscious prod-

uct design through integrative decision-making approaches that relate product meta-

data to environmental sustainability data. For this, we discuss techniques, and create

tools for achieving four specific goals:

• Methods for estimating the environmental impact of parts contained within a

design repository (G1): For this, we discuss the nature of data required for

estimating potential indicators of environmental sustainability. Instead of con-

ducting a complete life cycle assessment (LCA), we focus on developing approx-

imate measures which are useful for screening out parts that are significantly
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impactful. To facilitate exploration of parts within the repository, we quantify

part similarity and develop visual representation for these similarity measures

and the computed environmental indicator.

• Methods for assessing the potential for redesign from an environmental sustain-

ability perspective (G2): For supporting redesign of existing parts, this thesis

proposes a method for guiding redesign decisions based on ease of redesign, the

business case for redesign as well as potential environmental benefits.

• Supporting design-decision making with regards to novel product concepts (G3):

For this, we propose a method for representing the environmental of an existing

part in terms of its functions. By allocating environmental impact to product

functions, the designer can develop a measure of function-impact, useful for

guiding the generation of novel embodiments for that product.

• Balancing business decisions with redesign decisions in the context of eco-design

(G4): To achieve integration of business and sustainability based design

decision-making, we propose a decision-making framework that uses results from

a life cycle assessment (LCA) along with subjective evaluations by design and

management experts. By involving a large majority of the stakeholders in the

redesign process, we ensure that the resulting decision has a high likelihood of

being successfully implemented.

In all our methods, we explore data representation methods that aid human decision-

making in the context of eco-conscious design. The ambiguity and subjectivity in-

volved in design decision-making represents a unique challenge for computation. Also,

fully automated decision methods are often too restrictive in a realistic design setting.

Although we use computational methods for estimating sustainability indicators, sim-

ilarity measures, and visualizing the resulting data, they serve to augment and not

replace human judgment. Any data representation method needs to account for un-

certainty present in the data. Uncertainties in design decision-making arise from am-

biguity in product metadata, measurement errors, approximations in lifecycle models,
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uncertainties in interpreting LCA results, and the subjective nature of the decision-

making process. Therefore, a significant portion of this thesis discusses methods for

quantifying data uncertainties and techniques for robust decision-making.

1.3 Contributions

In this thesis, we propose:

1. A method for representing uncertainties in environmental impact as well func-

tion allocation weights to support conceptual design. Using information gap

decision theory, we develop methods for determining the range of uncertainty

for which a particular product function has the highest expected utility.

2. A framework for integrating results from life cycle assessment with a multi-

criteria decision analysis in order to facilitate rational decision-making with

regards to eco-conscious product design. For this, we use a stochastic analytic

hierarchy process and quantify the robustness of a redesign decision.

3. An algorithm for estimating cradle-gate environmental indicators based on ma-

terial, manufacturing, and shape data present in design repositories.

4. An algorithm for estimating part similarity based on material, manufacturing,

shape, and function data. By classifying part data using a taxonomy-based

description, we facilitate variable levels of data abstraction as well as quantifi-

cation of pairwise similarities.

5. A visual representation framework that represents computed environmental in-

dicators and product metadata in a manner that aids part retrieval, selection,

and design exploration.

6. An information visualization interface that is designed for eco-conscious design

exploration of 3D repositories by visualizing similarities in part attributes. A

screenshot of this interface is shown in Figure 1.4.
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Figure 1.4. A screenshot of the shapeSIFT interface. This interface
consists of a squarified layout window that displays the retrieved re-
sults (a), a control window with sliders (b1) & labels (b2), a similarity
polygon viewer (c), a sketch window (d), and a 3D viewer (e).

7. A guided discovery-based instruction framework for contextualizing sustainabil-

ity assessment within mechanical engineering curricula. Our approach makes

it possible for embedding environmental sustainability-related concepts within

traditional engineering courses and facilitates discovery learning among students

through iterative design exploration.

We begin this thesis by discussing previous research and state-of-the-art tools

for environmentally conscious product design. Chapter 2 introduces the reader to

current eco-design tools developed in previous literature and highlights prominent

commercially available packages for the same. Chapter 3 extends our understanding

of eco-design tools by reviewing background work aimed at providing computational

support to the designer in the form of impact estimation methods and decision anal-

ysis. Chapters 2 and 3 aim at establishing a foundation in environmentally conscious

product design for the reader and expose limitations in current approaches. It is our

hope that these chapters will serve to motivate the research that is discussed in the

proceeding chapters of this thesis.
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2. TOOLS FOR ENVIRONMENTALLY CONSCIOUS PRODUCT DESIGN

The following chapter discusses current eco-design tools by classifying them into three

categories: (1) tools based on checklists, (2) tools based on quality function deploy-

ment (QFD), and (3) tools based on life cycle assessment (LCA), as suggested in [14].

Following this, we review commercial tools that are aimed at supporting environmen-

tal sustainability assessment at the design stage.

2.1 Tools Based on Checklists

Qualitative tools such as checklists are simple, easy-to-use, and therefore are

among the tools prevailing in most small and medium size companies [25]. An exam-

ple checklist for raw material selection provided by the Center for Sustainable Design

to electronic manufacturers and suppliers in order to prepare for the European Energy

using Products Framework Directive 2005/32/EC is shown in Figure 2.1. A common

feature of such tools is the checklist, which is a set of items used for assessing a prod-

uct from environmental perspective over its entire life cycle. Those items include,

for example, “is less energy consumed during the use phase of the product than the

existing ones? ” or “are less toxic materials used in the product?” [26]. These tools

are developed particularly for the early stages of the product development process.

Compared with LCA based tools, these tools are much more subjective. The proper

use of the tools requires extensive experience and knowledge. Even with that, it

remains a challenge when trade-offs exist between different life cycle stages or differ-

ent environment impacts categories. Moreover, these tools can rarely offer concrete

solutions or design strategies.
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No Criteria/attributes Y N N/A Comments

1

Material Resources:
o Weight minimisation
o Volume minimisation
o Waste generation
o Recyclate content
o Part reuse

2

Energy Consumption:
o Primary Energy 
o Electrical Energy
o Feedstock
o Impact on product use

3
Water Use:
o Process
o Cooling

No Criteria/attributes Y N N/A Comments

1

Air Emissions:
o Greenhouse gases
o Acidifying agents
o Volatile organic compounds
o Ozone depleting substances
o Persistent organic pollutants
o Heavy metals
o Fine particulate
o Suspended particulate matter

2

Water Emissions:
o Heavy metals
o Oxygen balance disruptors.
o Persistent organic pollutants

No Criteria/attributes Y N N/A Comments

1
Noise Pollution:
o Minimise
o Legal compliance

2
Vibration Pollution:
o Minimise
o Legal compliance

3
Radiation Pollution:
o Avoid
o Legal compliance

4
Electromagnetic Field Pollution:
o Minimise

No Criteria/attributes Y N N/A Comments

1
Extraction:
o Minimum material waste

(RoHS and non-RoHS)

2

Manufacture:
o Minimum machining waste (RoHS and 

non-RoHS)
o Waste from poor quality control (RoHS 

and non-RoHS)

No Criteria/attributes Y N N/A Comments

1
Reuse:
o Material quality suitable for reuse. 

2
Recycling:
o Economic for recycling

3
Material Recovery:
o Can be incinerated cleanly

Figure 2.1. Checklist for raw material selection provided by the Cen-
ter for Sustainable Design [24] in order to prepare for the European
Energy using Products (EuP) Framework Directive 2005/32/EC.

2.2 Tools Based on Quality Function Deployment (QFD)

QFD based tools are typically used to convert customer needs into engineering

characteristics while simultaneously improving the quality level of the product. Eco-

design tools based on QFD introduce lifecycle environmental impacts of the product

into the QFD matrix in the form of customer needs. Examples of QFD based eco-

design tools include and are not limited to Quality Function Deployment for the

Environment, Green Quality Function Deployment, and House of Ecology [27, 28].

In general, application of these tools starts from collecting both customer needs and

environmental needs, and developing correlations between these needs and quality

characteristics. A functional analysis is then performed to identify how quality char-

acteristics are correlated with engineering characteristics (including structure or com-

ponents) and hot spots from both environmental as well as traditional qualities point

of views. It can be seen that QFD based tools are significantly different from LCA

based tools since the focus here is on the product specification development stage.
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One serious drawback of these QFD based tools (similar to traditional QFD) is that

the development of correlations between environmental needs and quality and engi-

neering characteristics is totally on designers, and usually the correlations developed

are based on knowledge from traditional environmental engineering discipline without

the consideration of the entire lifecycle [29].

2.3 Tools Based on Life Cycle Assessment (LCA)

Life cycle assessment (LCA) has emerged as the most objective tool available for

evaluating the environmental profile of a product or process [30]. In order to conduct

an LCA, detailed product design information is required, which makes it unsuitable

for use in early design (when a detailed specification is not available as yet) [31].

This is especially true for novel product designs as information from reference prod-

ucts (previous generation or competitors) is not available. Also, conducting a de-

tailed LCA can be very costly and time consuming. Therefore, only large companies

can afford conducting such assessments. There have been some efforts in address-

ing these issues by developing simplified or streamlined LCA for screening purposes.

Even so, these methods tend to ignore environmental impacts from certain life cycle

stages, material/energy flows, or impact categories [32, 33]. Recent efforts have been

made to implement LCA during the early design phase [34]. Lofthouse [7] describes

a web-based framework for eco-design tools, a combination of guidance, education

and information, that considers appropriate presentation and easy access. Dewulf et

al. [35] present a novel web-based eco-design tool called Eco-PaS. In these methods,

uncertainties in early design embodiment (i.e. shape, component interactions, etc.)

remain a major obstacle. To what level the fidelity can be maintained remains largely

unaddressed. Another serious obstacle associated with applying LCA based tools to

early design lies on the fact that inherently LCA is not design-oriented. LCA’s are

able to associate the environmental cost with regards to a product’s structure and

bill of materials. This is because the environmental impact of a product is a function
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(a)

(b)

(c)

Figure 2.2. A screenshot of commercially available software packages
for eco-design. (a) Solidworks Sustainability Xpress

TM
[36] (b) Granta

Design’s Eco Audit
TM

Tool [37] (c) Sustainable Minds R© [38].

of a product’s embodiment and the processes involved in creating that embodiment.

In their current form, LCA’s cannot determine the environmental cost of product

functions required by a customer or the technologies used to achieve those functions.

2.4 Commercially Available Tools

An area that has a large potential for successfully incorporating environmental

sustainability principles into an existing engineering design framework is computer-

aided design (CAD) and computer-aided engineering (CAE). Three prominent efforts

to embed eco-design within software are SolidWorks Sustainability Xpress
TM

[36],

Granta Design’s Eco Audit
TM

Tool [37], and Sustainable Minds R© [38]. Each soft-
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ware, depicted in Figure 2.2, provides designers with distinct advantages. SolidWorks

Sustainability Xpress
TM

estimates environmental impacts associated with the material

and manufacturing selections chosen by the user. The software also provides a mod-

ule that computes the impact associated with transportation based on the geographic

location of the manufacturer and the end consumer. This tool is mostly suited for

the detailed design stage as complete dimensions, material definitions, and manufac-

turing details are required to run the simulation. At this level of detail, most design

parameters are already fixed. Hence, the tool is mostly useful for benchmarking the

impact of the designed product or for guiding minor changes to the design. Explor-

ing alternate design embodiments that can meet the same performance requirements

becomes a challenge as a full-scale CAD model for alternatives is necessary. Granta

Design’s Eco Audit
TM

Tool leverages Granta’s CES Edupack; a material database

that has been in development for over fifteen years. It contains detailed datasheets

for over three thousand materials. Most materials in this database have estimates

for energy consumption (specified in Mega Joules per kilogram of material) and the

carbon footprint (kilogram equivalent of CO2 per kilogram of material) correspond-

ing to material extraction and common manufacturing processes. This tool is mostly

relevant for material selection at the design stage and does not offer support in terms

of selection of shape, manufacturing processes, or function requirements. Sustain-

able Minds R© provides a refined graphical user interface in which designers can run

LCAs and see trade-offs between alternate designs of a product. A step in the right

direction, Sustainable Minds R© offers the same capabilities as conventional life cycle

assessment software such as SimaPro R© [39] and GaBi R© [40] with more attention

towards simplifying user interaction. Apart from the software discussed above, sev-

eral other commercial CAD and CAE-based tools allow designers to estimate the

environmental impacts of their designs at varying levels of fidelity.
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2.5 Summary

This chapter has discussed eco-design tools from previous literature as well as

commercially available tools. From discussions in this chapter, and as illustrated in

Figure 1.2, we can observe that tools developed for early/conceptual design tend to

be more subjective due to the lack of detailed product information. At this stage,

tools tend to act as guidelines for eliminations significantly impactful options by nar-

rowing the design space. Ideally, such tools should also facilitate or guide designers in

exploring the design space of feasible outcomes with the goal of minimizing environ-

mental footprint. Furthermore, a majority of existing tools are aimed at providing an

estimation of the environmental impact of the product and offer limited guidance for

relating impact to design variables. For this, we have to look at methods that provide

computational support at the early design stage with the aim of integrating design

and sustainability knowledge. Even these methods are not immune from the fact that,

early on in the design stage very little (and often unreliable) information is available

about the actual part. Therefore, these methods should use existing and previous

design knowledge to extrapolate the environmental impact of a design. In this light,

Chapter 3 reviews computational support methods for supporting environmentally

conscious product design.
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3. COMPUTATIONAL SUPPORT FOR ENVIRONMENTALLY CONSCIOUS

PRODUCT DESIGN

Numerous computer-aided methods have been developed with the aim of support-

ing environmentally conscious product design (ECPD). With regards to ECPD, it is

necessary to measure of the environmental impact of a design/part, benchmark the

estimated value with other alternatives, and decide on a particular alternative, often

while balancing multiple competing objectives. In this light, we discuss previous liter-

ature by categorizing them into the following three topics, (1) methods that estimate

environmental sustainability indicators for novel designs/parts based on data from

existing design/part data, (2) decision analysis methods for interpreting results of life

cycle assessments, and (3) representation methods for environmental sustainability

data that aid decision-making in design processes.

3.1 Estimating Environmental Sustainability Indicators from Part Data

Previous research for promoting environmentally sustainable design has looked

at bridging gaps in lifecycle related information by techniques that leverage implicit

knowledge embedded in existing parts. Approaches that are preferred among re-

searchers in this area include, (1) using surrogate measures of environmental impact,

(2) developing indices that relate environmental impact to part attributes, and (3)

extrapolating impact on the basis similar existing products.

Sousa et al. [41] develop a method for generating approximate life cycle anal-

ysis (LCA) metrics through neural networks trained using pre-existing product at-

tributes. On similar lines, a knowledge-based approximate life cycle assessment sys-

tem (KALCAS) is discussed by Park et al. [42]. KALCAS consists of four modules:

(1) a product information module, (2) a product LCA module, (3) a database manage-
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ment system module, and (4) a knowledge-based approximate LCA module. Dewulf

et al. [35] discuss Eco-Pas; a methodology that uses eco-cost estimating relationships

for anticipative weak point analysis of a product’s environmental impact. This frame-

work is implemented on web-based application developed using MATLAB R© and MS

Access R©. A design method that correlates estimated life cycle impacts by with prod-

uct function has been detailed by Devanathan et al. [34]. Herein, the authors develop

the function-impact matrix that associates impact embodied by a structure to its

corresponding function. This allows designers to look at less impactful embodiments

for realizing a specific function. Another method for impact estimation based on

functional modeling of similar existing products is discussed by Haapala et al. [43].

The advantage offered by this method is that it is automated and therefore scalable

to design repositories. Tagged product attributes such as material, manufacturing

processes, and mass are used for estimating impact. However, this method does not

use information contained in three dimensional part models nor does it allow vari-

able levels of data specification with regards to subjective product attributes such as

material or manufacturing processes.

Although the discussed methods develop solutions from a computational perspec-

tive, most of them stop short of developing data representations that effectively com-

municate this data. The process of design inherently deals with decision making that

involves people. Therefore, using the right representation for data can significantly

alter the quality of the analysis. In this thesis, we posit that integrating meaningful

data representation schemes with environmental sustainability assessment can help

designers observe covariation among product attributes and enable better decision

making for environmentally conscious product design.

3.2 Decision Frameworks for Interpreting Life Cycle Assessment Results

Most of the applications of decision analysis in conjunction with LCA have been

confined to the weighting of inventory data issues [44–49]. Few papers, discuss the
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integration of LCA and multi-criteria decision analysis (MCDA) either for ranking al-

ternative processes or for prioritizing strategies that enable environmentally conscious

product design (ECPD) [18, 50–53]. This is primarily due to the fact that LCA has

been developed without an explicit link to a specific decision analysis framework. Weil

et al. [54] and Xiong et al. [55] address integrating MCDA within the LCA frame-

work whilst considering uncertainties in the input data for robust selection among

given alternatives. However, the focus of these papers is not on facilitating decisions

in regards to environmentally sustainable product design. Moreover, the expressed

preferences in these methods are implicitly assumed to be deterministic, as scenarios

with independent evaluations by a group of experts are not accounted for. Whenever

multiple decision makers are involved, additional analyses regarding the combined

consistency of the group’s evaluations and the relative importance of the each specific

judgment is required [56]. Kiker et al. [57] present a review discussing applications of

different MCDA methods towards eco-conscious decision-making. Previous research

also details methods for addressing uncertainty related to product design [58–60], but

issues related to ECPD are not considered. Duncan et al. [61] extensively discuss

modeling uncertainties for environmentally benign decision making using the infor-

mation gap decision theory (IGDT). Uncertainties in life cycle inventory and those

that arise in the process of applying IGDT for design decision making are considered.

3.3 Data Representation Methods in Environmental Sustainability

The right representation for data can significantly alter the quality of the resulting

analysis. The importance of placing data in the right context and allowing decision

makers to make quantitative comparisons among them is emphasized by Tufte in [62].

In this section, we specifically review two distinct methods for contextualizing sus-

tainability related data to involved stakeholders, (1) representation methods that

contextualize sustainability data by relating them to traditional design variables in a
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particular domain, and (2) visual representations for sustainability related data aimed

towards insight generation.

3.3.1 Relating Environmental Sustainability Indicators to Design

Measures for environmentally sustainability can be leveraged towards redesign

tasks, if they are contextualized to a set of related design variables. Dewulf et al. [63]

develop eco-cost estimating relationships (E-CERs) which can be used to relate envi-

ronmental performance indicators to functional requirements and design parameters.

The authors also develop environmental impact growth laws for parameterizing im-

pact with regards to a specified design parameter. Huang et al. [64] develop a life

cycle performance index based on function, constraint, and objective analysis for the

design. In their paper, they also discuss an example application for designing a sup-

port plate for an air conditioner. Guidice et al. [65] develop a framework for material

selection that integrates the mechanical and environmental performance of parts. De-

vanathan et al. [34] develop a method for correlating life cycle analysis results with

the function descriptions of a given part. This mapping, allows designers to perceive

environmental impact in terms of functions to be met and generate more sustainable

embodiments for that function.

3.3.2 Visualizations for Enabling Environmentally Conscious Design

Visualization can act as a powerful enabler of environmental conscious design by its

ability to make data transparent. This includes means for, (1) generating awareness

about specific data, (e.g. consumption patterns, toxicity levels, etc... ) (2) facilitating

better decision making by emphasizing trends and correlations for sustainability-

related data, and (3) making design exploration more intuitive. Creative real-time

visualizations that quantify energy consumption and carbon loads have been used to

promote resource conservation [66]. Developing meaningful visualization of sustain-

ability indicators presents a challenge due to its high dimensionality. An interface
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for visualizing the QUEST environmental sustainability model is presented by Mun-

zner et al. [67]. The authors provide insights into the successes and challenges in

designing visualization schemes required for engaging communities in environmental

policy making. An additional requirement for a visualization scheme applicable to

three dimensional repositories is the ability to query and convey shape information.

Pousman et al. [68] discuss integration of sustainability related visualizations for pa-

per printing. The primary goal of their work is to motivate conversations among

community members. Providing feedback on individual/group behavior for reducing

environmental impact is detailed by Froelich et al. [69]. Reducing the energy con-

sumption and carbon load of data centers is discussed by Marwah et al. [70]. The

authors provide cases that use visualizations of sensor data (e.g. temperature, power

load) to understand trends and anomalies in daily operation.

3.4 Summary

This chapter has discussed computational support for environmentally conscious

product design (ECPD). Among them, a large number of methods leverage design

knowledge from similar existing designs for estimating the impact of a new design.

Automating this process has meant that it is possible to extend these methods to

large-scale design repositories. However, most of these methods stop short of devel-

oping representations for this data that are useful for decision-making. In this chapter,

we have also seen that visualization offers a strong potential for bridging this decision-

gap. Design decision-making can potentially benefit from methods that couple data

visualization with design exploration. Another important consideration is the lack

of a uncertainty framework for quantifying the subjectivity and inaccuracies in both

lifecycle data and decision-making processes. Integrating a robust decision-making

framework within eco-design tools and related computational methods is necessary

for weighing the risk involved with design decisions for ECPD.
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Having provided the reader with an understanding of the types, functionalities,

and limitations of the current methods/tools for environmentally conscious product

design, we proceed to discuss research contributions in this thesis that can potentially

address some of the outlined gaps. The proceeding chapters outline our original

research contributions and are organized as follows.

Chapter 4 introduces a a novel method for representing environmental impact

data at the early design stage. Our method distributes lifecycle environmental im-

pacts across product functions allowing designers to choose alternate, more benign

embodiments. This chapter also discusses an uncertainty quantification framework

based on Information Gap Decision Theory (IGDT) for robust selection of redesign

alternatives. Having discussed a method for representing environmental impact from

the perspective of a designer, we look at method for collaborative decision-making

among multiple stakeholders in the product lifecycle management process. Chapter

5 discusses a representation method based on the Analytic Hierarchy Process that

allows multiple experts (across domains) to communicate redesign preferences and

arrive at a common Design for Environment strategy (DfE) for reducing the lifecycle

impact of the product. Our method is capable of quantifying uncertainties arising

due to disagreements between stakeholders and measure the sensitivity of decision

alternatives. The methods discussed in Chapters 4 and 5 are expert driven and are

not readily adaptable towards more natural design paradigms that require dynamic

collaboration among designers across domains as well as expertise levels. Chapter

6 aims at extending concepts established in the previous chapters by developing a

visualization framework for representing sustainability and product data. Our frame-

work focuses on enabling designers to develop insights regarding relationships between

sustainability and product attributes through design exploration. Using a more gen-

eral representation framework allows experts to interpret data from their individual

areas of expertise and collaboratively work towards a more benign design. Finally,

Chapter 7 presents a guided discovery-based instruction framework for embedding

environmental sustainability principles in mechanical engineering curricula.
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4. A FUNCTION BASED FRAMEWORK FOR REPRESENTING

ENVIRONMENTAL SUSTAINABILITY IN PRODUCT DESIGN

This chapter discusses the function-impact method (FIM), a method for representing

environmental impact data in terms of product functions. The FIM uses information

from the function-component matrix to distribute life cycle environmental impacts

across product functions. The main goal of the FIM is to identify the importance

level of each function and determine the functions which should be re-examined to

obtain a better design from an environmental perspective. After introducing the

FIM, we discuss a novel method that formalizes uncertainties present in FIM-based

redesign decision-making. This is achieved by modeling the uncertainties present

in life cycle assessment (LCA) and the uncertainties in function-structure affinities

using Information Gap Decision Theory (IGDT). Section 4.1 introduces the function-

impact method to the reader and discusses the nature of uncertainties associated with

the method. Section 4.2 lays the groundwork for uncertainty quantification based on

information gap decision theory (IGDT) and its application to sustainable design.

Section 4.3 outlines a novel method for estimating the desirability (or opportuneness)

of redesigning a particular product function identified through the FIM. Following

this, we develop a framework for robust decision making with regards to this selection.

Section 4.4 discusses a case study performed on a pneumatically powered Campbell

Hausfeld (C.H.) 1/2 inch impact wrench to demonstrate the proposed frameworks.

Section 4.5 discusses results obtained for the case study and Section 4.6 concludes

this chapter and discusses future work.
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4.1 The Function-Impact Method

The function-impact method [34] is an eco-design methodology that facilitates the

use of LCA data to support the integration of sustainability concepts during the early

design phase. The core idea behind the FIM is to distribute life cycle environmental

impacts across product functions. The main goal of the FIM is to identify the en-

vironmental impact of each function with respect to the overall system performance

in order to reveal potential areas for redesign. The mathematical representation of

environmental impacts attributed to each function is given in Equation (4.1).

FI = [βi,j,n] = [{Σk(Mi,j,k + ΣmPi,j,k,m) ∗ αk,n}+ Ui,j ∗ γn] (4.1)

Here, βi,j,n is environmental impact of category j due to function n for benchmark

product i. γn is the percentage of function n contributes to the overall functionality

(i.e. the use) of the product. For example, if a product included a motor to perform

a specific function, the environmental impact associated with powering the motor

would carry some percentage γn of the total impact during the product’s use phase.

In general, γn allows the designer to trace functions back to a component level from a

use phase perspective. αk,n indicates the percentage distribution of each component

to a given function during all other significant phases of a product’s life cycle. Fur-

thermore, Mi,j,k is the environmental impact category j associated with component

k due to material, Pi,j,k,m is the environmental impact of category j associated with

component k due to the mth manufacturing step. Ui,j is the environmental impact of

category j during the use of the product.

To summarize, in order to use the FIM for product development, an LCA must

first be conducted on market leading designs of existing products (e.g., staplers, cof-

fee makers, compressors). The environmental impacts can then be distributed among

product functions to establish function-impact correlations, which can be used to

support both novel concept generation as well as redesign decisions. A tabular rep-

resentation of the FIM is shown in Figure 4.1.
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Figure 4.1. Table representing the function-impact method [34]. The
columns correspond to functions obtained by function decomposition
of the object. The rows represent the related sub-assemblies and
structures obtained by disassembly of the object.

In the FIM, the function-structure allocations can carry significant uncertainties

due to their subjective nature. Devanathan et al. [34], perform a sensitivity analysis

by perturbing the chosen allocations using a uniform distribution by ±10% of their

mean value. A Monte Carlo Simulation (MCS) was then performed and the function-

impacts were ranked as per their magnitude. A redesign option was chosen if it

carried the largest probability of having the highest function-impact rank. The MCS

is useful in that it assigns a probabilistic confidence to the chosen redesign decision.

However, it is limited by the fact that, (1) an assumption about the probabilistic

distribution of the uncertain data has to be made, and (2) it offers no information

about the nature of the uncertainties, or the robustness of the chosen decision unless

additional information in terms of confidence intervals are specified. To address the

limitations outlined above, we develop an uncertainty quantification model based on

Information Gap Decision Theory.
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4.2 Information Gap Decision Theory

Information Gap Decision Theory (IGDT), developed by Yakov Ben-Haim [71] is

an approach suited for making decisions under sparse information. Its core objective

is to organize information and the lack of it in terms of families of clusters or nested

sets. IGDT has been successfully applied to several interdisciplinary fields including

ecological conservation [72], electricity procurement [73], and product redesign [74].

Within this study, the focus is limited to decision-making in early design. Therefore

we use an interval bound info-gap model as it has been shown that they are well suited

for analysis of design decisions [61]. An interval bound info-gap model is characterized

by the following parameters:

• u : The uncertainty variable whose nominal value (ũ) is known

• α : The level of nesting, i.e. the horizon of uncertainty

• rcr : A critical value of performance that must be achieved

• d : A set of design options

• R(d, u) : A reward model for the system under consideration

• α̂(d, rcr) : The info-gap robustness function, which details the largest info-gap

uncertainty tolerable to deliver the minimum acceptable performance (rcr) for

a specific design option

Then the corresponding info-gap model U(α, û) is given in Equation (4.2).

U(α, û) = {u : |u− û| ≤ α}; α ≥ 0 (4.2)

In cases where the maximal variation is proportional to the nominal value of the

uncertainty variable, the info-gap can be modeled using Equation (4.3).

U(α, û) =

{
u : |u− û

û
| ≤ α

}
; α ≥ 0 (4.3)
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The robustness function in info-gap decision theory is formulated as an optimiza-

tion problem with the objective of maximizing α whilst satisfying the critical per-

formance constraint, rcr. In cases of larger the better, it can be mathematically

represented using Equation (4.4).

α̂(d, rcr) = max{α : (minu∈U(α,û)R(d, u)) ≥ rcr} (4.4)

If smaller performance is better, the robustness function is mathematically defined

using Equation (4.5).

α̂(d, rcr) = max{α : (maxu∈U(α,û)R(d, u)) ≤ rcr} (4.5)

The design option that yields the greatest magnitude of robustness for a specified crit-

ical performance is preferred as per the robust satisficing model. Robust satisficing

unlike many other uncertainty models does not yield a design optimized for perfor-

mance. Instead, a design option is selected based on its likelihood of surviving failure.

This analogy is appropriate for situations such as environmental sustainability, as the

penalty of failure is very high.

4.3 Proposed Method for Quantifying Uncertainties in FIM using IGDT

4.3.1 Function-Coupling Metric

To establish a measure for function-coupling, the product is represented as a bi-

partite graph FS = (F, S,E), where {F1, . . . , Fm} represent product functions and

{S1, . . . , Sn} represent product structures. The bipartite graph can be represented by

an adjacency matrix, whose elements establish a correlation between the ith product

function and the jth product structure. The matrix can be mathematically repre-

sented as shown in Equation (4.6).

FS = [ci,j], i = 1, . . . ,m; j = 1, . . . , n (4.6)
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Here,

ci,j = 1 if Fi → Sj (∃ an edge)

ci,j = 0 otherwise

To establish function-function correlations, a function adjacency matrix is constructed

as given in Equation (4.7). The coupling, or the connectivity, of a particular product

function to all other functions is obtained as the row sum of the function adjacency

matrix as given by Equation (4.8).

FF = FS ∗ FST (4.7)

conni =
n∑
j=1
i 6=j

ffi,j (4.8)

Here,

FS : function-structure matrix representing the design

FF : function-function adjacency matrix

conni : The connectivity of the ith product function to all other product functions. It

should be noted that the diagonal elements of FF are omitted for the calculation of

the connectivity metric because it represents the total number of connections between

the ith product function and the j design structures.

4.3.2 Desirability Estimation

The desirability (or opportuneness) of redesigning a particular product function, is

determined by Equation (4.9). The measure depends on (1) the normalized magnitude

of function-coupling, and (2) the normalized function-impact. Axiomatic design,

defines design complexity/information as a logarithmic function of the probability of

achieving the specified Functional Requirements (FRs) [75]. Thus, an exponential

scale is used in Equation (4.9) to linearize the measure of function-coupling, which
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in this case is a measure of the complexity within a given design. The desirability

measure indicates that a function is preferred for redesign if it has a high function

impact and if it is relatively uncoupled. The coupling measure is critical for redesign

as it identifies functions that are easier to rework from a modularity perspective [76].

Thus, the best possible case for redesign is when a function is fully uncoupled and has

a high value of function impact. To account for the difference in scales between the

values of the function-impact and the function-coupling, these values are normalized

before calculating the function’s redesign desirability measure. Thus, the magnitude

of desirability has a theoretical maximum of 1 + k and a minimum tending to zero.

The scaling factor k in Equation (4.9) is a fraction which signifies the preference one

wishes to allocate to function-coupling as compared to function-impact for redesign.

Di = k ∗ exp−conni +FIi (4.9)

Here:

Di : desirability measure for redesign of the ith product function

k : preference factor that establishes the relative redesign preference between function-

coupling and function-impact

conni : normalized function-coupling measure for the ith product function

FIi : normalized function-impact of the ith product function

4.3.3 Info-Gap Model for Uncertainties in FIM

The calculation of function-impact is given by Equation (4.10). In this calculation,

both environmental impact (Ij) and the function-structure allocation wij (same as

αk,n in the FIM description) are treated as uncertain variables whose nominal values

are known. The info-gap models for these variables are given by Equation (4.11)
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and Equation (4.12), respectively. The info-gap models are such that the maximal

variation is proportional to the nominal value of the uncertainty variable.

FIi =
n∑
j=1

wi,j ∗ Ij (4.10)

UI(αI , Î) =

{
I : |I − Î

Î
| ≤ αI

}
; αI ≥ 0 (4.11)

Uw(αw, ŵ) =

{
w : |w − ŵ

ŵ
| ≤ αw

}
; αw ≥ 0 (4.12)

The reward or utility function for the present model is represented by the desir-

ability to redesign a function as given in Equation (4.13).

R(d, u) = Di = k ∗ exp−conni +FIi (4.13)

The objective of this formulation is to maximize the robustness function as given

by Equation (4.14).

α̂(i, dcr) = max
{
α : (min I∈UI(αI ,Î)

w∈Uw(αw,ŵ)

[di]) ≥ dcr
}

(4.14)

Here:

dcr : the critical or the minimum allowable value of the desirability measure

wij : function-structure allocation of the ith product function to the jth component

ŵ : the nominal value of the corresponding function-structure allocation

Ij : environmental impact of the jth component

Î : the nominal value of the corresponding environmental impact

αI : the horizon of uncertainty for the corresponding environmental impact

αw : the horizon of uncertainty for the corresponding function-structure allocation

The next section discusses a case study that was conducted to demonstrate the

applicability of the proposed methods towards robust decision making in environmen-

tally conscious product design.
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Figure 4.3. Matrix representation detailing the function-coupling
metric for the pneumatic impact wrench.

4.4 Case Study on a Pneumatic Impact Wrench

The pre-mentioned methodology was applied to a redesign project for a pneumat-

ically powered Campbell Hausfeld (C.H.) 1
2

inch impact wrench. The impact wrench

was disassembled and a bill of materials (BOM) was constructed, including each

component, its weight, its material, and any processing steps necessary to produce

the part. The BOM is essential for conducting a life cycle analysis of the product.

The entire list of components in listed in the thesis appendix. For each component,

material and manufacturing processes were estimated based on queries within CES

Material Selector [77] and availability within SimaPro
TM

7.1 [39]. The LCA was con-

ducted via SimaPro
TM

7.1 [39] and the Ecoinvent 2.0 database [78]. A full functional

analysis was completed to understand the inter-structural component relationships.

Extracting design knowledge from the product through disassembly helps construct

the function-structure matrix (FSM). After estimating the environmental impact of
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Figure 4.4. Three dimensional uncertainty plot for the desirability
values of functions of the pneumatic impact wrench.

each component and the FSM, the FIM was completed by assigning weights based on

structure to function. In this case, two design experts independently assigned weights

to each function-structure relationship, and then concurred on the final weights. A

tabular representation of the FIM is shown in Figure 4.2.

Utilizing Equations (4.6), (4.7), and (4.8) the measure for the connectivity metric

(conni) is derived for each function as shown in Figure 4.3. Simply surveying Figure

4.2, it is evident that the function House components carries the heaviest environ-

mental burden, 39.7% of the total environmental impact, which makes it the most

suitable candidate for redesign. However, when analyzing the design structure, it be-

comes clear that the function House components is highly coupled with other product

functions. Therefore, the redesign of this particular function becomes rather complex.

This is an example of a case where the designer has to associate a preference between

the environmental impact that can be saved and the ease of the redesign process itself.

This preference is captured using the multiplicative factor k in our measure of the

desirability for redesign. The desirability measure proposed is an effort to capture

this tradeoff, and also estimate the robustness of this decision under uncertainty as

discussed in the results section.
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Figure 4.5. Normalized two-dimensional robustness plots with vary-
ing values of scaling factor (k) for functions of the impact wrench.

4.5 Results

The data from the FIM along with function-coupling data derived from the FSM

were used to construct an IGDT model for the case study. Figure 4.4 shows the plot

of uncertainties with respect to the desirability measure of the function House Com-

ponents. It is clear that at certain high values of uncertainty the set critical limit of

desirability (0.25) is exceeded. This underscores the importance of assessing the un-

certainties present in the FIM. Figure 4.4 shows the robustness plot between a value

of desirability and the corresponding uncertainties present. As shown, the functions

Prevent Wear and Locate Bolt do not have a significant drop in the value of desirabil-

ity with increasing values of uncertainty. Therefore, they are robust selections from

a redesign perspective. On the other hand, House Components has a higher desir-

ability measure at zero uncertainty, but drops off rather rapidly. The plots in Figure

4.4 are useful in making a particular decision only if the desirability measure of one

function dominates the others for all values of critical desirability. However, as shown

in the above case there is a switch in dominance depending on the value of critical

desirability. In such cases, unless the interval of critical desirability is negligible, there

exists a region where an alternative cannot be chosen without providing additional



33

information to the decision maker [74]. This required information provides details of

trade-offs between competing uncertainties. Scaling weights specified by Ben-Haim

and Laufer [79] is one such way of trading-off uncertainties. The information-gap

model considering scaling factors is given by Equation (4.15).

U(α, û) =

{
u : |un − ûn

ûn
| ≤ sn · α

}
; n = 1, 2, . . . , N ; α ≥ 0 (4.15)

Here, sn is a unitless scaling factor that modifies the magnitude of α to be of

appropriate scale for each uncertain variable un. Scaling factors are determined on

available prior knowledge of the nature of uncertainties in question. However, in the

present case, the designer has access to no such information. Therefore, equal scaling

factors are adopted for modeling uncertainties. If the decision maker can obtain

reliable information on the nature of these uncertainties in the future, IGDT can be

employed with those specific scaling parameters. By the use of scaling parameters,

the problem is condensed into trading of robustness between the critical value of

desirability and a baseline value of uncertainty, which contains information on both

the environmental impact and function-structure uncertainties.

Figure 4.5 displays the robustness factors with equal scaling factors, for three

different values of preference factors (k). When it is assumed that there is no un-

certainty, the function House Components achieves the maximum of desirability of

0.44, and is the obvious candidate for redesign. However, as the baseline uncertainty

increases, the alternative to be chosen switches. For example, in the plot with k = 1,

the functions House Components and Prevent Wear intersect at the baseline uncer-

tainty value of 0.13 (13% deviation from the nominal). Thus, beyond this value of

uncertainty, Prevent Wear achieves a higher desirability measure and is to be chosen

as the function to be redesigned. This indicates that the function House Components

is not robust to uncertainty as much as Prevent Wear. If a designer is prepared to

accept a critical desirability (maximum achievable value of desirability) of 0.34, then

Prevent Wear should be chosen for redesign due to its robustness to uncertainty. Or

else, if the designer is certain that the uncertainty in his calculations lies under 0.13,
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House Components. The other significant feature observed from the above figures

is that as the need for product modularity becomes more important during redesign

Prevent Wear tends to approach the maximum desirability value of House Compo-

nents and beyond k=1.33 emerges as the function which has both the highest value

of desirability measure robustness to uncertainty. Thus, it dominates all other func-

tions in entirety and is the logical choice for redesign, without the need for further

deliberations from the designer.

4.6 Conclusions and Future Work

This chapter discusses a method for incorporating a formal uncertainty framework

within the function impact method (FIM). An Information Gap Decision Theory

(IGDT) based model is used to quantify uncertainties in the FIM. The proposed model

accounts for uncertainties in environmental impact as well function allocation weights.

Using IGDT, it is shown that decisions taken without any regard to uncertainty may

lead the designer down the wrong path. The case study conducted in the C.H 1
2

inch

impact wrench highlights the fact that IGDT can determine the range of uncertainty

for which a particular product function has the highest expected utility. Our case

study uses equal fractional scaling within the IGDT, as there are no existing means

of obtaining this data. Future work that can refine our approach include, conducting

studies among designers to elicit preference, expanding the desirability measure for

functions to incorporate elements such as cost, available manufacturing methods,

and an objective methodology to estimate the multiplicative preference factor within

sustainability-based design decision-making.
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5. ENABLING MULTI-STAKEHOLDER DECISION-MAKING IN

ENVIRONMENTALLY CONSCIOUS PRODUCT DESIGN

In this chapter, we present a framework for integrating life cycle assessment/analysis

(LCA) with multi-criteria decision analysis (MCDA) to facilitate rational decision-

making with regards to aiding environmentally conscious product design (ECPD).

In group-based decision analyses, a deterministic preference score may mislead the

designer, especially when competing decision criteria (i.e. design for environment

(DfE) strategies) have similar scores, as described by Choi et al. [5]. Therefore, we

develop a framework for incorporating uncertainty and sensitivity analyses within

the decision-making process by means of a Monte Carlo Simulation (MCS). This

process allows the decision maker to develop an understanding of the spread/variance

of feasible decision criteria. Although different companies have different strategies

and criteria, a general framework will allow companies to systematically prioritize

DfE strategies, enabling more robust decisions for ECPD. We start this chapter by

introducing the reader to the Analytic Hierarchy Process (AHP) and extend this

discussion towards a stochastic AHP. Section 3.2 describes the proposed methodology,

including an LCA module, a DfE module, and an MCDA module with uncertainty

analysis. Section 3.3 describes the process of applying the proposed framework to

a real-world case study. This case study involves prioritizing DfE strategies for the

redesign of a surface drilling rig within a leading mining equipment manufacturer

based in Finland. Section 3.4 summarizes results and discusses statistical methods

for ranking decision alternatives analyzed using our proposed framework. Section 3.5

concludes this chapter and outlines future research.
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5.1 Introduction to the Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP), developed by Saaty [80], is a flexible

MCDA tool for complex problems where both qualitative and quantitative aspects

are considered. It helps the analyst organize the critical aspects of a problem into a

hierarchical structure. Equations for an AHP are shown below.

Equation (5.1) calculates the consistency index (C.I) between decision criteria

and provides a confidence level of the decisions provided by the subjective experts

and Equation (5.2) calculates its consistency ratio (C.R). Equation (5.3) calculates

the global weight of each sub-criteria and Equation (5.4) captures the global priority

score which provides a deterministic, single value of the relative importance of each

decision criterion analyzed using the AHP.

C.I = (Ψmax −N)/(N − 1) (5.1)

C.R = C.I/R.IN (5.2)

GWj = LWi × LWj (5.3)

GPSk =
∑

(GWj ×RSj,k) (5.4)

Here,

N : number of activities/size of the pair-wise comparison matrix

C.I: Saaty’s consistency index

C.R: consistency ratio of the pair-wise comparison matrix

R.IN : random consistency index for the pair-wise comparison matrix of size N

Ψmax: max. Eigenvalue of the pair-wise comparison matrix of size N

GWj: global weight of jth criteria

LWi: local weight of ith criteria

LWj: local weight of jth criteria

GPSk: global priority score of kth DfE strategy

RSj,k: rating of kth DfE strategy w.r.t. jth sub-criteria
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People lacking experience in the fundamentals of AHP might encounter difficulties

when directly inputting ambiguous judgments into the preference matrix. Question-

naires provide a more systematic approach for constructing the AHP matrix. Struc-

turing a questionnaire includes defining the main elements of the hierarchy at each

level and eliciting their importance through specific questions. It is important to

avoid possible misunderstandings with the respondent, as the phrasing of the ques-

tions and recording of the answers could influence the final result. The perceived

direction of the objectives (i.e. positive or negative) plays an important role within

the design of the questionnaire. All the objectives on a common level should share a

common perceived direction. For example, objectives such as improved use of recycled

material for the raw material criteria and enhanced supplier relationship need to have

a positive direction with respect to the external driver.

Although a traditional AHP can be a useful tool, it requires decision makers (DMs)

to translate ambiguous judgments into a deterministic preference value for estimating

pair-wise comparisons of objectives and decision alternatives. The accuracy of the

comparisons of all pairs of criteria and the resulting decision alternatives may be

significantly influenced by the information available to the DMs, their understanding

of the problem under consideration, as well as their previous perceptions [81]. These

issues are of special concern when dealing with a complex global issue such as design

for environment (DfE). Misconceptions based on media outlets and specific design

experiences can greatly affect decisions within sustainable product development [82].

Moreover, design decisions within an organization are taken by a group of DMs.

It is reasonable to assume that each DM in a group has a different value scheme that

may significantly deviate from the value scheme held by another DM in the group.

This assumption is especially true when considering decision groups for DfE which

are usually formed from people belonging to diverse work groups (i.e. product de-

signers, financial managers, environmental engineers, suppliers etc...). By adopting

a deterministic weighting scheme in the AHP, any resulting uncertainties or valuable

information about individual preferences of the team cannot be analyzed. There-



38

fore, for robust decision-making, the AHP should incorporate means for statistical

testing or significance comparison among alternatives. The priority ranking of alter-

natives resulting from the AHP should also be analyzed for variation with respect to

uncertainties in the input data itself.

Constructing a closed-form analytic model in the AHP (to represent output uncer-

tainties as an explicit function of input uncertainties) entails significant complexities.

Previous research has approached this problem by incorporating methods such as

probabilistic judgments, interval analysis, and fuzzy theory within the AHP. The

methods described above aid DMs in reaching a statistically significant conclusion

regarding their decisions. However, these methods are limited by the fact that they

need a large sample size of decision weights and consequently DMs. An additional

problem when dealing with purely probabilistic judgments is the fact that the small

sample size of input data prevents accurate parameterization of this data by a statis-

tical distribution [83]. The Modified Analytic Hierarchy Process (MAHP) developed

by Banuelas et al. [84] tries to address the above issues and also considers manage-

ment related factors in decision-making. The MAHP makes use of a Monte Carlo

simulation (MCS) through random sampling of an estimated statistical distribution

of input preferences. Uncertainties associated with the model are propagated through

the decision-making framework. It should be noted that an MCS based approach can

be considered the most effective quantification method for uncertainties and variabil-

ity among the tools available for environmental system analysis [85]. However, the

MAHP is limited by the fact that it forces the DMs to parametrize decision weights

using a triangular distribution. Although the assumption of a triangular distribution

for decision weights works well when they converge to a unique modal value, this

assumption may not be valid in cases where they are uniformly distributed across

a range or multi-modal. Also, the process of surveying a small sample of DMs can

be considered as polling a subset of expert DMs from the available population. Us-

ing a triangular parametrization prevents DMs from making inferences about the

population as a whole.
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Figure 5.1. Figure illustrating the structure of the pairwise compar-
ison matrix of the deterministic and the stochastic AHP.

To overcome the above limitations, we propose an MCDA framework that incorpo-

rates a stochastic Analytic Hierarchy Process (sAHP) using Bootstrap resampled deci-

sion weights. Bootstrap resampling is applied in this case as it, (1) is non-parametric

in nature (i.e it does not assume that the data is representative of a specific sta-

tistical distribution), and (2) allows for measuring the variability of input data by

independent and identically distributed (i.i.d) sampling. Also, the resulting boot-

strap distribution is centered on the expected value of the true distribution and thus

the performed sAHP analysis will be centered on an AHP analysis conducted by aver-

aging individual preferences. In an sAHP, instead of deterministic preference values

of a traditional AHP, an (i.i.d) sample (βij(m)) is drawn from a set of preference

values. The expected value of these preference values (bij) from all the parameters

are plugged into a pair-wise comparison matrix, producing a possible prioritization

of the alternatives under consideration. Repeated calculations (‘N’ times) produce

a distribution of the predicted output values reflecting combined parameter uncer-

tainties. Thus, this process is akin to performing a Monte Carlo Simulation (MCS)

with bootstrap resampling. It should be noted that uncertainties in the reference
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data (i.e. LCA results) can influence the results of the sAHP. Even though our pro-

posed framework does not explicitly model uncertainties in reference data, a highly

uncertain reference data will cause a large variance in priority weights, which will in

turn, result in overlapping decision alternatives. Figure 5.1 illustrates the difference

between the deterministic and the stochastic AHP. In a traditional AHP, the pair-

wise comparison matrix contains deterministic values that indicate how much more

important the ith criteria is than the jth criteria. On the other hand the pairwise

matrix of a sAHP contains one of the many possible expected values of that criteria

weight. The sAHP leads to the construction of a set of priority vectors corresponding

to each possible evaluation of importance criteria. Consequently the sAHP generates

a statistical distribution of prioritized alternatives and their consistency ratios (C.R).

5.2 Proposed Multi-Criteria Decision Analysis Framework

The proposed methodology for incorporating multi-criteria decision making within

environmentally conscious product redesign is detailed in Figure 5.2. Our framework

consists of four distinct modules: (1) a life cycle assessment (LCA) module, (2) a

design for environment (DfE) module, (3) a multi-criteria decision analysis (MCDA)

module, and (4) an uncertainty module.

5.2.1 Life Cycle Assessment Module

The LCA module identifies the environmental impact of the specified product

system. There are various types of LCA: traditional SETAC LCA or a process based

LCA [86], economic I/O (input/output) based LCA [87, 88], and a hybrid LCA [89].

Each LCA has a scope that defines the system boundaries. SETAC LCA provides

the most accurate result in the finest level within limited system boundaries while an

economic I/O based LCA provides the most comprehensive result on an aggregated

economic sector level perspective. A hybrid LCA combines these two types to miti-

gate the weaknesses of each methodology. Since the proposed framework is intended
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Figure 5.2. Proposed pipeline for incorporating multi-criteria decision
making within environmentally conscious product redesign.

for application in a business setting, there are severe constraints on available resources

and time which require the set system boundaries to be relatively fine. Therefore,

a SETAC LCA is preferred. Also, the use of existing life cycle inventory databases

greatly simplifies the life cycle inventory analysis. Although lifecycle inventory anal-

ysis provides insight regarding the environmental hotspots of the product system,
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it cannot be applied directly to judge the environmental performance of a product

system due to the lack of specific judgment criteria. Therefore, life cycle impact as-

sessment is conducted to convert the inventory results to normalized environmental

impact results. Once the inventory parameters are classified into impact categories,

the relative contribution of each inventory parameter to a given impact category is

quantified using a characterization factor [90]. The next step in this module is life

cycle interpretation where key issues such as the activities, processes, materials, com-

ponents, and life cycle stages are identified [91].

5.2.2 Design for Environment Module

Each life cycle stage has a set of associated DfE strategies each contain various

sub-criteria for improving the environmental aspect of a product system. In our

framework, we adopt the list of DfE strategies developed by Brezet et al. [92]. Within

a DfE module, the DMs analyze the LCA results to determine how the corresponding

sub-criteria should be prioritized. The selected set of DfE strategies will be evaluated

for feasibility of implementation using the MCDA module.

5.2.3 Multi-Criteria Decision Analysis Module

In this module, an AHP hierarchy is constructed such that the prioritization of a

particular DfE strategy from the pre-mentioned DfE list is placed on the first level

of the hierarchy. The second level of this hierarchy provides the local weights of

environmental and business-related criteria. Each criterion consists of sub-criteria

which represent the desired improvement options and thus provide local weights for

sub-criteria. The lowest level of the hierarchy consists of the alternatives, namely the

different Designs for Environmental (DfE) strategies. To elicit the importance of the

involved alternatives, we construct a survey that evaluates pair-wise weights relevant

to the AHP hierarchy. This survey is distributed to a group of expert DMs that have

sufficient knowledge of the lifecycle of the product as well as an understanding of its
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environmental impacts. It is recommended that individuals are drawn from different

organizational divisions (such as design, management, maintenance etc... ). Following

this, we setup the sAHP process such that each pair-wise weight is an i.i.d sample

drawn from the set of all such pair-wise weights obtained from the survey. Next,

priority vectors and principal Eigenvalues are evaluated for screening out runs which

do not meet the desired consistency ratio. The, we generate a set of global priority

scores obtained from multiple runs of the above. Finally, we generate a ranking

scheme for the DfE strategies using confidence bounds of the normalized preference

for that particular design for environment strategy.

5.2.4 Uncertainty Module

While conducting an MCDA involving independent assessments by a group of

DMs, it is also essential to identify the decision variables that can significantly affect

the final outcome. In the present study, this is achieved by performing a sensitivity

analysis on the model. A sensitivity analysis reduces the evaluation space and thus

the amount of time necessary to refine evaluations. In the context of this study, the

term sensitivity can be defined as the degree of correlation between the renormalized

DfE preference values and the input criterion of the sAHP. A detailed explanation of

the above in addition to the method for performing sensitivity analysis is explained

in the context of the case study in the next section.

5.3 Case Study

The proposed methodology was applied within a leading manufacturer of mining

equipment (henceforth titled Company A) based in Finland. Company A manufac-

tures a wide variety of drilling rigs among which a hydraulic, surface drilling rig

(henceforth titled Product 1 for confidentiality). Product 1 was earmarked for en-

vironmental assessment based on the principles of Life Cycle Assessment. It should

be understood that Product 1 is an assembly of over 5000 individual parts and con-
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Figure 5.3. Stacked bar chart outlining the significance of use and
maintenance phase in the LCA of Product 1.

ducting an extensive LCA requires accessing material and design specifications from

highly confidential inventory data. Therefore, the present study is based on a prior

LCA conducted internally by the company on Product 1. We were directly involved in

interpreting the results of the conducted LCA and designing the DfE and the MCDA

module as per Company A’s requirements.

5.3.1 LCA Procedure for Product 1

The LCA on Product 1 was conducted according to the ISO14040 and 14044

standards on environmental management. The LCA includes the following stages

of the lifecycle, (1) raw material acquisition, (2) part manufacturing and assembly,

(3) transportation, (4) use phase, (5) maintenance, and (6) product’s end-of-life. The

end-of-life phase examines scenarios of remanufacturing, reuse, disassembly, recycling,

and disposal. It should be noted that the review of post-use phase is largely based

on qualitative inputs due to non-availability of real world data. Listed below are the

definitions of the conducted LCA.
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1. Goal and Scope: The LCA in the present case is an exploratory study of

the life cycle resource consumptions and emissions of Product 1. The primary

goal of the LCA is to develop and implement practical guidelines that mini-

mize impacts resulting from the production processes as well as the product

itself. The intention is to use this method to identify business-related risks and

strategies from an environmental point-of-view to aid future purchasing deci-

sions and incorporate recommended design changes or improvements. The short

term goal is to improve the lifecycle resource efficiency of Product 1 and to im-

plement cleaner, less expensive, and smarter solutions in the business process.

This involves discovering factors of environmental impact which are not only

the most significant but exhibit economically feasible redesign opportunities.

The long term goal is to gain useful information for future product planning to

make all products more eco-friendly. A special point of interest within the LCA

is evaluating the feasibility of a selective take-back program and a systematic

disassembly scheme.

2. Functional unit: The functional unit is defined as the production, use, and

disposal of one drill rig which fulfills the functional requirements set to its life

time service and which is constructed with inputs (material and energy) of as low

environmental impact as possible. Expected service life is taken into account.

The product’s lifetime under normal conditions of utilization and maintenance

is expected to be 25 years.

3. Reference Flow: The reference flow of this LCA study is the manufacture of

one Product 1 drill rig containing mainly steel and hydraulic parts.

4. Impact categories selected and LCIA methodology: The used impact

categories are climate change, acidification, eutrophication, toxic effects on hu-

mans and ecosystems, ozone formation, depletion of fossil fuels and minerals.

The used LCA methodology is comprehensive and follows standards of Life Cy-
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cle Assessment using the EcoInvent database for inventory analysis [78] and the

EI99 scheme provided by SimaProTM [39].

5. Allocation procedures/boundaries in relation to other life cycles: Al-

location is avoided by splitting the process in specific separate processes. The

manufacturing process does not include any clear co-processes or co-products.

6. Intended audiences: The LCA of Product 1 is to be used for internal purposes

in Company A.

7. Report Generation: The report of the LCA follows the requirements of ISO

14048 LCA data documentation format. The documented report contains LCA

data, tables, and figures.

5.3.2 Results of the LCA of Product 1

The results of the conducted Life Cycle Assessment revealed the following signif-

icant details.

1. The most significant lifecycle phase from an environmental perspective is main-

tenance and use. Close to 95% of the lifecycle impact of Product 1 is due to

high diesel fuel consumption and resulting emissions. Figure 5.3 outlines the

normalized LCA result outlining the impact contribution of this stage.

2. Oil consumption along with maintenance of change rods and crowns also con-

tribute towards significant use phase impacts.

3. There is a strong potential for reducing end-of-life environmental impacts by

pursuing strategies related to substitution with recyclable materials and elimi-

nation of toxic materials.

4. Planning for disassembly is a key criterion for enabling better management of

the end of life of Product 1. This process should be coupled with consumer

awareness programs.
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5. Design for durability can greatly aid in reducing use phase impact by reducing

the frequency of oil and part changes.

6. Reducing material flow and waste at the assembly plant could lead to significant

savings in environmental impact.

Based on the results of the Life Cycle Assessment, the following specific recom-

mendations were made in order to reduce the lifecycle impact of Product 1.

1. Reduce use phase oil consumption.

2. Reduce percentage of Nickel and Chromium in the steel mixture of Product 1.

3. Increase part reliability to minimize the number of part replacements over the

lifetime of the product.

4. Incorporate a recycling program for minimizing the end-of-life environmental

impact associated with Product 1.

5. Reduce consumption of drilling consumables.

6. Reduce part count of Product 1 through design for manufacturing strategies.

7. Reduce assembly phase consumables, including electricity and water usage.

8. Reduce use phase noise pollution.

Although the above recommendations would greatly help in reducing the lifecycle

impact of Product 1, the feasibility of implementing these strategies or their effect on

the business performance of the company were not analyzed within the LCA.

5.3.3 DfE and MCDA Module

Figure 5.4 illustrates the overall hierarchical structure of the MCDA conducted

within Company A. In this case, the AHP hierarchy is constructed as per the pro-

cedure detailed in the methodology section. For this case study, the list of DfE
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strategies are chosen from an exhaustive list compiled by Brezet et al. [92]. How-

ever, conducting an AHP based on the entire set of strategies is time and resource

intensive (n DfE strategies with m assessment criteria will require n2m
2

evaluations).

Thus a pre-assessment of DfE strategies is performed for narrowing the selection be-

fore incorporating them within the AHP hierarchy. Within this case study, product

managers from Company A ranked the criteria as per their relevance to the project

and its applicability. Two product managers of Product 1 independently ranked the

DfE criterion on a Likert scale ranging from very important (9), to least important

(1). The top eight DfE criteria were chosen for detailed analysis based on the sAHP.

It should be noted that the number of DfE strategies selected for final evaluation is

a function of available project resources (time, applicability of the DfE strategies in

the context of the product, relevance of DfE strategies to company goals, etc..) and

the outcome of the rankings. Although the pre-assessment of DfE strategies reduces

the scope of the final evaluation, strategies that are of most interest to the com-

pany with regards to feasibility of implementation pass through the pre-assessment

stage. If these strategies do not correspond to specific recommendations made after

the LCA, the company can choose to re-evaluate their selection methodology at the

pre-assessment stage and re-select better candidate strategies.

After performing the DfE pre-assessment module, a pair-wise comparison survey

was sent to fifteen personnel involved in lifecycle planning and environmental assess-

ment for Product 1. Of these, ten complete responses were returned. Each survey was

accompanied with supporting documents as detailed in the methodology section. The

survey template was designed on Microsoft Excel R© for ease of distribution and data

extraction. The respondents were required to allocate pair-wise weights within the

survey based on the LCA results and their inherent knowledge about the feasibility

of the design process. Detailed information regarding the survey questionnaire can

be found in the thesis appendix (see Figure B.1). These sets of ten unique pair-wise

weights for a specific comparison factor were used for data resampling through the
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Table 5.1. Comparison of the normalized preference values of the
sAHP with the deterministic AHP.

DfE strategy sAHP mean AHP

Avoid toxics 0.13638 0.13533

Weight reduction 0.10370 0.10601

Efficient distribution 0.08593 0.08630

Energy efficiency 0.13470 0.13625

Minimize consumption 0.17283 0.17230

Low impact operation 0.13668 0.13590

Durability 0.12528 0.12345

Safe disposal 0.10450 0.10446

sAHP. For conducting the sAHP, a custom simulation tool was created using Visual

Basic for Applications (VBA) in Microsoft Excel R©.

5.4 Results

Figure 5.5 illustrates an example of the results of the simulation (n=1500) run of

the sAHP. A frequency distribution of the normalized preference of the DfE strategy

Ensure efficient distribution is plotted on the left and the overall consistency ratio

of the sAHP is plotted on the right. Each bar on the plot of the overall consistency

ratio is analogous to the likelihood of having a given consistency ratio. The spread

of the Overall C.R’s is between 0.035 and 0.07, which is well below the acceptable

score of 0.1 as defined by Saaty. The variance of the normalized preference values

represents the variability in the input preference weights combined with the errors

resulting from bootstrap re-sampling. Similar results can also be obtained for all the

other DfE strategies. Figure 5.5 also visualizes all the DfE strategies plotted on the

same scale by smoothing the histograms using a normal kernel density estimate.
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The kernel density estimate is a probability density estimate of the sample, based

on a normal kernel function evaluated at 100 equally spaced points that cover the

range of the data. As all the DfE preferences are plotted on a normalized scale, the

magnitude of the expected value of each DfE distribution gives a measure of its overall

preference. For example, from Figure 5.5 it is evident that Minimize Consumption

and Efficient Distribution are the most and least preferred DfE strategies respectively.

Table 5.1 compares the results of the sAHP with the preference values obtained

by conducting a deterministic AHP by averaging the pairwise comparisons provided

by the ten DMs. As seen, the mean value of normalized preferences in the sAHP is

approximately equal to the former, the difference resulting from errors in the process

of bootstrap re-sampling. The sAHP framework allows for estimating the variability

in the resulting preference values due to differences in pairwise comparisons by mul-

tiple DMs. On the other hand, this information is lost while averaging the weights a

priori for the sake of conducting a deterministic AHP.

To ensure that the decisions made based on the results of the sAHP are statistically

valid we compute, (1) a measure of confidence bounds for characterizing the error due

to bootstrap re-sampling, and (2) the difference in the normalized preference values

of the DfE alternatives to test statistical significance (p = 0.05). For characterizing

the error in bootstrap re-sampling, a 95% bootstrap percentile confidence interval (i.e

the interval between the 2.5% and 97.5% percentiles) of the statistic is generally used.

However, when the resulting bootstrap distribution has a small bias and approximates

a Gaussian distribution, the confidence interval can be approximated by Equation

(5.5) [93] as shown below.

[BCIh, BCIl] = µ± t∗S (5.5)

In the given case, a Lilliefors test is performed to confirm the normality of the

resulting bootstrap data. The Lilliefors test is a two sided goodness of fit test that

tests the hypothesis that the sample data comes from a distribution in the Gaussian

family against the possibility that the sample data does not come from a Gaussian
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Figure 5.6. Results of the statistical hypothesis testing.

distribution [94]. To compute whether the means of the preference values are sta-

tistically different, the differences in the means of DfE alternatives are computed as

shown in Equation (5.6) (i.e. inspecting whether this difference is greater than the

maximum value of bootstrap standard error).

µ1 − µ2 > t∗(S1 + S2) (5.6)

This analysis is performed for each of the DfE alternatives with respect to all the

other seven DfE alternatives. The results of this analysis are displayed in matrix

form within Figure 5.6 where a ‘1’ indicates that the null hypothesis, µ1 ≤ µ2 can be

rejected at a significance level of 5%. Figure 5.6 also shows that the DfE principle

of Minimizing Consumption has the highest mean, and thus is the most preferred

alternative. Efficient Distribution is the least preferred alternative.

Although, the above analysis is sufficient for ranking the alternatives in the sAHP,

it is important to characterize the sensitivity between the various alternatives with

respect to the input data in the sAHP model. More specifically, the Spearman’s

rank correlation coefficient, a non-parametric measure of the statistical dependence,

is used. The null hypothesis is that the rank of the normalized preference value of

the DfE alternative does not co-vary with the rank of the values of a particular sAHP
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Figure 5.7. Sensitivity of alternatives for an example sAHP input.

input. A highvalue of the Spearman coefficient along with a p-value of less than 0.05

rejects the null hypothesis.

The DfE alternatives in the present case study are the most sensitive to the input

weight of Low Production Waste. Figure 5.7, visualizes the sensitivity plot. Therefore,

the DM team may wish to investigate this criterion further in the hopes of reducing

its uncertainty involved in constructing a pair-wise comparison matrix. A similar

analysis can be performed for all the factors present in the sAHP.

The final recommendations made to Company A based on the results of the LCA

with MCDA pipeline proposed in this study are shown in Figure 5.2. The feasibility

of adopting a particular recommendation made using the results of the Life Cycle

Assessment are rated according to the rankings of the corresponding Design for Envi-

ronment strategies as per the sAHP. The results show that Minimizing consumption

of assembly phase consumables and Reducing use phase oil/noise consumption are

the most feasible recommendations. However, they account for a minor fraction of
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Table 5.2. Recommendations for adopting LCA strategies based on DfE rankings.

Recommendation based on LCA DfE strategy with rank

Reduce use phase oil consumption Low impact operation (2)

Reduce percentage of Nickel and Chromium in

Steel mixture
Avoid toxics (3)

Increase part reliability to minimize replacements Durability (3)

Incorporate recycling program for Product 1 Safe disposal (4)

Reduce consumption of drilling consumables
Energy efficiency (3), Low

impact operation (2)

Reduce part count of Product 1
Weight reduction (4),

Efficient distribution (5)

Reduce assembly phase consumables (i.e. electric-

ity, water, etc... )
Minimize consumption (1)

Reduce use phase noise pollution Low impact operation (2)

the overall lifecycle impact for Product 1. Conversely, use phase impacts (including

operation and maintenance) amount to nearly ninety five percent of the total impact.

The corresponding DfE strategies i.e. Designing for energy efficiency and Low

impact operation are viewed by Company A as mid-level feasible. Therefore it was

suggested that Company A immediately address the issue of reducing assembly phase

impacts and develop a long term strategy to redesign Product 1 for lower operation

phase impacts. Upcoming European Union energy regulations such as the Energy us-

ing Products (EuP) further strengthen the cause for such a long term goal. Reflecting

on the least favored strategies namely ensure efficient distribution and safe disposal,

it can be hypothesized that Company A has little or no control over the sustainability

practices of its suppliers and end users. Since drilling rigs operate in remote areas,

product recovery is a formidable task.
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Furthermore, these two stages do not significantly contribute to the overall lifecycle

impact of Product 1. The primary motivation for pursuing one of these strategies

would be to comply with possible regulations in the domain. The above discussion

makes a case for adoption of the presented decision framework within the industry to

abate environmental impact of their products in cognizance of the company’s goals,

business needs and constraints.

5.5 Nomenclature

i: Type of criteria i∈ 1, 2...I

j: Type of sub-criteria j∈ 1, 2...J

k: Type of DfE strategy k∈ 1, 2...K

N : Number of activities/Size of the pair-wise comparison matrix

C.I: Saaty’s consistency index

C.R: Consistency ratio of the pair-wise comparison matrix

R.IN : Random consistency index for the pair-wise comparison matrix of size N

Ψmax: Max. Eigenvalue of the pair-wise comparison matrix of size N

GWj: Global weight of jth criteria

LWi: Local weight of ith criteria

LWj: Local weight of jth criteria

GPSk: Global priority score of kth DfE strategy

RSj,k: Rating of kth DfE strategy w.r.t. jth sub-criteria

BCIh: Upper bound of the Bootstrap confidence interval
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BCIl: Lower bound of the Bootstrap confidence interval

µ: Expected value of the Bootstrap distribution

t∗: Critical value of the t(n-1) distribution at a p value of 0.05

S: Bootstrap standard error

5.6 Conclusions and Future Work

An MCDA based tool that allows designers to balance business decisions, process

feasibility, and environmental considerations is likely to enhance the willingness of de-

cision makers to pursue environmentally conscious product design (ECPD). Although

there are numerous business vendors within design and engineering solutions/services

that package individual modules such as LCA, AHP, and Monte Carlo Simulation,

the real challenge is to develop an easy-to-use, holistic platform which integrates all

these modules in order to facilitate systematic decision-making for ECPD. This chap-

ter details a framework for addressing the above, with the primary goal of improving

the environmental aspect of the product through DfE whilst integrating business and

feasibility parameters. The proposed framework integrates the qualitative and quan-

titative aspects of decision-making by correlating LCA with an AHP-based stochas-

tic analysis. It is a qualitative method in the sense that it utilizes subjective data

collected from experts through a developed questionnaire. At the same time, it is a

quantitative method since it calculates the global priority scores (GPS) and estimates

the Eigenvalue/Eigenvectors for each decision criteria based on a LCA results and re-

design feasibility. Furthermore, the process for solving Eigenvalues and Eigenvectors

of each pair-wise comparison matrix evaluates that the data provided by the design

team is logically consistent, facilitating a rational decision-making process. One of

the major contributions of our framework is the integration of an uncertainty analysis

module within this integrated framework through the use of a stochastic AHP with

bootstrap re-sampling. Additionally, statistical significance testing and a sensitiv-
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ity analysis enable decision makers in taking robust decisions as well as refining the

accuracy of the analysis. Methods for designing the questionnaire, constructing the

pairwise comparison matrix, and calculating GPS are illustrated in order to under-

stand the proposed methodology. Finally, the implementation of the methodology

within Company A verifies its ease of applicability in a real-world industry setting.

Although an integrated framework that incorporates environmental and business

considerations was presented, it should be understood that the method only identifies

management level strategies to support ECPD. Decisions that support ECPD activ-

ities need to consider product information from both a company level as well as the

product component level perspective. Future research should focus on extending this

framework so as to translate the presented DfE strategies to the product component

level with the goal of generating specific redesign instructions.
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6. VISUALIZATION FRAMEWORKS FOR SUPPORTING

ENVIRONMENTALLY CONSCIOUS DESIGN EXPLORATION

Reducing the environmental impacts of products and services has become an impor-

tant focus for industries [95]. Among the various opportunities available for reducing

the environmental footprint of a product, usually the design stage offers the most

potential [12]. Integrating environmental aspects of a product with its design creates

the need for searching environmental information, performing environmental assess-

ments, and outlining a suitable strategy [92]. This chaper is focused on the search part

of this process and looks at computer supported methods and tools for exploration.

Since we specifically look at design exploration activities in the context of eco-design,

we refer this process as eco-conscious design exploration (ECDE). We define ECDE

as, designer-driven exploration of previous designs to support eco-design. The goals

of this process can be to, (1) compare environmental impacts of previous designs, (2)

generate an understanding of correlations between design attributes & environmental

impact, and (3) discover more benign alternatives for a design.

6.1 Challenges in Supporting ECDE

Consideration of environmental sustainability adds parameters and constraints to

the design process which increases design complexity [82]. Cognitive load resulting

from complex inter-relationships between design parameters can hinder insight gener-

ation. Studies conducted by Mathias [96] reveal that presenting design parameters in

a structured manner can help the designer to succeed. This structuring is particularly

important in the case of novice designers, who tend to overlook the complex dynamic

relationships between design parameters. In the case of eco-conscious design explo-

ration (ECDE), the issue of having to deal with multiple inter-related parameters is
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compounded by the fact that methods and computer support tools for eco-design are

disconnected from those focused on design exploration. One primary reason for this

disconnect is the mismatch in data representations used in these two contexts [97]. To

illustrate, conducting a Life Cycle Assessment for a part does not require knowledge

about its function, or shape. However, these attributes are considered to be vital

towards assessing design intent and similarities during design exploration. Reducing

such gaps is essential for easing the barrier to ECDE.

6.2 Motivation for Applying InfoVis to ECDE

Information visualization (InfoVis) is defined as the use of computer-supported,

interactive, visual representations of abstract data to amplify cognition [98]. An im-

portant aspect of InfoVis and Visual Analytics – automated analysis techniques with

interactive visualizations for decision-making [99], is keeping the human-in-the-loop.

This forms a strong basis for applying InfoVis to tasks in ECDE as it often requires

reasoning through heterogeneous, complex, and often incomplete data. Although au-

tomated approaches such as machine learning and expert systems are beneficial for

eco-design, their application to ECDE is limited due to the fact that such approaches

are directed towards close-ended tasks within focused scenarios. In contrast, ECDE

involves tasks wherein, although the end goal is known, designer’s rarely know how

the best approach the problem, what questions to ask, and which among them are the

right questions to consider. Such exploratory tasks are often best served by creating

InfoVis tools that combine the powerful pattern detection properties of the human

visual system with the large-data processing and manipulation capabilities of a com-

puter system [100]. Another advantage of using InfoVis tools in ECDE, is the ability

to create a common representation between domains (in our case environmental as-

sessment and design exploration) by transforming data into graphical primitives [101].

This allows InfoVis-based tools to support designers’ insight generation processes and
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leverage their expertise and experiences in subjective decision-making which is nec-

essary for most tasks in ECDE.

6.3 Addressing Challenges in ECDE through InfoVis

A first step for applying InfoVis techniques in ECDE is identifying existing chal-

lenges in ECDE, and identify ones that can be addressed using InfoVis-based methods

or tools. To this end, we compile a list of challenges in ECDE that are (1) relevant to,

and (2) can be addressed by applying established techniques and methods in InfoVis.

Our goal for compiling this list is not towards creating an encyclopedic collection

of challenges in ECDE. Instead our focus is on enumerating only those challenges

that we think make sense when applying InfoVis to ECDE. As an example, product

lifecycle databases usually contain missing or incomplete lifecycle information due to

non-standardization, errors, and complexities in current measurement and archiving

practices. Although this is an important challenge which needs to be overcome for

ECDE, it cannot be solved by directly applying InfoVis techniques in ECDE. How-

ever, InfoVis techniques can be useful for aiding designers in decision-making under

missing or uncertain information. This distinction forms a central part of our ratio-

nale in compiling such a list. We categorize this list based on (1) the role of the user

in ECDE, (2) nature of tasks in ECDE, (3) limitations in environmental assessment,

and (4) challenges in design exploration. Each challenge in our list is drawn from our

review of relevant literature in ECDE and sustainable design.

6.3.1 Role of the User in ECDE:

By definition, ECDE is a designer-driven process. Therefore, challenges in de-

sign exploration such as (1) designer’s limited expertise, (2) facilitating collaboration

among a diverse team of stakeholders, (3) human subjectivity in characterizing and

resolving conflicting objectives, extend to ECDE. In the context of creating InfoVis-

based tools for ECDE, relevant challenges include,
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• Most designer’s are non-experts in environmental assessment: Environmental

assessment for products can involve a variety of techniques such as checklists,

DfE guidelines, and life cycle assessment (LCA). Although designer’s may be

familiar with a subset of them, in most cases designer’s are not trained in

performing quantitative estimations of environmental indicators [102].

• ECDE is a multi-stakeholder process involving experts across several domains:

At the very least, ECDE requires an active dialog between the product de-

signer and the environmental engineer. Usually, multiple domain experts will

collaborate and contribute to this process. In these settings, it is challenging to

facilitate collaborative exploration as data representations and lifecycle metrics

are dependent on a designer’s expertise level and expertise type.

6.3.2 Nature of Tasks in ECDE:

Tasks in ECDE include (1) comparing similar parts in the context of eco-design

, (2) exploring correlations between design and sustainability-related data, and (3)

discovering more benign design alternatives. In such tasks, designers face challenges

arising from a mismatch in representations between design and sustainability-related

data. This is further complicated by the open-ended nature of these tasks and the

fact that designer’s rarely know the best approach towards solving these tasks.

• Exploring alternatives across system boundaries and life cycle stages: Often,

designers’ tasks span system boundaries. For example, a designer might be

interested in exploring alternatives at a part, module, sub-assembly, or assembly

level. Similarly, a supply chain exploration problem might require decisions at

multiple supplier tiers. Therefore, an ideal ECDE-support tool should allow

designers to traverse such hierarchies across a collection of designs/architectures.

Design decisions have an effect on all downstream processes. Therefore ECDE-

support tools should allow designers’ to consider implications across affected

product lifecycle stages.
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• ECDE processes contain and require subjective assessment of alternatives: ECDE

often required designers to work with heterogeneous, uncertain, and qualita-

tive data. This forces them to make assumptions for streamlining ECDE pro-

cesses. Limitations in data quality, time, and resources also means qualitative

assessment methods such as checklists, QFD-based tools, and LIDS wheel find

widespread use in sustainable design [12]. Subjectivities in environmental as-

sessment are often compounded by designers’ biases [82] Thus apart from facil-

itating design exploration, ECDE-support tools should also contain affordances

for bringing about conceptual changes, and maintaining them.

• Most methods for ECDE are not scalable to a large collection of alternatives:

Environmental assessment of multiple alternatives, requires methods for au-

tomating computation of environmental indicators from standardized represen-

tations of data, and a means to meaningfully display results. A major challenge

is the ability to visualize results of “what if?” questions in ECDE and present

results in an easy-to-understand manner [67].

6.3.3 Limitations in Environmental Assessment

Conducting a quantitative life cycle analysis for comparing designs is a time and

resource intensive process. Simplifying the analysis through streamlined quantitative

assessments, or through semi-quantitative/qualitative tools, introduces significant un-

certainties in the resulting environmental indicators. Another important barrier is

that most methods environmental assessment are difficult to integrate with design

processes. This is because of a relative lack of methods for translating results from

such assessments to actionable design instructions.

• Environmental indicators for ECDE are not contextualized to the design process:

The outcome of ECDE processes are either selection, or redesign of previous ex-

isting designs. Presenting results from environmental assessment in the context
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of design parameters is vital for designers to easily interpret the data, and make

it actionable towards design practice [82].

• The relationship between design parameters and corresponding environmental

indicators is complex, making it difficult to form explicit correlations between

the two: The environmental indicator is a function of a multiple attributes

such as material, manufacturing processes, part geometry, geographic location

of suppliers, and end-of-life mode. Formulating parametric relationships that

capture variation in the indicator as a function of an attribute is complex, time

intensive and more often than not impossible to do [103].

• Quantitative environmental assessments contain significant uncertainties: Of-

ten, designers’ have very little knowledge about the nature of uncertainties in

environmental assessments. Even so, they are required to take decisions based

on partially missing, and uncertain data. Choosing from multiple available for-

malisms for such data [104], and its presentation are significant challenges for

supporting ECDE.

6.3.4 Challenges in Design Exploration

The large number of relevant sustainability and design-related variables in ECDE

result in a high dimensionality of the exploration space. Furthermore, represent-

ing such data using analytical expressions is rarely possible, making it challenging

characterize these explorations spaces. Another significant challenge is the non-

standardization of representations for design and sustainability-related data in the

context of ECDE.

• Design metadata contains variable levels of abstractions: Availability of ac-

curate information, and varying levels levels of specificity design metadata,

presents a challenge in conducting and presenting results of environmental

assessment [43]. Such variations results in environmental assessments with
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variable levels of fidelity. The same is true for ECDE, wherein the designer

has to compare designs with varying specificities in both design-related and

sustainability-related parameters [103].

• ECDE adds to the dimensionality of the exploration space, thereby increasing

the complexity of the process: ECDE requires designers’ to explore and make

decisions in multi-dimensional spaces containing difficult to interpret LCA and

LCIA-related parameters. This requires use of dimensionality reduction tech-

niques such as multi-dimensional scaling [67], weighting schemes [105], or aggre-

gating dimensions (i.e. checklists, LIDS wheel). A consequence of such methods

is a reduction in transparency of the environmental assessment process to de-

signers involved in the decision-making process.

6.4 InfoVis-Based ECDE for 3D Part Repositories

In the proceeding sections, we present the design and evaluation of an InfoVis-

based framework for selection of similar previous designs in a part repository that is

guided by environmental sustainability principles. This example, is presented as a

case study that demonstrates the usefulness of applying InfoVis principles to ECDE

in order to overcome the chaallenges that we have listed above. In this context, our

hypothesis is that integrating meaningful visualization schemes with sustainability as-

sessment can help designers observe covariation among product attributes and enable

better decision-making in the context of product reuse.

The proposed framework allows automated computation and visualization of, (1)

similarities in part attributes, and (2) corresponding environmental indicators. We

integrate representations for sustainability indicators and part attributes based on

the insight that environmental impact is an inherent part attribute that can be de-

rived from other part attributes such as geometry, material, and manufacturing. The

complex nature of the relationship between environmental impact and other part at-

tributes is difficult to explicitly quantify. However, allowing the designer to develop
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Figure 6.1. Overview of the proposed framework for supporting sus-
tainability based decision-making in part repositories with material,
manufacturing and function data. Core components of the pipeline
are highlighted in bold.

an intuition about impact-attribute relationships can significantly aid the sustainable

design process. We address this challenge by encoding these relationships as visual

variables. We envisage our method to enable designers to hypothesize and evaluate

their mental models pertaining to impact-attribute relationships and lead to better

insights regarding the factors correlating environmental sustainability and design de-

cisions. Additionally, we quantify similarities on multiple product dimensions such

as shape, function, material, and manufacturing. By allowing the designer to explore

existing part data through multiple lenses, our framework provides a richer context in

the design exploration process. We also present a prototype interface that is designed

for eco-conscious design exploration of part repositories by visualizing similarities

in part attributes. This prototype interface uses sketch-based querying for enhanc-

ing the intuitiveness of the interaction. Figure 6.1 gives high level overview of our

framework. The primary interaction mode for users of our framework is query-based

exploration of part similarities. A range of visualizations can be designed to guide

these processes. An interface with one such visualization scheme is discussed in this

chapter. We also discuss interaction modes that are currently implemented in our

prototype interface. We start this discussion by detailing the methodology behind
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the three core modules in our framework, namely the (1) environmental impact as-

sessment module, (2) similarity evaluation module, and the (3) visualization module

and prototype interface.

Applying our framework requires access to 3D part data with metadata regarding

material, process planning, and functionality. Feature level information is often absent

in existing repositories. Therefore, we work with 3D part repositories that do not

contain a direct mapping of manufacturing processes to specific part features. For

example, if the process plan has two material removal operations such as milling and

turning, we cannot estimate how much material was removed by milling as compared

to turning in order to produce the final shape. In order to make our framework

relatively independent of the representation of data present in a part repository (i.e.

file formats and granularity), we use low level representations that can be derived

from common high level representations of design data. This approach allows users

to adapt the developed framework towards their preferred data schemes. Figure 6.2

illustrates the data model for a part class contained in our framework. The primary

inputs to our framework are, (1) a 3D model of the part, represented as a mesh, (2)

a material definition, (3) an ordered list of manufacturing processes, (4) a function

description of the part, and (5) part identifiers for indexing and retrieval. All other

part metadata, such as the environmental indicator, shape descriptors, and metadata

similarities, are derived from these inputs.

6.5 Environmental Impact Assessment

In this work, we focus on developing an automated indicator for approximating

cradle-to-gate impact for mechanical parts. Consequently, our framework is applica-

ble towards parts whose lifecycle impacts are dominated by resource extraction and

manufacturing processes. Although this reduction in scope results in higher uncertain-

ties in environmental impact assessment, it is necessary, since information regarding

downstream lifecycle stages (i.e. use phase and end-of-life) is rarely available at the
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Figure 6.3. Pipeline for estimating environmental impact indicator
from input data. Gray squares represent reference taxonomies and
databases used for standardizing data description.

design phase. Moreover, our framework is aimed at design-phase exploration with

the goal of screening out designs with significant environmental impact.

Given a 3D model of a mechanical part with corresponding metadata, we start by

extracting volumetric as well as shape-related data as shown in Figure 6.2. This infor-

mation along with process data is used for estimating the approximate environmental

impact of the product. Since a mesh-based representation of the solid model is used,

feature level information is unavailable for estimating the cradle-to-gate indicator.

6.5.1 Taxonomy-Based Representation of Lifecycle Data

Manufacturing processes are specified in our framework as per the Allen and Todd

taxonomy [106]. This taxonomy categorizes processes into 14 major families. This

classification taxonomy takes into account workpiece geometry, resulting tolerances,

workable materials, and cost. This taxonomy was preferred as the classifications

described correspond closely with volumetric information of parts. One of the reasons

for incorporating a taxonomy-based specification for manufacturing is the flexibility

that it allows in the level of specificity of a process. For example, a repository might

contain a part that is described as being cast without further information on the
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exact nature of the casting process (e.g. die casting, investment casting, and sand

casting). However, estimating environmental impact data requires a more specific

unit process. In such cases, an approximate measure for environmental impact can

be established by averaging the unit impacts of the set of manufacturing process in

the induced sub-tree. Similarly, it is possible that unit process information regarding

a specific process is unavailable in the used LCI database. Here, we can approximate

the resulting impact by substituting it for the most similar manufacturing process

that has data available in the LCI. For this, we develop a similarity measure among

manufacturing processes based on the structure of the taxonomy.

A corresponding taxonomy for material specification described by Ashby [107]

is also incorporated in our framework. Within this scheme, materials are grouped

into five classes: ceramics and glasses, fibers and particulates, hybrids, metals and

alloys, as well as polymers. Each material class is further classified into multiple ma-

terial groups. A complete classification scheme is available within the CES Edupack

software [108]. In addition to material and manufacturing taxonomies, we imple-

ment a function taxonomy adapted from the categorization of functions by Hirtz et

al. [109]. Here, the authors develop a reconciled functional basis, where functions are

grouped into 8 primary classes. They are further divided into multiple sub-classes.

The authors also provide a list of correspondences that allow users to correlate their

functional basis with related efforts. By implementing this function taxonomy, we

allow designers to compare and filter parts based on similarities in part function.

6.5.2 Estimating the Cradle-to-Gate Indicator

The pipeline for estimating the environmental indicator is described in Figure 6.3.

First, we extract volumetric properties from a 3D model of the mechanical part stored

in the database. Properties, such as volume, surface area, convex hull volume, and

minimum bounding-box volume, are calculated from the Stereolithography (.STL)

file and indexed. Next, we estimate the operating dimension (O dim) for each manu-
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facturing process associated with the part. O dim is defined as the physical variable

pertaining to part geometry (i.e. volume and surface area) that is processed by a man-

ufacturing operation. Table 6.1 illustrates the definition of O dim for different kinds

of manufacturing processes as per the Allen and Todd taxonomy. Thus, the O dim

for a manufacturing process can be used as a scaling factor on its corresponding unit

process. Scaling the impact of a unit process by O dim results in the net impact of

that unit process on the part geometry. In an ideal setting, the operating dimension

for each process is specified as input data or encoded as shape changes of the three

dimensional model of the part.

Although a well-defined product lifecycle management (PLM) system might also

archive such data, most repositories today do not provide any means for obtaining this

information. Therefore, we estimate the O dim for a specific manufacturing process

based on the following approximations.

• If the volume of the starting stock/blank is not specified, it is taken to be equal

to the smaller value of (1) the convex hull volume of 3D part, and (2) the volume

of the minimum bounding box of the 3D part.

• If there is more than one material removal operation in the list of manufacturing

processes, the total removed volume is divided equally among these processes.

• The Allen and Todd taxonomy is used to categorize manufacturing processes

into one of the following four types:

→ Mass conserving volumetric (e.g. forging, annealing)

→ Mass reducing volumetric (e.g. turning, drilling)

→ Surficial (e.g. anodizing, electrocoating, dust coating)

→ Joining (e.g. welding, adhesive bonding)

Thus, any process that appears before the first mass reducing process always

operates on the convex hull volume or surface area. Similarly, any process that
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Table 6.1. Definition of O dim based on the manufacturing process.

Type of Manufacturing

Process

Operating Dimension (O dim)

Mass conserving volumetric
Volume of the part before/after the manufactur-

ing process

Mass reducing volumetric
Volume of the material removed in the manufac-

turing process

Surficial
Surface area that is coated/transformed by the

manufacturing process

Joining

Functional dimension (volume, surface area,

length, etc..) depending on to the type of join-

ing process

occurs after a mass reducing process operates on the reduced volume. Although units

such as volume and surface area are easily computable from a 3D model, extracting

feature level information for calculating the operating dimension for joining processes

present significant challenges. Therefore, information about the operating dimension

(i.e. length of weld, surface area of bonded surfaces) is required to be specified by the

user as input to the framework. Once the O dim for each manufacturing process is

estimated, the cradle-to-gate environmental indicator is computed as a linear sum of

the impact of material extraction and manufacturing processes (see Equation (6.1)).

EI = e ∗ bv +
n∑
i=1

pi ∗ (Odim)i (6.1)

Here,

EI = Net environmental impact

e = Environmental impact associated with the unit process for material extraction

bv = Blank/Initial volume of material used for manufacturing the part
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pi = Environmental impact associated with the ith unit manufacturing process. Note

that this quantity is also dependent on the type of material that is manufactured.

Odim = Operating dimension of the ith manufacturing processes

n = Total number of unit manufacturing processes associated with the part

Approximating the O dim introduces additional uncertainties in estimating the

cradle-to-gate environmental impact computed using Equation (6.1). These uncer-

tainties result from a lack of detailed information pertaining to the material extraction

and manufacturing stages. As discussed, the availability of detailed lifecycle data in

design repositories obviates the need for this approximation. However, we present and

discuss uncertainties for a scenario in which feature information (that maps manu-

facturing process data to part geometry) is absent from the design repository. Apart

from inherent uncertainties in the life cycle assessment process, additional approxi-

mation errors resulting from our method can be formalized as follows.

• M V : The error resulting from approximating the initial blank volume bv by the

convex hull/minimum bounding box volume.

• Mwi : Error in removed volume fraction for ith material removal operation. This

results from our approximation that the total removed volume is divided equally

among all material removal processes.

MEI ext =MV ∗ e (6.2)

MEI remi = pi ∗
{
MV
n

+ Mwi ∗ (bv − Vmesh+ MV )

}
(6.3)

MEI coni = pi ∗
{
MV (n− 1)

n
− (bv − Vmesh+ MV )

i−1∑
j=1

Mwj

}
(6.4)
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By putting Equations 6.2, 6.3, and 6.4 this together we have a closed form solution

for the errors in the environmental indicator shown below.

MEI =MEI ext +

n∑
i=1

{
H(Φi)∗ MEI remi +H(−Φi)∗ MEI coni

}
(6.5)

Here,

H (Φ) is the Heaviside step function

Φi = 1 if the i th process is volumetric & mass removing

Φi = −1 if the i th process is volumetric & mass conserving

Equations (6.2), (6.3), (6.4), and (6.5) represent a closed form solution for the

cumulative error in estimating EI due to approximations in estimating O dim. These

equations are derived by substituting the error terms in Equation (6.1). Please note

that uncertainties with respect to surficial and joining processes are not considered

in these equations due to the dependencies of these errors on the shape of a specific

part. Here, we use Equation (6.1) to compute a cradle-to-gate indicator for the pur-

pose of demonstrating our visualization pipeline. For this, the Cumulative Energy

Demand (CED) is used as an indicator of environmental impact. Cumulative Energy

Demand for a product is defined as the total quantity of primary energy needed to

produce, use, transport, and dispose of that particular product. Previous literature

has outlined the usefulness of CED to serve as a screening indicator for environmen-

tal performance [110]. A lookup table is hard-coded into our system that contains

CED values of unit processes for material extraction as well as a given material-

manufacturing process combination. The data for these entries have been referenced

from the methods library available through SimaPro 7.1 [111]. Our current setup

is also capable of estimating cradle-to-gate impacts based on the Eco-Indicator 99

method referenced in SimaPro 7.1. Developing a more holistic indicator is possible if

data concerning the transportation, use-phase and end-of-life is made available within

the repository. An additional point of concern while estimating environmental indi-
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cators is the change in variables related to process planning. Methodologies such as

environmentally conscious process planning (ECPP) have the potential to optimize

process selection and control with respect to sustainability. In order to account for

these changes, our framework is designed to link to efforts such as the unit process

life cycle inventory (UPLCI) database [112]. By adopting the same manufacturing

taxonomy as per the UPLCI database, any changes made in the impact estimation

for unit manufacturing processes can be readily updated within our framework. Fu-

ture efforts in this direction will look at achieving a greater level of interoperability

between the systems.

6.6 Similarity Estimation

A natural way of quantifying similarity between elements of a set is by establishing

a measure of similarity/distance between them. The similarity between two objects

is a function of the commonality and the differences they share [113]. We capture

these properties using a distance function d : ε× ε→ < that operates on elements of

a taxonomy ε and returns a real valued (∈ <) distance measure. Although we do not

strictly enforce the distance function d to meet the required conditions to be defined

as a metric, we develop a function that possesses the following properties:

1. Non negativity : d(e1, e2) ≥ 0; {e1, e2} ∈ ε

2. Symmetry : d(e1, e2) = d(e2, e1)

3. Identity : d(e1, e2) = 0⇔ e1 = e2

We begin the discussion on similarity computation by defining the involved terms.

All mechanical parts are considered to be elements of a set ρ, with associated mate-

rials m ∈ M , manufacturing processes r ∈ R, functions f ∈ F , and a specific shape

s. Here, M , F , and R are the respective taxonomies adopted to represent these at-

tributes. A manufacturing process r ∈ R is treated as an operator r : ρ × ρ → P

such that it operates on a certain part and returns another part with either same
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or different material and shape properties. Thus, the entire sequence of manufactur-

ing processing can be viewed as a composition of operators that transform an initial

blank P0{m0, s0, f0} to the final part Pn{mn, sn, fn}. The material, manufacturing,

function, and shape definition represent significant decisions towards framing design

intent. Therefore, we interpret the similarity among parts as a composition of simi-

larities in these four attributes. For this, we define a set of distance functions {dm,

df , dr, and ds} associated with these attributes respectively. Since material, man-

ufacturing and function definitions are represented using corresponding taxonomies,

we develop a generalized similarity measure that can be adapted to taxonomies. The

distance function for shape is defined using similarities in shape features outlined by

Squire et al. [114].

6.6.1 Material, Manufacturing, and Function Similarities

Classification trees and taxonomies increase in specificity as we proceed lower

down the hierarchy. Therefore, a pair of siblings at a lower level are more similar

than siblings higher than them. For example, in a manufacturing taxonomy, any two

types of milling processes are more similar to each other than any two mass reducing

processes. Exploiting this property for similarity computation requires making use of

the hierarchal nature of the taxonomy. The distance measure discussed here builds on

concepts described in Ganesan et al. [115] and applies them towards the used material,

manufacturing, and function taxonomies. Given any two elements in a taxonomy, we

calculate a distance measure as follows.

• Tree Depth Equalization: When computing the similarity between any two el-

ements of the same tree, only elements at the same depth from the root are

evaluated. This normalization step accounts for the variation in levels of input

specificity. For example, as shown in Figure 6.4, the difference between the two

manufacturing processes casting (not very specific) versus drop forging (more

specific) is essentially the difference between casting and forging (on a similar
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level of specificity as casting). Thus, the depth equalization step normalizes the

specificity of the items being compared.

if depth(a1) > depth(a2)

then a∗1 = ancestor(a1) at depth(a2) && a∗2 = a2

else if depth(a2) > depth(a1)

then a∗2 = ancestor(a2) at depth(a1) && a∗1 = a1

else a∗1 = a1 && a∗2 = a2

• Distance Estimation: The next step is to calculate the numerical value of simi-

larity between the entities substituted in the first step. Our distance function is

based on the generalized vector-space model discussed in Ganesan et al. [115, p.

71]. We focus on illustrating the applicability of this distance function to ma-

terial, manufacturing, and function taxonomies by demonstrating its hierarchy

preserving behavior on the Allen and Todd taxonomy [106]. The corresponding

distance function is defined in Equation (6.6).

D(a1, a2) =
dpl (a

∗
1, a
∗
2)

dpl(a∗1, a
∗
2) + dlca (a∗1, a

∗
2)

(6.6)

As both dpl and dlca lie in the interval [0,∞), the distance measure D is confined to

the interval [0, 1]. However, when dpl = dlca = 0, the similarity measure is indefinite.

These cases occur only when comparisons are made among elements of taxonomy

and its root. As these comparisons do not hold any meaning, we exclude them from

the set of allowable comparisons. It can be easily verified that this distance function

satisfies the non-negativity, symmetry, and identity conditions mentioned earlier. The

distance between two elements in a taxonomy D(a1, a2) is equal to 1 only if dlca = 0.

In other words, two elements in the taxonomy are considered to be entirely dissimilar

if their lowest common ancestor is the root node of the taxonomy.
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Figure 6.4. An example subtree from the Allen and Todd taxon-
omy [106] for manufacturing processes. This figure illustrates com-
putation of pair-wise dissimilarities among manufacturing processes
using Equation (6.6). We can see that this distance measure accounts
for hierarchies as it allocates a decreasing value of dissimilarity to a
pair of siblings lower down the taxonomy tree. Here, we illustrate
that D(drop forging, roll forging) < D(casting,forging) because the
former pair of siblings are at a lower depth.

Figure 6.4 illustrates the application of the distance measure to an example sub-

tree. Here, the distance between casting and forging is 2/3 which is greater than

2/5; the distance between drop forging and roll forging. This shows that the distance

function accounts for the hierarchical structure of the taxonomy while calculating

pair-wise similarities.

Figure 6.5 shows the result of applying our distance measure to the Allen and

Todd taxonomy [106] with λ = 1. The hierarchical structure of the taxonomy is

preserved by the distance function. This is seen in the box-within-a box structure of

the similarity plot. The clear distinction between the largest two boxes represent the

split in the taxonomy for shaping and non-shaping processes.
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Figure 6.5. Distance-plot matrix for the Allen and Todd taxonomy
[106] generated using distance function D in Equation (6.6). Here,
each pixel represents a pairwise distance measure calculated between
two manufacturing processes in the taxonomy. As shown in the col-
orbar, lighter values represent a larger value of the distance measure.
For computing pairwise distance, the value of the scaling constant λ
was set to 1.

Given that we have established a method to compute pair-wise similarities between

any two nodes in a taxonomy, we proceed to define our method for composing a scalar

distance measure for the specified material, manufacturing, and function definitions.

The definition of a part attribute can consist of a single element or, in other cases,

a set of elements from the taxonomy. Additionally, the ordering of the associated

elements may hold significance in cases such as the definition of a manufacturing

process plan. Hence, we develop a measure of each of the attributes that encodes

dissimilarity as the maximum deviation of one set of attributes from the other.
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In our repository, each part is associated with a single material type. Therefore,

for any two materials m1,m2 ∈M , the distance function, dm, is directly given by the

function operating on the material taxonomy as shown in Equation (6.7). A manu-

facturing description r = 〈er1, er2..., ern〉, r ∈ R is considered as an ordered n-tuple

of manufacturing processes. Given two manufacturing descriptions, r1 and r2, we

define a set r1 ◦ r2 whose elements are 2-tuples formed by the element-wise product

of r1 and r2. The reason behind performing an element-wise operation is that, given

two manufacturing descriptions it only makes sense to compare primary production

processes with other primary processes, secondary processes with other secondary

processes and so on. For example, consider two parts with the following process

plans: {casting, annealing} and {forging, nitriding}. Comparing a primary pro-

cess of one part (casting) with a surface treatment process of another (nitriding)

will wrongly indicate that the process plans for the two parts are highly dissimilar.

Instead, comparing primary processes separate from secondary processes provides a

more meaningful measure. In cases where the cardinalities of r1 and r2 are different,

we restrict the similarity computation to the first n elements, where n is the lower of

the two cardinalities. The distance function dr is defined as the maximum possible

value of dissimilarity among the sets of descriptions as given in Equation (6.8). A

function description f = {ef1, ef2...efn} is considered as a set of functions wherein

the ordering of the elements are immaterial. Like dm, the dissimilarity between two

sets of function descriptions is governed by the maximum possible value of dissim-

ilarity among the descriptions. Given two sets of function descriptions, f1 and f2,

the distance function df is detailed in Equation (6.9). Here, f1 × f2 represents the

Cartesian product of the sets f1 andf2. Unlike the manufacturing description, we
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choose to compare all possible function pairs because there is no concept of function

ordering in our definition scheme.

dm(m1,m2) = D(m1,m2) (6.7)

dr(r1, r2) = max(D(r1 ◦ r2)) (6.8)

df (f1, f2) = max(D(f1 × f2)) (6.9)

6.6.2 Estimation of Shape Similarity

For estimating shape similarity, we convert 3D models into 2D projections of

sketch-like renderings using suggestive contours [116]. This allows comparing user

sketches and images to 3D models in the repository. Here, we use the bag-of-features

method (BoF) [114] to develop a metric for shape similarity due to its robustness

to noise introduced by affine deformations. Previous literature [117, 118] has shown

that the BoF method has commendable performance with regards to 2D shape clas-

sification and retrieval. The core idea of the BoF method is to represent images

as a histogram of occurrences of visual words. The procedure for computing shape

similarity is described below.

• Feature Detection: In this step, we compute locations of interesting features

given by computing the feature points on the image using the Harris Detec-

tor [119]. Finding such discriminative locations helps in identifying differences

between shapes.

• Feature Description: In this step, we compute patch descriptors for each de-

tected feature using the Scale Invariant Feature Transform (SIFT) [120]. SIFT

embeds these features in a high dimensional space by assigning a 128 dimen-

sional descriptor to the features.

• Quantizing Features using Visual Vocabulary: The feature descriptors computed

using SIFT have high dimensionality and the complexity of computation in-

creases with the number of features that are detected. To reduce some of the
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involved complexity, we compute a visual vocabulary by clustering features in

the image database.

• Image Descriptor Generation: In this step, we transform the image data into a

histogram representing a count of occurrences of cluster center matches. Given

any two histograms x and y that represent two images Sx and Sy respectively,

a p-norm distance can be computed by Equation (6.10).

ds(x, y) =

(
n∑
i=1

|xi − yi|p
)1/p

(6.10)

In this implementation we use a simple L1 norm by setting p = 1. Additionally,

in the interest of supporting fast retrieval, we use the fast approximate nearest

neighbor method [121] to index queries.

Thus, the overall distance between two parts is given by {dm, dr, df , ds} which is a

set comprising of pairwise distances among corresponding part attributes. Although

it is possible to compose a scalar pair-wise distance measure from this set, there is a

possibility that reducing the dimensionality of the data might result in excessive loss

of similarity information. Interpreting whether two parts are more similar due to sim-

ilarities in material, function, or any such attribute is largely decided by the context

of the application and therefore by the user. Hence, we focus on creating meaning-

ful multi-dimensional information visualization schemes that aid users in exploring

the part repository. The main idea of our visualization scheme involves overlaying

computed environmental indicators on similarity information of part attributes for

enabling sustainability-aware design exploration of part repositories.

6.7 Visualization and Prototype Interface

Although there are numerous schemes for visualizing sustainability related data, a

handful of them try to merge these visualizations with the design process. For creating

a seamless interface between the two, we develop a list of the following design goals

that are sensitive to needs of the designer.
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Figure 6.6. Visualization pipeline for exploring 3D repositories. Users
begin by sketch based querying as shown in (1). Our system orga-
nizes search results using a squarified layout (2) that is constructed
using Brul’s squarified treemap algorithm [122]. Here, each color cor-
responds to a particular material class. The area of a cell is scaled in
negative proportion to the calculated environmental impact indicator.
Parts are ordered by shape similarity relative to the query. Users can
explore these results. Further using a similarity polygon (3a), slid-
ers that set values for distance threshold (3b) and interactive tooltips
(3c). The combination of these steps forms a unit iteration that can
be repeated as desired by the user.

6.7.1 Design Goals

• Ability to explore product repositories from a design similarity and sustainability

perspective. The process of exploration should allow the user to build engineer-

ing intuitions of the relationship between shape, material/manufacturing data,

and environmental sustainability.

• Intuitive Interaction. One of our goals is to simplify the design exploration pro-

cess by providing an intuitive means for navigating and searching for alternate

design solutions from a given part database.

• Exploration Support for Design Process. We posit that human spatial and visual

reasoning skills can be leveraged for effective exploration in the design process.

An important element within developing intuitive exploration schemes is the

use of cognitively prominent visual variables such as variations in shape, size,
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Figure 6.7. Screenshot of the prototype interface that integrates el-
ements discussed in the visualization pipeline. The numbers on the
interface represent implementations of corresponding elements dis-
cussed in Figure 6.6.

and color. This allows pre-attentive processing of decision variables, allowing

designers to easily narrow down their focus.

6.7.2 Interface Elements

Based on these design goals, we implemented a visual interface titled shapeSIFT,

that supports eco-conscious design exploration. In this section, we list the interface

elements implemented in the interface.

6.7.2.1 Sketch-Based Input:

Adopting sketching as the primary method for query within our framework gives

us the advantage of utilizing one of the dominant modes of artifact creation among

designers. Sketching is shown to provide a visible graphic memory that facilitates
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creativity by providing an easily accessible repository of generated ideas and by stim-

ulating building on earlier ideas [123]. Using sketch-based input gives users the ability

to modify their input with relative ease.

6.7.2.2 Squarified Layout Visualization:

Squarified layouts are useful for visually providing a summary of the search results.

They can also provide visual cues that allow users to aggregate and discriminate

search results. Figure 6.7-2, shows an example result that is automatically generated

from a sketch-based retrieval process. In this visualization, environmental impact

calculated through Equation (6.1) is divided by part volume to develop an indicator

for representing the sustainability of a unit shape. Squares larger in area contain

parts with a lower value of the environmental indicator. By representing the indicator

using a prominent visual variable, we hope to nudge designers away from selecting

unsustainable options. The color of each cell corresponds to the taxonomic class

that the part’s material belongs to. For example, in the current visualization a red

background indicates that the part material is a kind of Alloy Steel. A legend of colors

is available to the user, and we ensure that we always maintain color continuity for

the same material class in the visualization. The coloring information can be changed

to represent classification along other attributes such as manufacturing or function

class. Users can also filter results either by setting individual or multiple thresholds

for the set of computed similarities {dm, dr, df}. Parts that are dissimilar to a query

part in terms of these attributes are represented with a grayed out background as

seen in the top right corner of Figure 6.7-2. The current visualization is organized

according to the shape similarity (ds) relative to the best sketch query. Similarity

decreases as we move from top-left to bottom-right in a horizontal raster. More

specific information about part attributes such as volume, surface area, material are

displayed using interactive elements such as tooltips.
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6.7.2.3 Similarity Polygon

The similarity polygon visually represents a barycentric embedding of similarity

metadata along chosen attribute dimensions. Each plotted point corresponds to a

specific search result in the squarified layout. Figure 6.7-3a shows an example simi-

larity polygon that allows quantitative comparison of similarities. Using the similarity

polygon, designers can assess the presence of a dominant similarity metric.

6.7.2.4 Sliders and Tooltips:

Users can also filter results using sliders (see Figure 6.7-3c) either by setting

individual or multiple thresholds for the set of computed similarities {dm, dr, df , ds}.

Parts that are dissimilar to the query part in terms of these attributes are grayed out

in the squarified layout. Metadata information pertaining to a part is viewable using

tooltips illustrated in Figure 6.7-3b.

6.7.3 Prototype Interface:

A screen capture of the prototype interface for shapeSIFT is shown in Figure 6.7.

This prototype implements interface elements discussed in the previous section. We

conducted a pilot study involving two domain experts, for analyzing the usefulness

and the interface design for shapeSIFT. The first domain expert had extensive devel-

opment and research experience in the field of information visualization. The second

expert had research and industry experience in product design and design for sus-

tainability. A general demonstration of the functionality and interface controls was

provided to the experts following which they were allowed to explore and ask ques-

tions about the interface. A talk-aloud protocol was followed, during which experts

were asked to vocalize their actions. The experts, were free to ask questions regarding

the interface and the underlying data at any point during the study. Results from

the pilot study indicated that the experts found shapeSIFT useful in the context of
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design exploration within repositories. However, a list of concerns were pointed out

that limited the utility of the shapeSIFT interface.

• The experts felt that the squarified layout was a useful visualization scheme.

However, the ordering of results from top left to bottom right resulted in some

confusion about the shape similarities.

• The visualization expert pointed out that it was difficult for users to associate a

color to a particular taxonomic class without prior training or extensive use of

the interface. Therefore, the expert was concerned with the use of a particular

color code for a material/manufacturing class.

• We noticed that the tooltips brought up on the squarified layout impeded ex-

perts while they were using shapeSIFT.

• We also noticed that the lack of a 3D view for a retrieved result presented

difficulties in comprehending the part.

• A significant point brought up by the experts was the lack of a means to filter

out results that significantly differed in dimensions. For example, querying for

a gear shaped object might return a small plastic gear used in a toy as well as

a significantly larger gear in an automotive gear train. Not filtering out such

disparate results in terms of part dimensions can impede the user from reaching

potential alternatives.

• Finally, both the experts felt that the inclusion of a text-based search to query

and highlight items would greatly increase the utility of the shapeSIFT interface.

6.7.4 Modified Interface

Based on the feedback provided during the expert evaluation of the prototype

application, a new version of shapeSIFT was constructed from the ground up. One



88

a

b1

c d

e

b2

Figure 6.8. A screen capture of the modified shapeSIFT interface.
It consists of a squarified layout window that displays query results
(6.8-a). A control panel (6.8-b1) is used for setting similarity thresh-
olds for material, manufacturing, function, and shape similarities. A
dimension filter knob that allows for screening out parts that are sig-
nificantly larger or smaller than the reference part. A text query box
is also provided for users to query part metadata. Corresponding
matches are automatically highlighted in the squarified layout. A la-
bel (6.8-b2) is used to display metadata information and a picture
of a particular part that is selected from the squarified layout. As
shown in (6.8-c), the similarity polygon allows the user to obtain an
understanding of the four similarity attributes. The sketch window
(6.8-d) contains a canvas and related controls for creating/modifying
the sketch, uploading an image, and querying the repository. The
object viewer window (6.8-e) displays a 3D model of a selected part.

of the goals of the the new implementation was the ability to make it cross plat-

form and potentially develop it into a web-based tool. For this, we reimplemented

the interface on JAVA using Processing R©, an open source programming language

that is geared towards visual design. The new interface uses a mutually coordinated,

multi-window framework that allows users to customize the size and position of the

windows. This feature allows users to seamlessly move their focus to different parts
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of the tool without having to allocate valuable screen space to features that are not

required at that particular time. We have implemented a server-client framework for

loading and querying the repository through sketch input. This allows the possibility

for implementing a collaborative framework between multiple instances of shapeSIFT.

A screenshot of this modified shapeSIFT interface is shown in Figure 6.8. Our mod-

ified implementation retains functionalities of the prototype implementation while

improving the usability and the scalability of shapeSIFT. The implementation and

the improvements made in the modified shapeSIFT interface are detailed below,

• Squarified Layout Window: Similar to the prototype implementation, this win-

dow (Figure 6.8-a) shows the retrieved results in a layout in which each cell is

scaled inversely to the computed environmental indicator. If a particular part

does not lie within the threshold set using the control panel, the corresponding

cell background is grayed out. Building on the expert feedback, we removed

the shape similarity based ordering of the results. We also changed the coloring

scheme from representing a particular metadata class towards a representation

of similarities between metadata. Thus, parts with similar metadata are shown

using similar colors. Clicking a cell selects the part and displays it on the label,

3D object viewer, and highlights it on the similarity polygon. An additional fea-

ture available to the user is changing the reference part from the set of retrieved

results by right clicking a cell from this layout.

• Control Window: The control window implements the control panel (Figure

6.8-b1) and the dynamic label (Figure 6.8-b2). The control panel contains: (1)

sliders for setting the similarity thresholds for material, manufacturing, func-

tion, and shape similarity, (2) radio buttons that can be used to set the coloring

scheme on the squarified layout based on the environmental indicator, material,

manufacturing or function metadata, (3) a dimension filter that screen out parts

that are larger or smaller than the reference part in terms of its maximum di-

mensions, and (4) a text query box that can be used for querying part metadata.
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• Similarity Polygon Window: This window (Figure 6.8-c) visualizes the similar-

ity polygon for the set of retrieved results. Since the similarity polygon uses

a barycentric embedding of similarity values for plotting, data points with the

same relative weights (i.e [1,1,1,1] and [0.5,0.5,0.5,0.5]) are plotted at the same

coordinate. This makes it difficult for the user to judge the overall magnitude

of the similarity values of a part with respect to the reference part. Therefore,

we have implemented a visualization scheme that scales the radius of the cir-

cle with the total measure of similarity with respect to the reference part. We

have also removed the similarity dimension based on part class present in the

prototype in favor of a text query box in the control window. Selecting a part

from the squarified layout, highlights the corresponding part on the similarity

polygon. Conversely, selecting one/multiple parts from the similarity polygon

highlights the corresponding cells on the squarified layout using a red border.

• Sketch Window: The sketch window (Figure 6.8-d) implements a canvas and

controls for creating a two-dimensional sketch query. We have also provided

means for users to upload an image onto the sketch canvas. The uploaded

image is converted into a sketch-like representation using a high-pass filter that

performs edge detection. On submitting a query, the squarified layout and other

windows are automatically updated to reflect the retrieved results.

• Object Viewer Window: This window (Figure 6.8-e) displays a 3D model of

the .STL file associated with the selected part. Users can rotate the displayed

model and view the geometric parameters of the selected model on a text label

located on the top left of that window.

6.8 User Study

To verify the validity of the modified shapeSIFT interface and its underlying

framework, we conducted an expert evaluation of the tool within an industry set-

ting. For generating input data as specified by our framework, we programmatically
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generated a design repository consisting of engineering parts. 3D parts used for con-

structing the pilot database were obtained from the Engineering Shape Benchmark

(ESB) [124]. The ESB contains a total of 479 models in Stereolithography (.STL) file

format that are classified into 45 shape classes. Synthetic data regarding material,

manufacturing, and functionality was added to the part data. We tried to ensure that

the selected parts have a reasonable degree of variability in their shape, material, and

manufacturing definitions. Data from the repository is pre-processed and converted

into an XML file which is read into shapeSIFT. The sections below details the setup

and results of the conducted user study.

6.8.1 Procedure for Expert Review of the ShapeSIFT Interface

To verify the applicability of our visualization framework in the context of design

exploration, we conducted a user evaluation of the modified shapeSIFT interface. The

focus of our study was to understand the applicability and utility of our framework

and the shapeSIFT interface among design engineers in a real-world setting. We were

interested in eliciting useful comments, guidelines, and issues from the participants

rather than measuring efficacy or performance criteria. Therefore, we decided on

adopting an expert review based assessment [125] for our study. Expert reviews are

known to be useful in scenarios where the system to be evaluated requires specific

knowledge or skills [125]. Usually, expert reviews are conducted among a smaller pool

of participants without an aim of strictly evaluating performance measures [126]. The

following sections discuss our setup, procedure, and results from our study.

6.8.1.1 Setup and Participants

We conducted the expert evaluations on a Lenovo T530 laptop PC connected to

a 20 inch external display. We encouraged participants to vocalize their thoughts

and actions while performing each task. They were also asked to comment on the

utility and the ease of use of the system after each task. To analyze this data, we
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voice recorded participants throughout the duration of the tasks. A total of 5 domain

experts (3 male, 2 female) were recruited to validate applicability our framework and

the usability of the shapeSIFT interface. The experts in this study were employees

with a leading provider of engineering consulting services and had prior experience

in product and process design. We recruited a diverse pool of experts between 21-55

years of age with 1-15 years of industry experience. To prevent bias with evaluation,

we followed accepted practices such as voluntary consent, control, user confidentiality,

and participant blinding.

6.8.1.2 Tasks

A total of 3 tasks were required to be completed by the experts in order to eval-

uate various elements present in the modified shapeSIFT interface. The tasks were

designed to validate shape-based querying, metadata-based visualization, and the ex-

ploration framework implemented in shapeSIFT. Each participant was monitored by

a proctor with experience in the use of the shapeSIFT interface. When required,

the proctor assisted participants in using the different elements of the interface. We

ensured that the proctor refrained from providing any form of conceptual or design-

related suggestions. Participants were initially trained in shapeSIFT through a 15

minute familiarization session before conducting the tasks. This session consisted of a

10 minute guided demonstration of the framework and the functionality of various in-

terface elements present in shapeSIFT, followed by 5 minutes of free play. We logged

the experts activities using event triggers that recorded interactions with interface

elements in shapeSIFT. Our intent was to analyze these event logs for patterns in

behavior defined by switching visualizations, selection, filtering, and querying. After

each task, participants were required to respond to a task load index survey and dis-

cuss open-ended questions asked by the proctor. A questionnaire for assessing the

usability of the interface was also handed out at the end of the study. Please see the

thesis appendix for a copy of the documents distributed in this user study.
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• Retrieving similar parts via querying (T1): In this task, participants were re-

quired to select parts similar to a reference part provided to them by the proctor.

For this task, we generated two reference parts with data related to its material,

manufacturing, function, dimensions, and shape (shown as a picture). In or-

der to encourage exploration of the design space, we ensured that the reference

part did not have an exact match in the provided repository. Thus, partici-

pants were required to assess similarities based on multiple part attributes and

actively make trade-offs among them. We allowed participants to select one,

multiple, or no parts based on their assessment of similarity to the two reference

parts. Upon selection of a similar part, users were asked to estimate the envi-

ronmental indicator for the reference part based on the values for the selected

part and suggest if it was a more benign alternative. A total of 10 minutes was

allocated towards completion of this task.

• Exploring a set of functionally similar part concepts (T2): This task was de-

signed to focus on the metadata exploration framework facilitated by the squari-

fied visualization and the various similarity filters in the control window. In this

task, users were provided with an example design concept for a gear (without

shape or function information) with high level data related to its material and

manufacturing processes. Using this design as a reference part, users explored

a set of existing gears from the ESB repository in order to estimate the possible

environmental impact of the design. As this task focuses on metadata explo-

ration, we restricted the use of sketch/image-based querying and pre-loaded

results through textual querying of parts tagged as gears from the ESB repos-

itory. Similar to T1, the answers for this task were open-ended. A total of 10

minutes was allocated for T2.

• Macro-level estimation of specific metadata (T3): The goal of this task was

to assess the utility of the shapeSIFT framework in answering specific macro-

level questions (i.e. “how many gears in the result set are made of Aluminum



94

0

50

100

0

20

40

60

E5

E1

E3 E4

E2

T2 T3

T2 T3 T2 T3

T2 T3

T3T2

Squarified Layout

Metadata Filters

Query Controls

3D Viewer

Sketch Window
Similarity
Polygon

Figure 6.9. Visualization of user interactions events with the shape-
SIFT interface. A total of 20 different event types were recorded and
categorized into 6 classes based on the interface elements in shape-
SIFT. Each class is represented by a particular color type as indicated
in the schematic legend (bottom right). For each expert (E1–E5), a
sequential plot of interaction events and a corresponding histogram
of event count is shown. Please note that event data from the log
file is separated by task (T2, T3) to observe similarities/differences
between tasks for a particular expert. Interactions for Task 1 (T1) are
not shown as they relate to unstructured activities for familiarizing
users with shapeSIFT.

alloys?”). Participants were allowed to use all the interface elements present in

the control window to answer such questions. Through this, we hoped to judge

the utility of visualizing results for such questions in the shapeSIFT squarified

viewer. A total of 5 minutes was allocated for T3. Results from the conducted

tasks and the questionnaires are detailed in the section below.
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6.8.2 Results

Expert feedback regarding shapeSIFT was captured using four different methods:

(1) the NASA Task Load Index (TLX)1 survey, (2) the System Usability Scale (SUS)2

survey, (3) audio recorded comments provided during the study session, and (4) a sys-

tem generated log file of interaction events. Results from the TLX survey show that

a majority of the participants (4 out of 5) felt that they were successfully able to

perform all tasks. From the audio transcripts and the survey, we also observed that

participants were able to perform tasks without excessive frustration, (max. TLX rat-

ing 40/100) physical demand, (max. TLX rating 15/100) or temporal demand (max.

TLX rating 25/100). However, all experts felt that the tasks required appreciable

mental demand and effort to complete. This result was expected as all participants

commented that they were not used to visual analytics-based interfaces in the con-

text of design exploration, selection, or reuse. Results from the participant comments

suggest that the effort required reduced considerably with task progression.

Quoting an expert from the study, “I feel that participants need some initial expe-

rience with shapeSIFT as there are multiple windows, each having several variables.

But, I feel that it is a very useful tool once you get used to it.” Another expert said

“I had to pick up a lot of things initially but I think I got the hang of it pretty quick.”

Figure 6.10 illustrates the results from the SUS given to participants at the end

of the user study. Overall, experts felt that the shapeSIFT interface was useful in

a practical setting and that it was easy to learn and use. One expert pointed out

that “A lot of current systems go by part number which are ad-hoc and confusing.

In a big company doing lots of different things, shapeSIFT can help find parts which

are already there instead of redesigning from scratch. It will reduce the effort in the

design process.” Participants also reported that the system was well integrated and

that they would feel confident using the system on a frequent basis. Among the

five experts, we observed that one of the experts (E1) had difficulties in using the

1http://humansystems.arc.nasa.gov/groups/tlx
2http://www.usability.gov
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Figure 6.10. Bar chart detailing the results for the system usability
scale (SUS) survey2 handed out to each expert (E1–E5) at the end
of the study. As seen, a majority of experts agreed that shapeSIFT
was well integrated, easy-to-use and more importantly easy-to-learn.
They also felt that some amount of pre-learning was required to be
able to use the system but would be able to handle it without the
need for technical support. Among all five experts, we observed that
E1 was critical of the usability of shapeSIFT and felt that it required
more functionality in order to be useful in an industry setting.

system and did not achieve the same fluency as other experts in using the system. E1

reported that shapeSIFT needed more functionality such as automated seed points

for starting the exploration and a partial textual query for becoming more practical.

All experts agreed that the shapeSIFT framework and interface aid the process

of eco-conscious design exploration. We observed that by visualizing environmental

indicators and corresponding metadata, users were able to actively engage in ex-

ploration pathways focused on trading materials, manufacturing processes, and part

functions. Inspite of shapeSIFT only providing a cradle-to-gate indicator, we ob-

served that experts were actively considering concepts such as total lifecycle impact,

use phase energy consumption, recyclability of materials, and waste recovery. This

suggests that future work should be directed towards estimating total lifecycle impact

of parts archived in design repositories.

The similarity-based assessment framework allowed users to look at alternate com-

ponents with comparable and lower environmental impact and discuss the relation-

ship between a particular part attribute and its environmental indicator. We believe
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that allowing users to observe such dependencies can significantly aid the sustainable

design process and motivate them to use more accurate impact assessment method-

ologies to further refine their analyses.

To understand the differences in the behaviors of experts while using shapeSIFT,

we analyzed the automated log file generated by shapeSIFT in conjunction with

the audio recordings. Figure 6.9 visualizes this data for each expert corresponding

to a particular task. On comparing interaction events between experts, we noticed

the usage of specific interface elements strongly depended on the experts’ view of

important dimensions while assessing similarity in the multi-dimensional data. For

example, E3 felt that the most critical dimension for assessing part similarity in

T2 is the overall shape of the object, while E5 was more interested in the overall

dimensions of the part. This behavior is visible in the histogram count which shows

high instances of object viewer usage for E2 and high usage of the dimension filter for

E5. This aspect of the shapeSIFT interface lends itself for training novice users and

observing their exploration patterns and assessment of critical similarity dimensions

in multi-dimensional design datasets.

Two kinds of exploration modes were observable based on event data and anal-

yses of the audio recordings. One set of experts focused on narrowing down the

multi-dimensional design space to a small set (usually 4-5) of feasible alternatives.

This was done by heavily relying on the querying and filtering features present in

the shapeSIFT interface. This set of experts proceeded towards selecting the most

appropriate part from the filtered set. The second set of experts devoted more fo-

cus towards interpreting the various facets of the multi-dimensional design space by

switching between multiple data views and changing the reference point in the explo-

ration process. This trend is observable by an increased use of the squarified map,

and querying elements in the interface. Self-reported results from the TLX survey

show that experts using the latter exploration method (µ1 = 33.75, σ1 = 11.8) felt

that they performed significantly better than the former group (µ2 = 50, σ2 = 12.6).

An independent sample T-test assuming unequal variances shows the presence of a
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significant difference (T (11.66) = 2.8889, one-tailed p-value= .0063). Furthermore,

the mental demand associated with using the interface dropped for experts in the

latter set whereas it increased (or remained the same) for experts in the former set.

These results seem to indicate that certain exploration strategies and similarity as-

sessment methods, can be more beneficial for users while exploring multi-dimensional

data in design databases. We hope to explore such aspects using controlled testing

with a larger pool of participants in the future. Another important observation from

the event data, is that there was little interaction with the similarity polygon based

representation for similarity metrics. Analysis of the audio recordings revealed that

most experts felt that the similarity polygon was a useful visualization technique

before starting with tasks T2 and T3. However, we found that the experts faced

difficulties in translating results from this visualization into actionable items. This

indicates that the design of this interface element needs to be rethought so as to allow

easier interpretation of the data. Analyzing the event data across the two tasks for

all experts, we clearly see that the number of jumps/transitions between interface

elements is reduced in T3. This behavior seems to indicate that the users were more

focused and comfortable with the tool in T3. Audio transcripts also confirmed the

fact that experts were significantly more comfortable with the shapeSIFT interface

allowing them to focus on the exploration steps needed to complete T3.

6.9 Conclusions and Future Work

This chapter has discussed the motivation and potential benefit offered by InfoVis-

based tools and methods for supporting eco-conscious design exploration. Along

these lines,we presented shapeSIFT, a novel framework for visualization-driven, eco-

conscious exploration of part repositories. Part similarities are quantified on multiple

dimensions such as material, manufacturing and function-based on the structure of

their corresponding taxonomies. The framework describes methods for automat-

ing the computation of environmental impact indicators and similarities in part at-
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tributes. This data is visualized using a squarified layout which provides an overview

of similar parts and their attributes. Finally, this chapter discusses a prototype in-

terface that integrates the visualization with sketch-based querying for supporting

intuitive exploration of 3D part repositories. Future work will be focused on extend-

ing the capabilities of the current interface by developing alternate visualization and

interaction schemes. We plan on conducting full fledged user studies to evaluate our

interface from a human computer interaction perspective. An important direction for

future work is allowing users the additional flexibility of assessing the environmental

impact of novel design concepts. Supporting environmental and similarity assessment

for novel 3D parts, requires estimation of their geometric properties. Recently de-

veloped natural user interfaces for rapid virtual prototyping such as [127, 128] are

particularly applicable in the this context. These interfaces allow designers to iterate

over several designs and can be possibly used to guide sustainability-based decision-

making. Another important consideration that we wish to address is more accurate

estimation of sustainability indicators. We will research methods for quantifying and

visually representing uncertainties present in sustainability assessment.
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7. A GUIDED DISCOVERY-BASED LEARNING APPROACH FOR

CONTEXTUALIZING SUSTAINABLE DESIGN IN MECHANICAL

ENGINEERING CURRICULA

The previous chapters have looked at methods, and computer-supported tools for

promoting eco-conscious design from the perspective of designers, and product man-

agers. These works show that creating environmentally efficient products and services

requires rethinking current design processes. Disseminating such methods requires

changes in both, (1) industry-based processes, and (2) engineering curricula. This

chapter focuses on developing methods for incorporating environmental sustainabil-

ity concepts in engineering design curricula

Preparing engineering students with sustainability-related design skills would help

them to meet the growing demands for such designers in the industry. To illustrate,

a survey by American Society of Mechanical Engineering (ASME) and Autodesk re-

search has shown that approximately 60% of the 4000 respondents from engineering

organizations expected an increase in their organizations’ involvement in sustainable

design the following year [129]. However, recent studies have reported that engineer-

ing students have significant knowledge gaps in understanding and applying sustain-

ability concepts in design tasks [130]. Thus, engineering educators need to explicitly

teach students on applying sustainability knowledge in engineering design. et, most

current engineering programs are in lack of sustainability-related instruction models,

or are limited to introducing sustainability concepts as systemic problems (e.g. spill

cleanup [131], water conservation [132], and energy management [133]). Although

such approaches teach concepts of systems modeling and life-cycle thinking, they are

not suited for promoting a deep understanding of the relationships between domain

specific design variables and environmental performance. For this, it is crucial to sit-

uate sustainability learning within fundamental engineering contexts. To this end, we



101

present an instructional model for sustainability that embeds it in existing engineer-

ing design classes. Our goal is to address mechanical engineering students’ knowledge

gaps in environmental sustainability (ES) and enable students to, (1) identify the

relations between design variables and environmental performance, and (2) apply ES

principles in design settings. We developed our instructional model based on the hy-

pothesis that students can better understand and apply ES principles through guided

discovery activities that help bridge relations between design variables and ES.

7.1 Related Research

We begin this chapter by discussing previous work on sustainability learning in

engineering curricula. Following this, we review learning approaches for guided dis-

covery applicable to engineering education. Finally, to provide context for the user

study conducted to validate the proposed instruction framework, we introduce shape

synthesis and discuss its relevance to applying guided discovery in mechanical design.

7.1.1 Sustainability Learning in Engineering Curricula

Pioneering efforts in sustainability learning focused on developing holistic ap-

proaches to increase awareness of interdependencies at the system level. Tilbury [134]

states that environmental education for sustainability should focus on developing

closer links between environmental quality, ecology, socio-economics, and the under-

lying political threads. Reorienting education for promoting sustainable development

is discussed by Fien et al. [135]. Their primary focus is the development of an ed-

ucational system for learning the knowledge, skills, perspectives, and values, that

motivate people to lead sustainable livelihoods. Similarly, Ashford [136] argues that

sustainability learning should be interdisciplinary in nature to broaden the design

space for engineers. In spite of such efforts, surveys [129,130] have shown significant

knowledge gaps among engineering students and their inability to apply ES-related

concepts into practice.
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To address such gaps, a large portion of recent efforts have focused on developing

courses, workshops, games, and practical experiences, promoting active learning of

ES concepts. For example, Brundiers et al. [137] investigated the role of experiential

learning in the acquisition of key competencies in sustainability. The effects of ex-

periential learning games for teaching ES is explored in Dielman & Huisingh [138].

The authors group games based on the type of knowledge and the phases in learning

cycles. This classification forms the basis for three types of games, (1) self-analysis

games, (2) system games, and (3) communication & collaboration games. Similarly,

other researchers [139, 140] have looked at simulation games and the gamification of

real-world tasks to promote awareness of ES and conservation-related concepts. In

these studies, the goal is to provide ES-related feedback to users to positively influ-

ence their behavior. Although such efforts are vital for promoting and maintaining

peoples’ (including students’) interest in ES, a handful of these efforts have focused

on contextualizing this learning towards engineering practice.

Approaches that use project-based learning (PBL) has also been previously in-

vestigated by researchers. Stienemann [132] discusses the challenges and success in

designing PBL to promote hands-on experiences of ES learning. Ameta et al. [141] de-

velops a collective learning approach to teaching ES in a systems design course. These

studies underscore the need to consider the feasibility of implementing ES learning

activities and use approaches that can maintain student engagement. However, a ma-

jority of project-based courses that teach ES, focus on system-level problems such as

water purication and urban infrastructure planning. A notable exception is a PBL ap-

proach for teaching Design for Environment (DfE) strategies discussed in Bernstein

et al. [142]. The authors develop a critique-based module that motivates students

to include ES considerations into their designs. Results showed the critique-based

module is an effective method for teaching sustainable product design. Despite its

important role in sustainable design learning, PBL-based approaches have significant

limitations. For instance, the high level of complexity entailed in such projects re-

stricts their applicability to graduate-level classes. Furthermore, such projects are
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often open ended and involve complex interactions between multiple domains and

systems. Thus, it is challenging for students to explicitly define and understand re-

lationships between design variables and environmental impact. To bridge this gap,

researchers have argued for integrating ES learning in regular engineering classes.

Peet et al. [143] argue that students find it difficult to integrate sustainable devel-

opment into engineering practice unless learning activities are incorporated in regular

coursework. Approaches for integrating ES concepts in mechanical engineering are

reviewed by Kumar et al. [144]. The authors conclude that, (1) sustainability edu-

cation should be integrated in design & manufacturing courses, and (2) infusing ES

into engineering curricula is essential for equipping students with the tools for achiev-

ing a sustainable future. An important aspect in ES-related education is assessing

the involved learning processes. Warburton [145] makes a case for the importance

of deep learning in environmental education. The author argues that the multi-

disciplinary and interconnected nature of environmental education necessitates deep

learning. Shephard [146] discusses educational theories for ES learning. The author

reports that most teaching methods in higher education focus on the cogitative skills

of knowledge rather than the affective outcomes. Potential changes identified include,

(1) changing measures for learning outcomes, (2) rethinking guidelines for course eval-

uation, and (3) designing realistic learning outcomes in the affective domain.

In summary, achieving a synergistic integration of ES in design engineering cur-

ricula requires embedding sustainability assessment in existing engineering courses.

For this, it is vital to develop approaches that achieve this integration whilst students

are learning fundamental concepts of engineering design.

7.1.2 Guided Discovery-Based Approaches for Learning

Building on constructivism theories, guided discovery advocates that instruction

should guide students to identify theories and principles through hands-on tasks and

solving real-world authentic problems, rather than directly provide target informa-
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tion [147]. A meta-analysis review of existing discovery learning literature in science,

math, and computer science is presented by Alfieri et al. [148]. Previous research

has found that the scientific discovery learning process has greater resemblance to

real world knowledge acquisition, where students go through planning, executing,

and evaluating stages [149]. Thus, discovery learning can help engineering students

develop intuitions for a given domain to solve novel problems. Although some have

argued that discovery learning without guidance is not necessarily better than direct

instruction [150], guided discovery has distinct advantages, such as providing direct

feedback, working through examples, scaffolding student learning and eliciting ex-

planations. More importantly, researchers have suggested that guided discovery has

greater ecological value than expository type of learning [151].

Despite its benefits, guided discovery has been rarely used to teach ES concepts

in engineering. Therefore, we developing a guided discovery-based instruction frame-

work that to support students’ learning processes.

7.1.3 Structural Shape Synthesis

Structural synthesis represents a challenging design problem as it can include

a wide range of subjective as well as quantifiable goals [152]. From a geometric

standpoint, it requires the selection of a suitably sized member with an appropriate

topology. Additional constraints, such as weight, stress & strain limits, allowable

materials, and manufacturing processes, add complexity to this problem by limiting

the design space. Rules of thumb and guidelines for synthesizing machine parts are

well established in engineering literature [153] and are a part of existing undergraduate

curricula [154]. Conventionally, the goals for synthesis involve, (1) inducing a uniform

load distribution over as much of the body as possible, and (2) minimizing the weight

or volume of the material as consistent with cost and manufacturing processes. Based

on the specified loading criterion, students learn generic principles and optimal seed

shapes for synthesizing structural members. Designers in the industry often use such
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principles to guide the synthesis process. Analysis tools such as finite element methods

(FEA), are used as a means for validating and/or refining synthesized designs.

Papalambros [155] looked at the processes used by students for synthesizing the

shape of a structural member. In this study, student teams were required to design a

bracket to transmit a specified force. Constraints for the design problem include, ease

of manufacture, ability to carry the load without failure, and weight reduction. The

author observed that students mostly used intuition, some amounts of low fidelity

prototyping, and FEA for designing the bracket. Thus, structural synthesis presents

itself as a suitably complex exploration framework for enabling discovery learning.

Embedding ES concepts in the synthesis problem can potentially allow students to

explore relationships between environmental impact and domain specific design vari-

ables. It is our hope that this exploration process will allow students to develop deeper

insights regarding ES. Such learning can be valuable for transitioning sustainability

from an afterthought to an integral part of the design process.

7.2 Research Motivation

The motivation for our work is based on a pilot survey was conducted by Bernstein

et al. [142] within a graduate-level product design course to assess general awareness

of issues related to sustainability. To better understand awareness of sustainability

related concepts, the authors compiled a list of topics based on the survey conducted

by Azapagic et al. [130] and asked students to rate their self-perceived knowledge

in these topics. For this, an online survey was distributed to students before they

began developing ideas for their course projects. After the respondents completed

their semester long project, another survey was conducted to determine what sort

of sustainable and eco-design principles were used within their course projects. Stu-

dents were asked to submit a detailed report on the life-cycle stages and processes

in their design that would significantly contribute to the environmental footprint of

their product concept and suggest design changes to mitigate it. Although the prod-
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Figure 7.1. Summary of results from the preliminary user survey
adapted from Berntein et al. [142] (total of 28 respondents). Each
barchart shows responses for self-perceived awareness in that partic-
ular topic. Topics chosen for this survey are based on a previous
survey conducted by Azapagic et al. [130]. In general, participants
had a low level of understanding related to eco-design and sustain-
ability principles. Also, concepts that are popularized by media (cli-
mate change, global warming, corporate social responsibility) or have
a direct bearing on engineering design (waste minimization, renewable
energy) outperformed other categories.

uct/service ideas generated by the student groups are quite diverse, all of them have

aspects that could be designed around the principles that were outlined in the first

survey. Significant observations are detailed below.

• Participants had a low level of understanding related to eco-design and ES

principles. The analysis of participant responses of self-perceived proficiency

(based on a 5 point scale) showed that students perceived themselves as hav-

ing significantly lower than average levels of knowledge in ES-related concepts

(t(27)=−4.09, p < .001). Specifically, students confirmed they have less than

average knowledge in 22/45 sustainability-related concepts and less than signif-
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icant knowledge in all other tested concepts. A visual summary of the results

obtained from this survey can be seen in Figure 7.1

• Analyzing self-perceived awareness of ES concepts from the survey with the

project reports yielded no significant correlations. Further examination of the

reports confirmed that a greater self-perceived knowledge of ES concepts did

not translate into a more comprehensive consideration for sustainable design

principles in the student’s project.

Based on these findings, we can conclude that apart from lacking awareness in

ES concepts, students also have knowledge gaps in applying known principles of ES

and eco-design to design practice. The process of acquiring expertise in applying ES-

related principles to specific cases in design can be viewed as resolving disagreements

between a specific problem’s constraints and the generality of the applied heuristic.

In order to build expertise in such contexts, non-experts must overcome potential

shortcomings, including, (1) a lack of structured/functional knowledge, (2) an inabil-

ity to integrate generalizable knowledge into existing knowledge structures, and (3)

an inability to determine if a solution makes sense [156]. To mitigate such gaps, we

developed an instruction framework for teaching ES within existing classes.

7.3 Guided Discovery Learning in Design Contexts

In traditional engineering curricula, students are often given simplified design

problems with specific objectives. For example, machine design often deals with

factors, e.g. material selection and shape synthesis, to design structural members

that can withstand specified loading conditions. Engineering domains such as heat

transfer and fluid mechanics also deal with similar problems. Although these de-

sign problems simplify complicated real-world problems, they teach students about

related physical principles and interdependencies among design variables. We posit

that framing sustainability-related concepts by using domain dependent design vari-

ables will allow better integration and application of the concepts. Furthermore, we
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believe that using a design exploration-based context for achieving this integration

promotes a deeper understanding of these concepts. Thus, we propose an instruction

framework based on guided discovery that correlates dependencies of environmental

impact and design performance on a set of design variables. Our guided discovery

instruction procedures are designed to align with the primary propositions of con-

structivism [157]. We present the procedural steps of our framework below and relate

them to constructivism principles below.

1. Identify design variables: Within an engineering domain, identify design

variables that are commonly used for problem based learning. Among them,

identify the relation between these variables to environmental performance.

• Related Principles in constructivism: Anchor the learning activity to a larger

task or problem.

• Explanation of the relationship: Students should have a clear understanding

of the purpose of the learning activity and how it relates to the domain context.

It is important to align student expectations with the learning objectives. In

our case, the design variables have a quantifiable relationship to environmental

impact. Developing a direct correspondence between design variables and ES

allows students to better understand the purpose of the learning activity and

relate to the larger context.

2. Setup design space exploration: Construct a problem that requires the

selection/tuning of variables to meet domain dependent design requirements.

The problem should require insights about relationships of the design variables

to reach an optimal solution through conflicting objectives and/or violations

against rules of thumb.

• Related Principles in constructivism: Design an authentic task. The problem

should reflect complexities of real world tasks to prepare students.

• Explanation of the relationship: Learning activities should reflect the level of

cognitive demand required by the activities which we expect students to master
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at the end of learning. In our study, we setup a scenario involving complex

trade-offs between multiple design variables. This helps us create cognitive

conflicts for students by presenting scenarios that involve multiple conflicting

objectives which are characteristic of real-world design problems.

3. Anchor the solution: Provide students access to domain experts and techni-

cal resources related to ES and impact assessment. This will allow reflection on

wrongly formed insights and developing a better understanding of relationships

between ES performance and the involved design variables.

• Related Principles in constructivism: Offer learner the ownership of the pro-

cess. Support and challenge the learner’s thinking.

• Explanation of the relationship: We discouraged students from following a

set of predefined solutions or thinking strategies. Students were to anchor their

solutions independently by adjusting design parameters and observing the re-

sulting changes in environmental impact. Here, students developed solutions

that met constraints and accounted for practical concerns, e.g. weight mini-

mization. These strategies align with guided discovery learning, where students

had ownership of the design.

4. Motivate the exploration process: Motivate students so that they can

create non-conventional solutions by providing grade incentives. We can also

provide intrinsic motivation by gamifying learning tasks.

• Related Principles in constructivism: Encourage testing ideas against alter-

native perspectives.

• Explanation of the relationship: It was critical that students did not stop af-

ter reaching a feasible solution. We motivated the students to search for viable

alternatives and better performing solutions. This process encouraged students

to construct new knowledge and help them bridge unfamiliar contexts.

5. Observe user behavior: Explicitly record mistakes as well as new insights

gained by the students. When viable, store parameters for every unit iteration in



110

the exploration process. Understanding decision rationale is critical for breaking

existing student mindsets and motivating the case for ES-centered design.

• Related Principles in constructivism: Provide means for and support reflection

on the content learned & the learning process.

• Explanation of the relationship: Demonstrating methods for reflection (on the

content learned & the learning processes) can help students self-regulate their

learning in discovery learning contexts. We explicitly recorded mistakes as well

as new insights proposed by the students. Here, we tried to model reflection

strategies that experts use to monitor problem solving processes in their field.

7.4 Application to a Shape Synthesis Task

We discuss applying our framework to a shape synthesis task. The design explo-

ration problem formulated below, is used to validate our instruction framework in an

in-class study involving 71 undergraduate students. The shape synthesis task requires

students to create a suitably sized part (with appropriate topology) that is capable

of carrying a specified load without failure. The goal is to simultaneously minimize

the weight and the net environmental indicator (EI) of the designed part. We setup

design constraints to introduce complexity (and realism) in the task.

• Students must choose from a specified list of materials adding complexity by

making material selection an integral part of the task.

• If no starting shape is specified, the design should lie within a specified bounding

box that restricts its maximum size.

• Once the starting shape is fixed, all subsequent modeling operations should

remove material. This allows us to estimate the environmental impact of each

removal operations.
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Table 7.1. Single scores for process specific unit impacts calculated
using the Ecoinvent 99(I) method on SimaPro R©.

k1 (Pt/lb) k2 (Pt/lb) k3 (Pt/lb)

Cast Iron (GGL-NiCuCr) 1.4043 0.15836 1.4043

Aluminum (Al 2036) 1.9238 1.6108 1.9238

Carbon Steel (35S20) 0.04997 1.21009 0.04997

• The allowable equivalent Von Mises stress, used as the failure criterion for the

design task, is less than half the value of maximum stress specified for each of

the three materials.

A computer-aided design (CAD) software (such as PTC Creo or SolidWorks) is

used for shape modeling. A finite-element package (such as ANSYS or IDEAS) is

used to analyze resulting stresses. Most CAD software have environments that inte-

grate 3D modeling and FEA. This greatly reduces the effort and the time required for

performing a design-analysis iteration. In our setup, we provide an an automated cal-

culator written in Microsoft Excel R© VBA to simplify the estimation of cradle-to-gate

indicator for approximating environmental impact. Allowing students to perform a

detailed life cycle assessment for estimating environmental impact was not practical

due to the amount of time required to train students. Furthermore, the goal of our

instruction framework is not to teach methods for ES assessment. As this simplifi-

cation introduces uncertainties, students were provided with a percentage estimate

of the uncertainties in this calculator. The process for estimation the cradle-to-gate

indicator for approximating environmental impact is discussed below. Equation (7.1)

provides a mathematical representation of the cradle-gate environmental indicator of

the structural member.

EI = k1 ∗Wb + k2 ∗
n∑
i=0

MRWi − k3 ∗
n∑
i=0

MRWi (7.1)
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Here,

→ Wb: weight of the starting blank

→ MRWi: weight of material removed in the ith manf. step

→ n: total number of manufacturing steps

→ k1, k2, k3: Material/manufacturing process specific unit impacts calculated using

the Ecoinvent 99(I) method on SimaPro R©

– Material extraction: The environmental impact associated with this life-cycle stage

is given by the product of the weight of the initial blank and the impact associated

with producing a blank of that material per unit weight.

– Manufacturing : The design task only allows operations that remove material from

the blank. Thus, any removal operation was treated as a machining operation and its

impact was calculated by multiplying the weight of material removed with the impact

of the unit process associated with machining that material.

– Material recovery from manufacturing : In addition to the impact associated with

manufacturing, it was assumed that 100% of the machined volume was recycled. An

“environmental credit” equal to the weight of the machined volume multiplied with

the impact of producing a blank of that material per unit weight was provided.

Table 7.1 shows the values for k1, k2, & k3 depending on the selected material. These

values are calculated assuming that all material removal processes are machining and

applying a 100% recycling credit. To calculate the EI for a given design, students

enter the current volume of the design in the Microsoft Excel R© calculator. At each

step MRWi is calculated by multiplying the volume difference from the previous

design with the density of the chosen material. Thus, the EI cumulatively accounts

for impacts resulting from material extraction, and all material removal operations.

The units for EI are expressed in Pts where 1 Pt represents one thousandth of the

yearly environmental load of an average European inhabitant.
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5.0 in

Envelope

Wall

10.0 in

4 in

1.943 lbf

5.0 in

4 in

2.0 in

1.0 in

1.0 in 1.5 in

Figure 7.2. Loading condition for both the design tasks in the user
study. The box shown in dashed green represents the bounding enve-
lope (10in×5in×4in) for the design. The square filled in red represents
the area of application of the total load of 1.943 lbf.

7.5 Pilot User Study

User studies were conducted to test the validity of our instruction framework. To

understand the needs, constraints, and potential limitations imposed by our methods,

a pilot study consisting of a small user group was initially conducted to make detailed

observations (on a casewise basis) of user behavior. Insights generated from the pilot

study were used in a follow-up user study conducted in a senior elective class on

computer-aided design (CAD) and prototyping. To avoid scope creep, our studies

were specifically focused towards integrating ES concepts within shape synthesis for

machine design. This allowed us to obtain a deeper understanding of the learning

effects in our framework.

Before conducting an in-class study for validating our framework, we ran a pilot

study with 12 paid participants (10 male, 2 female), aged between 18 and 30 years.

The goal was to validate our setup and tasks in a more controlled environment before

scaling it up a larger sample.
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7.5.1 Apparatus and Software

We conducted our study on a Desktop PC with dual display screens. Participants

used PTC Creo Paramteric 2.0 for constructing computer-aided-design (CAD) models

of their design. For conducting finite element analysis (FEA) on the designs, the

prescribed loads and constraints were applied using PTC Creo Simulate 2.0. The

same software was also used for generating a tetrahedral parabolic mesh of the designs.

ANSYS 14.0 was used for solving the loading condition as well as visualizing equivalent

Von Mises stress. To simplify the calculation process of cradle-gate impact (computed

using Equation (7.1)) an automatic calculator written in Microsoft Excel R© VBA was

provided to users. Users were also allowed to use a notebook for sketching out design

and performing hand calculations. For this study, we did not permit users to look

up relevant information from online or textual sources. However, each subject was

closely monitored by a proctor with extensive experience in sustainable design and

use of the involved software. When required, the proctor assisted subjects in using

the involved software. We ensured that the proctor refrained from providing any form

of conceptual or design related suggestions to users.

7.5.2 Participants

We recruited 12 paid participants (10 male, 2 female), aged between 18 and 30

years. Among them, 5 participants were in the graduate program and the rest (6

seniors, 1 junior) were in the undergraduate program within the School of Mechanical

Engineering. Since our design tasks made use of specific engineering software (PTC

Creo 2.0 and ANSYS), we ensured that participants were proficient in using them.

All users were given a fixed remuneration for their participation in the design task.

A list detailing the final weight and the single score of the top three performers was

prominently displayed in the study area so that users could gauge their current level of

performance. These measures allowed us to make the design tasks more competitive.
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7.5.3 Tasks

For analyzing the effects of introducing sustainability-related learning in the con-

text of shape synthesis, users were required to complete two separate design tasks. In

both tasks, the primary objective was to design a cantilever to be used in an automo-

bile for a specified loading condition. The loading condition (common to both tasks)

is shown in Figure 7.2. There was no set number of design iterations. However, a

total of 20 minutes was alloted for each design task. The differences between the two

tasks stemmed from the design parameters that were required to be optimized.

• Design Task (DT1) - Design task 1 was set up to familiarize users with the

exploration framework and use of involved software. In DT1, users were required to

minimize the total weight (and thus the volume) of the cantilever member such that

it satisfied the specified set of constraints specified in section 7.4. The primary design

constraint involving maximum allowable stress is purely a function of material geom-

etry which means that a weight optimal solution will require a geometry that has a

uniform distribution of stress close to the upper limit. Thus, DT1 enables users to

iteratively explore several designs and understand the implicit relationships between

shape, stress and weight.

• Design Task 2 (DT2) - This task was setup to present a conflicting case between

weight minimization (similar to DT1) and cradle-gate environmental impact of the

designed member. In DT2, users were asked to select from three material alterna-

tives: Cast Iron (GGL-NiCuCr), Aluminum (Al 2036) and Medium Carbon Steel

(35S20). Each material had different values for the involved physical variables i.e.

density, Young’s modulus, maximum stress, and environmental impact. Performing a

complete life-cycle assessment (LCA) was outside the scope of this study. Therefore,

a streamlined assessment was performed using Equation (7.1).

To measure the outcomes of the user study, a think-aloud protocol was used

wherein participants were asked to vocalize their thoughts, observations and their
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Material
Weight
Impact

Aluminum
1.69 lbs
6.93 Pt

Aluminum
1.41 lbs
6.64 Pt

Aluminum
1.01 lbs
5.52 Pt

Aluminum
1.27 lbs
5.21 Pt

Material
Weight
Impact

Aluminum
1.36 lbs
3.85 Pt

Cast Iron
4.58 lbs
6.9 Pt

Carbon Steel
4.24 lbs
3.63 Pt

Carbon Steel
2.21 lbs
5.14 Pt

Failed maximum stress limit constraint

Figure 7.3. Example results from design task 2. The contour plot
below each design shows the equivalent Von Mises stress (SEQV) cal-
culated using FEA. The magnitude of SEQV is represented in psi and
corresponding gradations are detailed in the color-scale located bot-
tom right. As seen, designs based on Aluminum tend to be lighter,
but environmental impact reduction is easier in Carbon Steel designs.
A majority of users chose Aluminum blanks but only one of them was
able to reduce the impact below 4 Pt (Ecopoints).

approach for generating a solution. We also probed participants with questions re-

lating to any significant observations that we made during the user study. An audio

recorder was setup to capture this data and we also made extensive observation notes

for every session. Our intent was to conduct a post-hoc analysis for understanding

heuristics used to generate solutions, user conception of sustainability related topics

and the effects of integrating sustainability based variables in a shape synthesis set-

ting. An online survey related to possible learning outcomes, comments regarding

the study, and the task-load was administered at the end of DT2. Please see the

appendix in this thesis for the list of questions asked in the survey. Observations

made from the audio recordings and notes were cross-checked with user comments

from the survey to confirm our hypotheses.
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7.5.4 Results

The main goal of DT1 was to familiarize users with the workflow and have them

draw insights on the implicit relationships between shape synthesis and induced stress.

All 12 users had previously taken a course that taught design principles for static

loading. Among them, 9 users had taken a computer-aided-design course that also

dealt with finite element analysis. Given the background of the participants, it is

surprising to note that only half of them had been exposed to a design problem similar

to DT1. We observed that DT1 enabled such users to develop a richer understanding

of the involved concepts. One participant reported that “It was good to visualize

the effect of variation in dimensions on the stress. The visualization of stress on the

designed part helped on further refinement of the design by eliminating the low stress

materials.”. Other users, who had previous exposure to similar problems reported

that this task helped validate design insights that they had developed from previous

mechanics courses. For example, one participant said “The task confirmed my insight

the material should be located as far away from the neutral axis to reduce the amount of

material required. The system can be reduced to a shear force at the attachment points

and a bending moment on the beam.” Feedback from the online survey also indicate

that tasks similar to DT1 offer new insights that students miss within traditional

mechanical engineering courses. Users commented that,

- “It was interesting to use finite element analysis (FEA) for a real problem as

being able to see where maximum stress occurs is very helpful in learning where

to take out more material from”

- “The selection of base shape material is important to enhance the chance of

shape change in the design process. For example if I select circle, one way I

can imagine to change the material shape is changing radius. However, the I-

shape could provide more possibilities in the change of shapes (changing each

dimension of sides)”
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Material Blank C.S
Weight 

(lbs)

Single 

Score 

(Pt)

Blank 

Volume  

(in^3)

Final 

Volume 

(in^3)

Weight 

(lbs)

Single 

Score (Pt)

2.08 4.49 24.00 20.92 2.077 4.49296

1.01 5.52 32.50 10.18 1.011 5.5203

1.42 6.65 38.75 14.25 1.41645 6.6477

1.36 3.85 21.40 13.71 1.3627 3.8529

1.21 5.18 30.00 12.16 1.208 5.181

1.27 5.20 30.00 12.78 1.2703 5.201

1.69 6.93 40.00 17.00 1.6898 6.9334

2.15 7.08 40.00 21.62 2.149 7.077

I-shape 4.24 3.63 25.00 14.99 4.24217 3.63

3.05 3.31 20.00 10.78 3.0507 3.309

2.21 5.14 22.50 7.82 2.21306 5.1378

Cast Iron Rect. 4.59 6.90 30.00 18.34 4.585 6.9

Aluminum

I-shape

Rect.

Carbon Steel
Rect.

Figure 7.4. Results from all the twelve user studies. In this figure
material and blank cross-section are attributes defined for the user
chosen blank within DT2. Weight and Single Score (cradle-gate as
per Equation (7.1)) are calculated with respect to the final design in
DT2. Blank volume and Final volume are also calculated based on
user responses within DT2. The last two columns of the table provide
a visual overview of the numerical values of Weight and Single Score.
Values highlighted in red represent designs that failed the maximum
allowable stress constraint.

From the think-aloud data we observed that in several cases, the design task

helped disprove false intuitions and mental models formed by student engineers. The

exploratory nature of the task allowed students to critically examine previously learnt

concepts and forced them to make sense of unexpected results. As one participant

said; “Sometimes intuition and experience is not enough to know exactly where high

stress will occur with complex geometry and FEA is a useful tool in those cases.”

For DT2, users were asked to build on insights from DT1 and simultaneously

consider the effects of the cradle-gate impact of their designs. A snapshot of selected

user solutions for DT2 is illustrated in Figure 7.3. From a total of twelve designs, two

of them failed to meet the criterion for limiting the maximum value of equivalent Von
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Mises Stress. Analysis of data from the study shows that users primarily relied on past

experience for initially selecting a material type. For example, a majority of users (7

of 12) preferred Aluminum over Cast Iron and Medium Carbon Steel because of their

intuition that they could make the design very light as well as use lesser material in

the process. Although this intuition worked for a few designs, students immediately

realized that this selection significantly constrained the design space. A rectangular

shaped blank was preferred in DT2 as most users (7 of 12) felt that it offered more

flexibility in terms of material removal operations. The I-shaped blank was chosen by

three users who reasoned that the shape offers much more stiffness in bending when

compared to the other shapes. All 12 results for DT2 are detailed in Figure 7.4.

Similar to the results from the preliminary user survey, the online survey shows

that the entire user group felt that learning concepts about sustainable design was

important for design engineering. However, only 2 participants had previous training

in concepts related sustainability and 1 participant (with no previous training) was

considering taking related coursework. Previous surveys we have conducted have also

shown similar results supporting the hypothesis that current engineering curriculum

does not motivate students to enroll in a separate course devoted to sustainability.

This issue is compounded by the fact that most sustainability courses that teach life-

cycle and systems engineering related concepts fail to link them to common design

practice. Our analysis of the think-aloud data shows that inclusion of exploratory

design tasks that contextualize sustainability within existing curriculum can overcome

these shortcomings. User feedback on DT2 strongly supports this view as all 12 users

felt that the design task was within the context of current engineering mechanics

curricula. The think-aloud data shows several instances where users formed new

insights relating sustainability and shape synthesis. User comments on DT2 support

this observation. They pointed out,

- “It was interesting to see how certain materials are better for certain types of

problems; Aluminum is expensive to cast but relatively cheap to machine down

after the casting has been done”
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- “I tend to forget that the scrap material can be recycled. When I approach design

I try to minimize the amount of scrap”

- “This task also caused one to balance carrying the load along with not wasting

material, which really changes the thought process for designing”

- “Normally, we tend to only focus on minimizing volume when considering sus-

tainable design. Rarely do we think about how much energy is required to min-

imize that volume. We come up with fancy and intricate designs to reduce

volume, but neglect the manuf. effects associated with this process. In most

undergrad courses, this is not even mentioned as an important factor”

Furthermore, results from the online survey show that 11 users out of the 12

agreed that DT2 could be easily integrated into existing mechanics courses that they

had previously taken. Additionally, a total of 7 users reported that this exercise

convinced them to take a deeper look into sustainable design concepts. Results also

show that the average likelihood for participants to use sustainability as one of the

guiding principles in future designs was equal to 4.08 (on a linear 1-5 scale).

7.5.5 Discussion on Pilot Study Results

Results from the pilot user study underscored the importance of contextualizing

sustainability teaching to specific engineering domains. Furthermore, results showed

that 11 of the 12 users agreed that this task could be easily integrated into mechanics

courses that they had previously taken. However, our observations and participant

feedback highlighted important limitations in our pilot study.

• Participant feedback indicated the design constraints such as the initial shape

of the blank and time for completion prevented some students from generating

a more optimal solution.

• We observed that providing a variety in initial blank sizes tended to complicate

the question. Students would focus a lot more on starting off with an optimal
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sized and shape blank rather than iterating over subsequent features. Also, the

selection of the initial blank had a significant effect on impact, sometimes more

than subsequent shaping operations.

• The Excel spreadsheet provided to the students allowed calculation of impact

one material at a time. Most participants expressed the need for simultaneous

calculations for all three material types.

• Participants would often ask for how much better is a small change in impact vs

savings in weight. Since there was no actual measure of uncertainties in impact,

small incremental savings in impact really made no sense.

Based on our insights and user feedback from the pilot study, we developed a

design problem that was suitable for an in-class study.

7.6 In-Class Follow Up Study

The follow-up study was conducted within ME444, a CAD and prototyping class

in the School of Mechanical Engineering at Purdue University. This undergraduate

course covers concepts in solid modeling as well as FEA and includes laboratory

sessions that require students to use PTC Creo 2.0 and ANSYS. Students are required

to design and build a fully functional toy as a course project, exposing them to product

design and rapid prototyping. To obtain a significant number of results for our study,

we decided to distribute it as a graded class assignment. However, the web-based

surveys distributed with this study was optional and did not account for class grade.

7.6.1 Setup & Participants

The study was conducted in a class consisting of 71 students (60 male, 11 female),

aged between 18 and 25 years. The user study consisted of a pre-assessment survey, a

10 day take home design assignment (see Figure 7.5), and a post-assessment survey.
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Bolt Face

Pedal Face

Figure 7.5. Loading condition for the study. A brake pedal is at-
tached to a frame using two bolts with a 5 psi load uniformly dis-
tributed on the pedal face. Contacts are assumed frictionless.

The pre-assessment survey was used to understand the existing level of knowledge

related to sustainable design among the participants. Please see the appendix in this

thesis for the list of questions asked in both the surveys. At this point, students were

unaware of the design task. Along with ES-related questions, we also asked students

about other factors such as cost and aesthetics. This helped in shaping the survey as

an assessment of overall design practice as opposed to directly focusing on eliciting

ES-related knowledge. Thus, we expected student answers to reflect design decisions

that they would have made without any additional exposure to an ES module. This

survey was also used to understand demographics of the user population in terms

of current standing and completed courses. Before handing out the assignment, we

conducted a 30 minute demonstration of a similar task and went over important

considerations for design and ES evaluation. Students were free to raise questions

or concerns during the study. We provided guidance for the assignment, using a

a combination of instruction documents and expert-support. We distributed, (1) a

step-by-step instruction document detailing the software usage, (2) a reference manual

that explained the methodology behind ES assessment, and (3) an Excel calculator

for environmental indicator along with the assignment. Students were also given

access to experts in CAD, FEA, and sustainability assessment during the period of
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the assignment via email. They could also personally consult with the experts during

to 1.5 hour lab sessions. The experts were instructed not to provide any direct design

guidance. The helped students overcome problems with the software, understanding

of concepts, and guided students’ exploration processes. Students were free to discuss

and compare their results for weight and environmental performance, but were not

allowed to share details about their actual designs. We also motivated students by

including a mastery-oriented learning objectives. While ninety percent of the grade

was based on correctly setting up loading and displacement constraints and the mesh

for FEA, ten percent of the assignment grade was based on relative performance of

the student with regards to final environmental impact and weight. We also asked

student to submit documentation on design iterations. Students were free to discuss

and compare their results for weight and environmental performance, but were not

allowed to share details about their actual designs. We also motivated students by

providing a grade incentive based on relative performance of environmental impact

and weight minimization.

The goal of the design problem was to simultaneously optimize a brake pedal for

final weight and environmental impact. The limiting constraint on the design was

the value of critical Von Mises stress, which could not exceed the maximum allowable

stress (50% of material yield stress). An initial blank (Figure 7.5) along with the

following loading conditions was provided.

1. A load of 5 psi is uniformly distributed on the pedal face.

2. Friction between all surfaces can be neglected.

3. The pedal is attached to a frame (not shown) using two bolts which holds the

bolt face against that frame.

Students were allowed to iteratively refine their designs using material removal oper-

ations. They could choose from one of 3 materials: Cast Iron (GGL-NiCuCr), Alu-

minum (Al 2036), or Carbon Steel (35S20). The method for calculating the cradle-

to-gate indicator is similar to the procedure described in the methods section (see
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Figure 7.6. Results illustrating the top and the bottom 25% of results
sorted by the environmental indicator as well as the weight.

Equation (7.1)). The Excel R© calculator was modified to allow users to simultane-

ously view the weight and the environmental indicator (EI) for all 3 material options.

Although we imposed a minimum of 3 design iterations to meet grading requirements,

students were free to iterate as many times as they liked. At the end of each iteration,

students were required to provide details on the selected material, weight, EI, and

assess whether their design met the constraints. A CAD model of the part along with

applied loads was required to be submitted for the final iteration. After students sub-

mitted their final designs, we provided a link to a voluntary post-assessment survey.

In this survey, we asked students whether they found the assignment engaging and if

introducing similar modules in other undergraduate courses would help them better

understand ES. Results from this survey and the design task are discussed below.
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7.6.2 In-Class Study Results

For the pre-assessment survey, we received 59 responses. Out of these respondents,

48 students were pursuing a mechanical engineering degree. and the rest were from the

Aeronautical, Biomedical, Computer Graphics, and Multi-Disciplinary engineering

programs. All students, expect one 1st year student, were in the 3rd or 4th year of

their program.

Given the context of this study, we wanted to understand students’ background

knowledge. All students reported that they had previously taken a course in either

statics, mechanics of materials, or strength of materials. Furthermore, a majority of

them (50/59) had previously worked on design projects. Thus, we expected most of

them to have developed basic knowledge about design, shape synthesis, and stress

analysis. Just as we have previously observed in student teams, most students had

little idea on how to reduce the environmental impact of their designs. Worryingly,

students did not focus on design variables such as material choice, build layout, or

shape changes. Instead, students suggested, “purchasing a majority of the parts”,

“adding solar panels instead of batteries”, & “changing the power source of the 3D

printer to a greener source”. When asked about the importance of reducing the

environmental impact of their designs, only 4 students reported that it was an im-

portant consideration and 1 student reported that it was of critical consideration.

Results from the pre-assessment survey confirmed our results from the preliminary

survey. Both studies emphasize the need for integrating ES considerations in regular

mechanical engineering coursework.

For the design task, although students were only required to perform 3 itera-

tions, most students performed additional iterations (mean=5.6, median=4, vari-

ance= 8.76 ). Results highlighting the top and bottom 25% designs are shown in

Figure 7.6. Here, the results are classified both by the environmental indicator and

the weight. We observed that while only 1/10 top 25% designs where common to

both the categories, 4/10 designs where common in the bottom 25%. This suggests
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GUIDELINES FOR FUTURE DESIGN TASKS?
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ME444 IN THE FUTURE?
IS IT USEFUL HAVING SIMILAR

MODULES IN OTHER ME COURSES?

Figure 7.7. Responses to questions related to the future use of this
module within ME444 and other ME courses.

a potential knowledge gap in students with bottom performing designs that per-

vades across environmental assessment and weight reduction. We observed that top

designs (in both categories) often leveraged conventional heuristics, such as I-beam

type cross-sections, triangular-profiles and filleting corners. In contrast, the bottom

designs mainly focused on manipulating shapes. This disparity between top and

bottom performing students suggests the need to identify,

1. Students’ perceptions of guided discovery, especially if students developed con-

flicting views about the learning activities.

2. Characteristics of top and bottom performing students. We intend to compare

the choices made during design iterations for the top and bottom quartiles.

Similar comparison-based approaches have been used in previous studies to

understand how students construct new knowledge and to inform educators

about methods to bridge performance gaps [158]. In our case, we are interested

in formulating guidelines for improving our framework so that it is effective for

a wider range of students.

Students’ perception of the guided discovery approach: We administered a

post-assessment survey after students completed the assignment. This survey was

completely voluntary and did not amount to any class credit. From the 71 students

in class, we received 29 responses. Among them, only 16 students reported that they

were satisfied with their final submission. More than half (17) of the students also

reported that they stopped the assignment due to lack of time. One student men-
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tioned that “assignment 4 so far is the hardest assignment ever assigned. However,

the freedom of design allows students to explore their creativity to its max which is

very good.” Additionally, a majority of students (21/29) reported that given time

they would be able to improve their solution. We received positive feedback for the

mastery-based incentive set for the assignment. One student remarked, “I really liked

the 10% of the grade that was based on how the class performed. It gave me more

motivation to do well on the assignment.” When asked if this assignment helped them

learn new insights or relationships, students commented:

- “I was able to come up with a very light design using materials that would

have low environmental impact. However, it would have been very difficult to

manufacture. There are always going to be tradeoffs.”

- “Different materials have different eco-scores. I didn’t realize that acquiring

different materials can have drastically different effects on the environment.”

- “The Von Mises stress plot helped me realize that where there is no stress,

there is no need for material. Adding rounds also helps to minimize stress

concentrations in the part...”

Such comments highlight the ability of our guided discovery approach to help

students identify the relations between design variables and ES outcomes. On cat-

egorizing all 19 comments for the same question, we found 13 positive comments

with 1 discussing relationships between ES and manufacturability, 3 highlighting the

effect of part volume on ES, and 9 spoke about the effect of material type on ES.

Additionally, 3 students commented that they did not develop any new insights as

they were unclear on how EI was calculated, and 3 comments were negative without

citing any reason. Figure 7.7 summarizes students’ perception of the assignment. We

noticed an increase in the percentage of students reporting that learning sustainable

design is important for engineering design. However, the results are not significant

to be considered as an indicator for change in student perception. More impor-

tantly, only 4 students indicated that this assignment failed in convincing them to
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Figure 7.8. Results from all student responses without assignment
errors (such as mesh quality, wrong loading conditions). Here, each
row represents a student response and each column represents a design
iteration. The color for EI as well as weight are normalized against
the best design in class. For weight as well as EI, a lower value (as
shown in the colorbar) indicates a better design. Comparing Students
1 & 2, we can see that Student 2 started out with a good material
and shape combination allowing him/her to reach a low value of both
EI and weight.

do additional reading on ES. We also found a significant positive correlation between

students wanting to increase their knowledge on ES with the likelihood of applying

ES-related principles in future design tasks (Pearson r(38) = 0.42, p = .02). Addi-

tionally, students reported that this module should become an integral part of ME444.



129

Top 25% of the students Bottom 25% of the students

Cast Iron Aluminum Cast Steel

EcoPts of top  25  percent students EcoPts of bottom  25  percent students

Figure 7.9. Material selection per design iterations for the top and
bottom 25% performers. The height of the bar is scaled to the value
of the eco-indicator (EI). Iterations that failed to meet the stress
constraint have a “H” marked above them.

Bridging the performance gap: We analyzed students’ performance gaps to

identify ways to cater to a wider group of students. Specifically, we are interested

in identifying the characteristics of the problem solving approaches adopted by the

top and less advanced performers. We first validated the set of correct student re-

sponses (n=43 ) per design iteration. This validation step was necessary as our goal

was to identify valid and successful problem solving solutions. As shown in Figure

7.8, students were more at ease in reducing part weight than changing the EI. Data

analysis demonstrated a significantly negative correlation (Pearson r(38) = −0.34,

p = .031) between the total number of iterations and final weight. This was ex-

pected, as engineering students are more familiar with correlations between weight,

shape, and resulting stress when compared to the relationships governing the EI.

Interestingly, although there was no significant difference (among students grouped

by material choice) in the total number of iterations or final weights, we observed a

significant difference (F (2, 37) = 148.05, p < .0001) in the EI categorized by material
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type (MCI = 7.71, MAL = 22.32, MCS = 44.80). This result suggests that student

performance on ES is largely dependent on the chosen material type. Moreover, the

difference in material strength, compensated for the difference in physical density,

allowing students to reach similar values of weight. From their exploration patterns,

we observed that students who reached this insight opted for the material with the

least environmental impact per unit weight and consequently performed better.

To understand whether top performing students (with regards to the EI) explored

material choices differently than bottom performers, we analyzed material selections

during students’ design iterations (see Figure 7.9). We observed that, (1) most (60%)

students started with Aluminum, possibly due to intuitions that lighter materials

lead to better environmental indicators (EI), (2) a majority (70%) of the bottom per-

formers did not explore cast iron-based designs, and (3) the top performing students

were more exhaustive in exploration and flexible in making changes, with a consider-

ably larger number of failed iterations compared to bottom performers (t(18)=2.46,

p=.012). We also observed that top students utilized heuristics such as I-beam type

cross-sections, triangular-profiles and filleting corners while removing material. For

bottom performers, there was a greater variety in shape. Furthermore, 4/10 students

were common to the set of bottom performers categorized by both EI and weight.

This indicates that identifying the relations between weight or EI and part shape

or material is challenging for certain students. Based on these observations, we list

guidelines for future shape synthesis-based exploration tasks related to teaching en-

vironmentally sustainable product design.

1. Increase the minimum number of iterations: This is one way to nudge students

towards a more detailed exploration process. Our results show that most stu-

dents significantly change the exploration variables only after 5 iterations. More

iterations also lead to a higher probability that students will validate a larger

number of internalized heuristics.
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2. Set a significant variable or outcome: In guided-exploration tasks, it helps to

have a significant variable without the possibility of easily reaching a dominant

solution. In our case, we observed that students who did not select cast iron

were often lost and could not elicit meaningful correlations.

3. Increase scaffolding through interventions: Results suggest that more instructor

intervention in guided-exploration tasks improves baseline class performance.

Planned interventions in which instructors help students rethink their explo-

ration strategies alleviate some problems due to time constraints.

4. Support learning through alternate sources: Access to alternate educational ma-

terial such as software packages, and or excerpts from texts is critical for stu-

dents to make informed choices in exploration variables. For the shape synthesis

task, access to material selection software (such as CES EduPack [108]) can help

improve student understanding.

5. Promote friendly competition: Students reported that they enjoyed mastery-

based incentives for the in-class assignment. Students also liked the idea of

discussing exploration strategies (without revealing specific results) with peers.

Moving forward, we believe that it would help to include a prominent social

element by sharing hints and certain choices made by top performers in the

form of a leaderboard.

7.7 Takeaways

Engineering students have significant knowledge gaps in ES-related learn-

ing: Results from our knowledge surveys show that two kinds of gaps exist, (1) a

lack of awareness of ES-related concepts, and (2) an inability to apply these concepts

in design practice. These findings align with those from previous studies, where stu-

dents were reported to have difficulties in understanding and applying ES concepts

in design tasks [129,130]. However, such gaps are not explicitly addressed in current



132

engineering curriculum as, (1) most students have no access to classes devoted to sus-

tainable design, and (2) ES-related instruction in engineering usually lacks context to

an application domain [144]. We also observed that many students failed to use prior

knowledge from related domains (e.g. mechanics, vehicle design, and material science)

to guide their designs. This is consistent with previous research where students found

it challenging to apply acquired engineering principles in practice [143]. A potential

explanation is that the students were not exposed to multi-domain design problems

until much later (junior or senior years) in existing curricula. Providing a real-world

design context for traditional mechanical engineering courses could help address such

issue and connect the isolated silos of knowledge [159].

Another concern is the lack of effective design exploration tools to support ES

learning. In many cases, students are forced to either explore solutions by hand or

spend a significant time learning design and analysis software before they can ask what

if questions. In our study, we created an exploration workflow by using commonly

available design and analysis software in academia and industry. However, student

feedback shows that a lack of a streamlined workflow for design exploration prevented

them from realizing better designs. In the post-assessment survey, 5/29 students re-

ported that the solid modeling and stress analysis software used for the assignment

significantly impeded their exploration process. Additionally, 11/29 students reported

that they stopped the exploration process because it became too tedious. These find-

ings motivate researching exploration-focused tools in early design that concurrently

allow ES and engineering assessment.

Guided discovery benefits sustainability learning in design exploration

contexts: Our results suggest that using a guided discovery approach in design

exploration benefits students’ ES learning. Similar benefits of guided discovery learn-

ing have also been identified in other disciplines [148]. Our study demonstrates that

guided discovery learning allows engineering students to develop insights about im-

plicit relationships between design parameters and ES outcomes, as well as increases
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the likelihood of applying ES concepts in future design projects. A potential ex-

planation for these benefits is that an exploration process provides students with

hands-on experience in manipulating design variables and observing corresponding

changes in ES indicators. Furthermore, we guided the discovery learning process

by offering immediate feedback to students’ designs and made expert consultation

available throughout the design process. As previous research has indicated, obtain-

ing experiential insights through hands-on experiences and having access to expert

consultation during design can promote learning [137,143].

Additionally, we show that during guided discovery, top performing students ex-

tensively explored design variables in order to enhance ES outcomes. In contrast,

bottom students fixated on a limited range of design variables and were disinclined to

investigate more promising alternatives. This contrast between top and bottom per-

forming students in guided discovery learning coincides with previous findings [150].

Students are not necessarily able to identify key relations among variables without

appropriate guidance. Thus, our study identified a potentially effective model as

demonstrated by the top performing students, and suggested the need to provide

guidance during discovery learning to help students incorporate such effective mod-

els. Despite the promise of using guided discovery in exploration design contexts,

most existing engineering classes do not integrate such approaches. As previous work

has suggested, only a handful of classes have tried to integrate ES into design [144].

In summary, we propose that in order to promote ES learning, engineering curric-

ula should, (1) embed learning modules within traditional courses and contextualize

ES concepts within engineering domains, (2) adopt a design exploration based learn-

ing framework, such as guided discovery learning to allow students to identify and

apply ES principles, and (3) continue developing courses devoted to teaching a life-

cycle and systems level perspective on these concepts.

Finally, it is important to introduce ES modules at an early stage, to allow ample

time for students to develop insights on fundamental engineering principles through-

out their training in various engineering domains.
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7.8 Limitations

Our user population was limited to only junior and senior level students who have

a significant knowledge of engineering fundamentals. Our results show that a guided

discovery-based approach is valuable for such student groups. However, we cannot

generalize the results to less advanced student groups. We could not follow up to

examine if students actually applied ES principles in consequent design projects. We

are planning on conducting longitudinal studies to test the long-term influence of our

instruction approach. The particular setup and the software that we used for the

task could have introduced biases that may have altered students’ performance and

understanding of the ES module. This study is also limited by the domain we selected

(shape synthesis). We have not explored the effects of our instruction approach for

engineering domains such as heat transfer or fluid mechanics. Although we plan to

incorporate our instruction approach in such classes, results from our current study

may not be generalizable for these domains. In order to quantify the effectiveness of

out instruction approach, a comparative study that benchmarks our approach with

existing instruction methods is required.

7.9 Conclusions and Future Work

This chapter has presented mechanical engineering students’ knowledge gaps in

sustainability concepts. Based on our preliminary surveys of student engineers, we

developed a guided discovery-based instruction framework for incorporating ES in en-

gineering classes. To validate our framework, we conduct in-class user study focused

on a shape synthesis task. We show that our instruction framework can be integrated

in an existing engineering course. Results from knowledge surveys show that students

were able to explore relationships between design variables and environmental sus-

tainability and the instruction approach relevant and useful . Although we conducted

our study in a CAD class, the developed instructional model can be potentially use-

ful for other engineering domains. In our future work, we intend to examine the
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applicability of our guided discovery-based instruction approach in other engineering

classes, e.g. heat transfer and fluid mechanics. One of our future goals is to embed

such guided discovery modules in introductory level engineering classes at the fresh-

man, and sophomore level. We have compiled a table in the appendix (see Table D.1)

that presents examples of guided exploration tasks suited for common classes in me-

chanical engineering curriculum. We hope these illustrative examples are useful for

educators interested in adopting a guided discovery-based instruction framework for

integrating ES learning objectives in their classes. Holistic integration of ES within

design also requires future work on instructional models that facilitate conceptual

change, while guarding against misconceptions developed in these processes [160].
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8. CLOSURE

8.1 Summary

Maintaining sustainable development is one of the key challenges facing humanity

in this century. Among the three pillars of sustainable development, environmen-

tal sustainability in itself, is a challenging goal. As designers and engineers, we can

make significant contributions towards this challenge by developing new products and

processes (and improving existing ones) that satisfy societal needs while minimizing

the associated environmental consequences. There has been remarkable progress in

the industry, and by academia towards this goal in the last few years. The evidence

for this lies in the increasing number of research funds, projects, and publications

as well as corporate sustainability efforts in the last decade. While these efforts are

commendable, this thesis has tried to explore the next steps for eco-conscious design:

‘holistic integration of eco-conscious design practices with traditional design’. Our

hope is that by considering environmental sustainability as an implicit parameter in

all design processes, it can achieve as similar footing in design as more traditional

parameters (such as cost, time, failure stress, etc... ). This thesis has shown that

considerable research on multiple fronts in design is required to achieve this integra-

tion. An important consideration that is often overlooked is the fact that integrating

eco-conscious design practices with traditional design is a two-way street. While it

is important to change existing design practices with regards to constraints in eco-

conscious design, it is also vital that we consider how we can adapt existing practices

in eco-conscious design with regards to the changing nature of design. With the immi-

nent arrival of data-driven design through ubiquitous computing and data collection

hardware, practices such as data mining, visual analytics, and crowd-powered tools

will become a priority for facilitating eco-conscious decision-making. To meet this
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change, we believe that environmental sustainability-related tools must shift from

being purely assessment driven towards enablers for data-driven design exploration.

In light of such challenges, this thesis has tried to provide potential solutions in

the form of new, (1) representations of design and sustainability-related data, (2)

methods, tools, and interfaces for eco-conscious design, (3) holistic decision-making

strategies that consider all stakeholders, and uncertainties in the product’s lifecycle,

and (4) instruction frameworks that integrate sustainability-learning within engineer-

ing curricula. When considered together, our hope is that these works enhance the

ability of engineers and designers to inculcate eco-conscious design as an integral part

of their design processes.

While this thesis has remained focus on approaches for eco-conscious design, it

is worth mentioning that inculcating an eco-conscious mindset across the lifecycle

requires a broader systems-level approach in which life cycle stages such as design,

manufacturing, global supply chain, use, and end-of-life are all linked. This integrative

outlook on the interdependencies of these networked systems is currently outside the

scope of existing engineering design and practice. Understanding and controlling

multi-scale, complex, and coupled systems is essential for sustainable development.

8.2 Future Work

The long term goal of this thesis is to facilitate integration of eco-conscious de-

sign practices with traditional design by exploring, (1) data-driven representations

for product lifecycle data, (2) decision-making methods that integrate design consid-

erations with environmental sustainability constraints, and (3) tools and interfaces

for visualization-driven eco-conscious design exploration. To this end, future work

will look into the following aspects.

• Exploring function-based representations for sustainability data that incorpo-

rate a product’s performance constraints as well as related constraints imposed

in product embodiment (manufacturing processes, supply chain constraints
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etc...). An important focus in this work will be to develop a systems-based

approach that can be adapted towards complex product systems.

• Conduct user studies with designers with the goal of developing an objective

method for estimating uncertainty scaling weights in redesign decision-making.

We would like to understand how designers express preferences when trading-

off redesign complexity and environmental impact in the proposed IGDT-based

model for modeling uncertainties in the function-impact method. We also plan

on conducting similar studies in group settings to understand preferences among

design teams that are working towards eco-conscious redesign of product sys-

tems. These studies will help us develop designer-driven decision-making models

for eco-conscious design that consider uncertainties in product lifecycle data.

• Our future work will explore alternate visualization schemes and interaction

modalities for eco-conscious design exploration (ECDE). This thesis has pre-

sented a framework for integrating information visualization in the context of

ECDE and presented an interface for exploring 3D part repositories. We will

work on incorporating alternate visualization methods in the same context, as

well as expand our framework towards other contexts in design exploration such

as manufacturing process selection. We also plan on developing approaches that

further reduce the disconnect in design and sustainability parameters by using

scientific visualization-based approaches for overlaying the two.

• With regards to the proposed instruction framework, we intend to examine the

applicability of the guided discovery-based instruction approach in other classes

in mechanical engineering curriculum such as heat transfer and fluid mechan-

ics. We hope to embed such guided discovery modules in introductory level

engineering classes in the future in order to understand its ecological validity.

• An important focus in our future work will be to understand crowd-related pref-

erences for shaping designers’ interpretation of eco-conscious design. We believe
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that this work is necessary for bridging the gap between designer-generated fea-

tures that reduce environmental footprint and customer-perceived features that

reduce environmental footprint. The rise of web-enabled technologies for com-

munication with customers such as crowd marketplaces, survey forums, and

web-apps can help designers better understand these gaps and eventually de-

sign eco-conscious products that align with customer expectations.
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A. SUPPLEMENTARY INFORMATION ON THE C.H. 1
2

INCH PNEUMATIC

IMPACT WRENCH

Table A.1. : Bill of materials, for the Campbell Hausfeld
1
2

inch impact wrench.

Name Matl. Wt.
(gram)

Area
(cm
sq. )

Manf. process

Air Hose Connec-
tor

X12Cr13(416)I 58 (a) Cold impact ex-
trusion, (b) Milling

Air Regulator
Knob

C55I 34 (a) Cold impact ex-
trusion, (b) Milling

Air Spring 55Si7I 0.8 (a) Wire drawing
Anvil 50CrV4I 167 (a) Hot impact ex-

trusion, (b) Turning,
conventional

Anvil Actuator Al, cast alloy 0.9
Back Plate X6CrNi18(304)I 74 (a) Hot impact extru-

sion, (b) Milling
Ball X12Cr13(416)I 3.5 (a) Cold impact ex-

trusion
Big Set Screw C55I 1.7 (a) Turning, CNC
Big Spring 55Si7I 1 (a) Wire drawing
Big Washer 50CrV4I 15
Chuck Gear 25CrMo4I 57 (a) Cold impact ex-

trusion, (b) Milling
Chuck Washer 50CrV4I 4
Dowel Pin 42CrMo4I 20 (a) Hot impact ex-

trusion, (b) Turning,
CNC

End Cover (fat) G-
AlSi8Cu3(380)I

69 (a) Hot impact extru-
sion, (b) Milling

End Cover (thin) G-
AlSi8Cu3(380)I

52 (a) Hot impact extru-
sion, (b) Milling

Hammer 25CrMo4I 70 (a) Hot impact extru-
sion, (b) Milling

Continued on next page
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Table A.1 Continued
Name Matl. Wt.

(gram)
Area
(cm
sq. )

Manf. process

Hammer Cage GGG40I 338 (a) Hot impact extru-
sion, (b) Milling

Handle/Arm Steel, unalloyed 74.75 (a) Hot impact extru-
sion, (b) Hot rolling

Hollow Rod X12Cr13(416)I 1.2
Housing X6CrNi18(304)I 693 (a) Hot impact extru-

sion, (b) Milling
Male-female Ex-
tension

50CrV4I 140 43.2 (a) Cold impact ex-
trusion, (b) Milling,
(c) Powder coating

Paper Gasket Paper 2 (a) Cutting
Plastic Trigger PPGF30I 5 (a) Injection mould-

ing
Plate Screws 50CrV4I 0.5 0.2513 (a) Turning, CNC,

(b) Zinc coating
Replacement
choke

50CrV4I 151 72.57 (a) Cold impact ex-
trusion, (b) Milling,
(c) Powder coating

Reversing Switch 25CrMo4I 40 (a) Cold impact ex-
trusion, (b) Turning,
CNC

Rotor 25CrMo4I 255 (a) Cold impact ex-
trusion, (b) Milling

Rotor Housing 25CrMo4I 144 (a) Cold impact ex-
trusion (b) Milling

Rotor Vanes Tetrafluoroethylene 8 (a) Injection mould-
ing

Rubber Gasket Synthetic rubber 0.7 (a) Injection mould-
ing

Rubber Handle Synthetic rubber 22 (a) Injection mould-
ing

Screw Trigger
Washer

50CrV4I 1.1

Screws (case) C55I 16.3 (a) Turning, CNC
Slotted Rod X12Cr13(416)I 0.4 (a) Sheet rolling
Small Set Screw C55I 0.5 (a) Turning, CNC
Trigger Cover X12Cr13(416)I 5

Continued on next page
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Table A.1 Continued
Name Matl. Wt.

(gram)
Area
(cm
sq. )

Manf. process

Trigger Rod 25CrMo4I 6 (a) Cold impact ex-
trusion, (b) Turning,
CNC

Trigger Spring
(small)

55Si7I 0.2 (a) Wire drawing
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B. SURVEY QUESTIONNAIRE FOR ELICITING IMPORTANCE WEIGHTS

FOR PRODUCT 1.

A screenshot of the Microsoft Excel R© survey is shown in Figure B.1 Interested readers

can download this survey from the C Design Lab’s downloads page:

https://engineering.purdue.edu/cdesign/wp/downloads/.

The zipped archive file in this page contains,

1. Instruction document provided to survey respondents in a file titled

ahpQuestionnaire_Readme.docx.

2. Microsoft Excel R© survey for eliciting importance weights in a file titled

ahpQuestionnaire.xslm

3. The importance weights obtained from the 10 decision makers that responded

to this survey in a file titled

sAHP_DM_dataset.csv
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C. SHAPESIFT USER STUDY TASK DESCRIPTION AND QUESTIONS

C.1 Preliminaries

Thank you for participating in the shapeSIFT user study!

• Please carefully read the consent form and sign the form before we proceed.

• This user study session is audio recorded so that we can do a post-hoc exami-

nation of the sessions.

• We will also use a log file of interactions generated by shapeSIFT for our post-hoc

research study.

• We will maintain strict confidentiality regarding your identity and will not pub-

lish any identifiable information from this study. Alternatively, if you are OK

with associating yourself with the study, we will gladly include your name in the

acknowledgments section of any resulting publication.

• Lastly, you are free to terminate or continue the study at a later time if you feel

the need to do so.

C.2 Setup

• Before we begin, please adjust the screen to a comfortable orientation. You can

also resize/reposition the different windows present in shapeSIFT.

• The proctor will provide you with a brief demonstration outlining the aim of the

user study, visualization framework and the features implemented in shapeSIFT.

• If you have any questions/comments at any stage, please talk to the proctor.

• While performing the tasks, we encourage you to proactively convey things you

liked, changes that you feel are required and any learning experiences to the

study proctor.
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• Please note that the repository used for this study has been synthetically gen-

erated with random metadata. Some of the material/manufacturing/function

metadata might not match real-world data.

C.3 Task 1: Interface Familiarization

The main goal of this task is to familiarize yourself with the visualization and in-

teraction frameworks implemented in shapeSIFT. You are free to try out the different

elements present in the interface. A total of 5 minutes is allotted for this task. In

case you have any questions/comments please refer them to the proctor. If required,

the proctor will guide you through the interaction process and provide suggestions

on how to use various functionalities of the tool. At the end of the allotted time, if

you are still uncomfortable with the interface, please inform the proctor so that he

can allocate extra time towards this task. Before we proceed to Task 2, the proctor

will ask for your observations and comments related to this task.

C.4 Task 2: Retrieving Similar Parts

In this task, you are required to estimate the environmental impact of the parts

given below by exploring the ESB and finding similar part . We encourage you to

identify a set of parts that you think are similar to the given part that would have a

comparable environmental impact when compared to the reference part. You are free

to use the sketch query module as well as all other interaction modes of shapeSIFT

for navigation the repository of parts. Please note that there is no one right answer

for this task. The selection(s) of similar parts entirely depends on your judgment. At

any point in this study if you think you have any observations/comments please direct

them towards the proctor immediately. A total of 10 minutes is allocated towards

completion of this task. Before we proceed to Task 3, the proctor will ask for your

observations and comments related to this task.
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Figure C.1. Example parts and metadata provided for Task 2.

C.5 Task 3: Estimating Environmental Impact

In this task, you are provided with two novel hypothetical design for a gear part.

You are tasked with exploring a set of existing gears from the ESB repository in order

to estimate the possible environmental impact of the new design.

1. Material: ThermoPlastic; Manufacturing: injection_molding;

Dimensions: 1in X 1in X 0.1in

2. Material: AlAlloy; Manufacturing: casting, milling;

Dimensions: 150in X 150in X 140in

For this task, the proctor will pre-load a result set that contains gears present

in the ESB. Please refrain from using the sketch window to perform any additional

queries. You task is to use the metadata exploration functionality provided by shape-

SIFT to reach an approximate answer. At any point in this study if you think you

have any observations/comments please direct them towards the proctor immediately.

A total of 10 minutes is allocated towards completion of this task. Before we proceed,

the proctor will ask for your observations and comments related to this task.

C.6 Task 4: Macro-Level Observations

Please use the similarity and textual query present in the control window to answer

the following questions.

1. How many gear shaped parts are made of AlAlloy?
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2. How many gear shaped parts are milled?

For this task, the proctor will pre-load a result set that contains gears present

in the ESB. Please refrain from using the sketch window to perform any additional

queries. You task is to use the metadata exploration functionality provided by shape-

SIFT to reach an approximate answer. At any point in this study if you think you

have any observations/comments please direct them towards the proctor immediately.

A total of 10 minutes is allocated towards completion of this task. Before we proceed,

the proctor will ask for your observations and comments related to this task.

C.7 Task 5: NASA Task Load Index (TLX) Questionnaire

Please fill out the return the NASA TLX1 questionnaire handed out by the proctor.

You are free to clarify any information present in the questionnaire.

Hart and Stavelands NASA Task Load Index (TLX) method assesses work load

on five 7-point scales. Increments of high, medium and low estimates for each point

result in 21 gradations on the scales.

1. Mental Demand: How mentally demanding was the task?

Please rate on 21 point scale of (0: Very Low – 21 Very High)

2. Physical Demand: How physically demanding was the task?

Please rate on a 21 point scale of (0: Very Low – 21 Very High)

3. Temporal Demand: How hurried or rushed was the pace of the task?

Please rate on a 21 point scale of (0: Very Low – 21 Very High)

4. Performance: How successful were you in accomplishing what you did?

Please rate on a 21 point scale of (0: Perfect – 21 Failure)

5. Effort: How hard did you have to work to accomplish your level of performance?

Please rate on a 21 point scale of (0: Very Low – 21 Very High)

1http://humansystems.arc.nasa.gov/groups/tlx
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6. Frustration: How insecure, discouraged, irritated, stressed, or annoyed were you?

Please rate on a 21 point scale of (0: Very Low – 21 Very High)

C.8 Task 5: System Usability Scale (SUS) Questionnaire

Please fill out the return the SUS 2 questionnaire handed out by the proctor. You

are free to clarify any information present in these questionnaires with the proctor.

1. I think that I would like to use this system frequently

Please rate on a scale of (1: Strongly disagree – 5: Strongly agree)

2. I found the system unnecessarily complex.

Please rate on a scale of (1: Strongly disagree – 5: Strongly agree)

3. I thought the system was easy to use.

Please rate on a scale of (1: Strongly disagree – 5: Strongly agree)

4. I found the various functions in this system were well integrated.

Please rate on a scale of (1: Strongly disagree – 5: Strongly agree)

5. I thought there was too much inconsistency in this system.

Please rate on a scale of (1: Strongly disagree – 5: Strongly agree)

6. I would imagine that most people would learn to use this system very quickly.

Please rate on a scale of (1: Strongly disagree – 5: Strongly agree)

7. I found the system very cumbersome to use.

Please rate on a scale of (1: Strongly disagree – 5: Strongly agree)

8. I felt very confident using the system.

Please rate on a scale of (1: Strongly disagree – 5: Strongly agree)

9. I needed to learn a lot of things before I could get going with this system.

Please rate on a scale of (1: Strongly disagree – 5: Strongly agree)

2http://www.usability.gov
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D. SUPPLEMENTARY INFORMATION FOR THE GUIDED

DISCOVERY-BASED SHAPE SYNTHESIS STUDY IN ME444

D.1 Pilot User Study Questionnaire

1. Please enter your participant ID.

2. Please indicate your degree discipline.

(1) Mechanical Engineering, (2) Other

3. Please indicate your current standing.

(1) Freshman, (2) Sophomore, (3) Junior, (4) Senior, (5) Graduate

4. Please check the specific courses (or equivalent) that you have completed from

the list below.

(1) Modern Physics PHYS172, (2) Statics ME 270, (3) Dynamics ME274, (4)

Mechanics of Materials ME323, (5) Structures and Properties of Materials ME

230, (6) Machine Design 1 ME352, (7) Computer Aided Design and Prototyping

ME444, (8) Machine Design 2 ME452, (9) Engineering Design ME463, (10)

Other mechanical design courses (Please list out)

5. Do you have any formal training in environmental sustainability (courses, projects,

work experience)?

(1) Yes (Please describe), (2) No

6. Are you planning on taking courses in the future that relate to environmental

impact assessment/ sustainability?

(1) Yes, (2) Maybe, (3) No

7. Design Task 1: What aspects of machine design/mechanics did this task test?

What concepts did you learn better?

(Please describe)
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8. Design Task 1: Did you develop any specific insights related to machine de-

sign/mechanics in Task 1? If so, what?

(Please describe)

9. Design Task 1: Have you solved similar problems in any of your courses?

(1) Yes (Please describe), (2) Maybe, (3) No

10. Design Task 1: Do you think that tasks similar to this help you better understand

machine design/mechanics concepts? If so, please explain.

(Please describe)

11. In your opinion how important is it to learn sustainable design in engineering?

(Rate on a scale of 1 :not important - 5: very important)

12. Design Task 2: Did you develop any specific insights related to environmental

impact assessment/ sustainable design in Task 2? If so, what?

(Please describe)

13. Design Task 2: Did this task convince you to look into sustainable design further?

(1) Yes, (2) Maybe, (3) No

14. Design Task 2: Do you think this task was within the general context of engi-

neering mechanics?

(1) Yes, (2) Maybe, (3) No

15. Design Task 2: Do you feel this task can be a part of existing machine de-

sign/mechanics curricula?

(1) Yes, (2) Maybe, (3) No

16. What is the likelihood that you will use sustainability based design to guide

future design tasks?

(Rate on a scale of 1: not likely - 5: very likely)

17. What is your opinion on having similar modules in other ME courses (Heat

Transfer, Fluid Mechanics) ?

(Rate on a scale of 1:not useful - 5:very useful)
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18. If you have any specific concerns/suggestions related to either of the design tasks

(Task 1 and Task 2) please elaborate them here.

(Please describe)
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D.2 In-Class User Study Pre-Questionnaire

1. Please indicate your degree discipline.

(1) Mechanical Engineering (2) Other

2. Please indicate your current standing.

(1) Freshman, (2) Sophomore, (3) Junior, (4) Senior, (5) Graduate

3. Please check the specific courses (or equivalent) that you have completed from

the list below.

(1) Modern Physics PHYS172, (2) Statics ME 270, (3) Dynamics ME274, (4)

Mechanics of Materials ME323, (5) Structures and Properties of Materials ME

230, (6) Machine Design 1 ME352, (7) Computer Aided Design and Prototyping

ME444, (8) Machine Design 2 ME452, (9) Engineering Design ME463, (10)

Other mechanical design courses (Please list out)

4. In your opinion, which of these factors are important considerations for your toy

design project?

(1) Lightweigting, (2) Cost, (3) Environmental footprint, (4) Functionality, (5)

Aesthetic appeal

5. In your opinion, which of these factors are critical for being successful in your

toy design project?

(1) Lightweigting, (2) Cost, (3) Environmental footprint, (4) Functionality, (5)

Aesthetic appeal

6. In your opinion, are any of the above factors correlated? If so, can you identify

any correlations? Please explain.

(Please describe)

7. Have you previously worked on design projects within Purdue or outside that

involved any of the above factors?

(Please describe)

8. List ideas by which you think the total weight of your design can be reduced.

(Please describe)
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9. List ideas by which you think the total cost of your design can be reduced.

(Please describe)

10. List ideas by which you think the total environmental footprint of your design

can be reduced.

(Please describe)

11. List ideas by which you think the desired functionality can be achieved.

(Please describe)

12. List ideas by which you think the aesthetic appeal of your design can be in-

creased.

(Please describe)
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D.3 In-Class User Study Post-Questionnaire

1. Please indicate your degree discipline.

(1) Mechanical Engineering (2) Other

2. Please indicate your current standing.

(1) Freshman, (2) Sophomore, (3) Junior, (4) Senior, (5) Graduate

3. Please check the specific courses (or equivalent) that you have completed from

the list below.

(1) Modern Physics PHYS172, (2) Statics ME 270, (3) Dynamics ME274, (4)

Mechanics of Materials ME323, (5) Structures and Properties of Materials ME

230, (6) Machine Design 1 ME352, (7) Computer Aided Design and Prototyping

ME444, (8) Machine Design 2 ME452, (9) Engineering Design ME463, (10)

Other mechanical design courses (Please list out)

4. Do you have any formal training in environmental sustainability (courses, projects,

work experience)?

(1) Yes (Please describe), (2) No

5. Are you planning on taking courses in the future that relate to environmental

impact assessment/ sustainability?

(1) Yes, (2) Maybe, (3) No

6. How many design iterations did you perform for Assignment 4?

(Indicate on slider: 0-15 iterations)

7. What were the major factors that made you decide to stop the assignment?

(1) Lack of time, (2) You felt you reached an optimal answer, (3) The task

became tedious, (4) You did not know how to better the existing design, (5)

Creo and Ansys posed too much of a barrier for me to continue

8. Are you satisfied with your submission?

(1) Yes, (2) Maybe, (3) No
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9. Given more time, do you think you can arrive at a better solution ?

(1) Yes, (2) Maybe, (3) No

10. Did you develop any specific insights related to environmental impact assess-

ment/sustainable design in Assignment 4? If so, what?

(Please describe)

11. Did you develop any specific insights related to mechanics/ FEA/ machine design

in Assignment 4? If so, what?

(Please describe)

12. In your opinion how important is it to learn sustainable design in engineering?

(1) Not at all important, (2) Very unimportant, (3) Somewhat Unimportant,

(4) Neither Important nor Unimportant, (5) Somewhat Important, (6) Very

Important, (7) Extremely Important

13. Did Assignment 4 convince you to look into sustainable design further?

(1) Yes, (2) Maybe, (3) No

14. Do you feel this assignment should be a part of the regular ME444 course in the

future?

(1) Yes, (2) Maybe, (3) No

15. What is the likelihood that you will use sustainability based design to guide

future design tasks?

(1) Very Unlikely, (2) Unlikely, (3) Somewhat Unlikely, (4) Undecided, (5) Some-

what Likely, (6) Likely, (7) Very Likely

16. What is your opinion on having similar modules in other ME courses (Heat

Transfer, Fluid Mechanics)?

(1) Very Useless, (2) Useless, (3) Somewhat Useless, (4) Neutral, (5) Somewhat

Useful, (6) Useful, (7) Very Useful

17. If you have any specific concerns/suggestions related to Assignment 4 please

elaborate them here.

(Please describe)
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Table D.1. : Examples for applying guided discovery-
based assessment modules in core engineering classes.

M.E.
Subject

Design
Vari-
ables

Lifecycle
Phase(s)

Example Problem

Thermo-
dynam-
ics

mass
flow
rate,
temper-
ature,
pressure,
power

use
phase,
end-of-
life

Compare the performance
of (CO2, R32, R410A)
as refrigerants in a com-
mercial refrigeration unit.
The goal is to maxi-
mize the coefficient of per-
formance of the system,
while minimizing the to-
tal global warming poten-
tial due to electricity con-
sumption during use and
eventual refrigerant dis-
posal [161].

Compressor

Expander

Evaporator Condenser

Statics,
Dynam-
ics

force,
moment,
inertia,
momen-
tum

material
extrac-
tion,
material
process-
ing

Explore truss design
configurations under load
constraints at a support.
Given two link types (L1
& L2) minimize the total
weight and cradle-gate
environmental impact
while meeting loading
constraints.

𝐿1 𝐿2

Mechanics material
selec-
tion,
stress,
strain,
geome-
try

material
extrac-
tion,
material
pro-
cessing,
end-of-
life

Design a prismatic sim-
ply supported beam under
uniformly distributed load
so that the maximum de-
flection is below a criti-
cal threshold. Explore dif-
ferent grades of structural
steel to minimize embod-
ied impacts related to pri-
mary material production.

A B
L

w

Continued on next page
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Table D.1 Continued
M.E.
Subject

Design
Vari-
ables

Lifecycle
Phase(s)

Example Problem

Heat
Transfer

length,
temp.,
thermal
conduc-
tivity,
heat flux

material
extrac-
tion, use
phase

Cost, eco-impact and
performance tradeoffs
exist for different insula-
tion materials for use in
buildings. Explore kg eq.
CO2, cost and thermal
conductivity of materials
and develop a weighted
score to justify the best
option [162].

k

λ

W𝑥1 𝑥2

𝑎1

𝑎2

𝑇1

𝑇2

𝑇𝑤1

𝑇𝑤2

Q

Fluid
Dynam-
ics

power,
geom-
etry,
velocity,
drag
coeff.

material
process-
ing, use
phase

Energy is required to
move objects through flu-
ids, like air around a
car. Trade-off geomet-
ric complexity of shape
w.r.t the drag coefficient,
fuel economy, and esti-
mated impacts of manu-
facture [163].

Machine
Design

friction,
viscosity,
trans-
mission
efficiency

material
extrac-
tion, use
phase

Lubrication is vital for ef-
ficient machines. However
certain types pose envi-
ronmental concerns. Ex-
plore the relationships be-
tween kinematic viscos-
ity, cost, & environmen-
tal burden for different
oil and water-based lubri-
cants.

𝜗

𝜗

𝐹𝑙𝑢𝑖𝑑

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦
𝐿𝑎𝑦𝑒𝑟

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦
𝐿𝑎𝑦𝑒𝑟

Continued on next page
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Table D.1 Continued
M.E.
Subject

Design
Vari-
ables

Lifecycle
Phase(s)

Example Problem

Manuf.
Pro-
cesses

material,
toler-
ance,
power

material
extrac-
tion,
material
process-
ing

Different materials have
different manufacturing
capabilities. Given a
load bearing part (e.g.
I-beam), explore the best
combination of material
and process in terms
of cost, eco-impact and
strength using a database.

Source: Granta CES Edupack

CAD,
CAE

material,
stress,
weight

material
extrac-
tion,
material
pro-
cessing,
end-of-
life

Optimize a break pedal
for final weight and eco-
impact with a Von Mises
stress threshold. Offer
various material options
for selection and provide
calculator taking in ac-
count end-of-life. See
Chapter 7 for details.

1 2 3 4

Engg,
Design

project
depen-
dent

complete
lifecycle

Every decision through a
products lifecycle has a
tangible effect on its eco-
logical footprint. Af-
ter initial design, provide
expert-based critique and
describe specific redesign
opportunities [142].
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