350 research outputs found

    An integrated computational and experimental study to investigate \u3ci\u3eStaphylococcus aureus\u3c/i\u3e metabolism

    Get PDF
    Staphylococcus aureus is a metabolically versatile pathogen that colonizes nearly all organs of the human body. A detailed and comprehensive knowledge of staphylococcal metabolism is essential to understand its pathogenesis. To this end, we have reconstructed and experimentally validated an updated and enhanced genome-scale metabolic model of S. aureus USA300_FPR3757. The model combined genome annotation data, reaction stoichiometry, and regulation information from biochemical databases and previous strain-specific models. Reactions in the model were checked and fixed to ensure chemical balance and thermodynamic consistency. To further refine the model, growth assessment of 1920 nonessential mutants from the Nebraska Transposon Mutant Library was performed, and metabolite excretion profiles of important mutants in carbon and nitrogen metabolism were determined. The growth and no-growth inconsistencies between the model predictions and in vivo essentiality data were resolved using extensive manual curation based on optimization-based reconciliation algorithms. Upon intensive curation and refinements, the model contains 863 metabolic genes, 1379 metabolites (including 1159 unique metabolites), and 1545 reactions including transport and exchange reactions. To improve the accuracy and predictability of the model to environmental changes, condition-specific regulation information curated from the existing knowledgebase was incorporated. These critical additions improved the model performance significantly in capturing gene essentiality, substrate utilization, and metabolite production capabilities and increased the ability to generate model-based discoveries of therapeutic significance. Use of this highly curated model will enhance the functional utility of omics data, and therefore, serve as a resource to support future investigations of S. aureus and to augment staphylococcal research worldwide

    An Integrated Computational and Experimental Study to Investigate Staphylococcus Aureus Metabolism

    Get PDF
    Staphylococcus aureus is a metabolically versatile pathogen that colonizes nearly all organs of the human body. A detailed and comprehensive knowledge of staphylococcal metabolism is essential to understand its pathogenesis. To this end, we have reconstructed and experimentally validated an updated and enhanced genome-scale metabolic model of S. aureus USA300_FPR3757. The model combined genome annotation data, reaction stoichiometry, and regulation information from biochemical databases and previous strain-specific models. Reactions in the model were checked and fixed to ensure chemical balance and thermodynamic consistency. To further refine the model, growth assessment of 1920 nonessential mutants from the Nebraska Transposon Mutant Library was performed, and metabolite excretion profiles of important mutants in carbon and nitrogen metabolism were determined. The growth and no-growth inconsistencies between the model predictions and in vivo essentiality data were resolved using extensive manual curation based on optimization-based reconciliation algorithms. Upon intensive curation and refinements, the model contains 863 metabolic genes, 1379 metabolites (including 1159 unique metabolites), and 1545 reactions including transport and exchange reactions. To improve the accuracy and predictability of the model to environmental changes, condition-specific regulation information curated from the existing knowledgebase was incorporated. These critical additions improved the model performance significantly in capturing gene essentiality, substrate utilization, and metabolite production capabilities and increased the ability to generate model-based discoveries of therapeutic significance. Use of this highly curated model will enhance the functional utility of omics data, and therefore, serve as a resource to support future investigations of S. aureus and to augment staphylococcal research worldwide

    METABOLIC MODELING AND OMICS-INTEGRATIVE ANALYSIS OF SINGLE AND MULTI-ORGANISM SYSTEMS: DISCOVERY AND REDESIGN

    Get PDF
    Computations and modeling have emerged as indispensable tools that drive the process of understanding, discovery, and redesign of biological systems. With the accelerating pace of genome sequencing and annotation information generation, the development of computational pipelines for the rapid reconstruction of high-quality genome-scale metabolic networks has received significant attention. These models provide a rich tapestry for computational tools to quantitatively assess the metabolic phenotypes for various systems-level studies and to develop engineering interventions at the DNA, RNA, or enzymatic level by careful tuning in the biophysical modeling frameworks. in silico genome-scale metabolic modeling algorithms based on the concept of optimization, along with the incorporation of multi-level omics information, provides a diverse array of toolboxes for new discovery in the metabolism of living organisms (which includes single-cell microbes, plants, animals, and microbial ecosystems) and allows for the reprogramming of metabolism for desired output(s). Throughout my doctoral research, I used genome-scale metabolic models and omics-integrative analysis tools to study how microbes, plants, animal, and microbial ecosystems respond or adapt to diverse environmental cues, and how to leverage the knowledge gleaned from that to answer important biological questions. Each chapter in this dissertation will provide a detailed description of the methodology, results, and conclusions from one specific research project. The research works presented in this dissertation represent important foundational advance in Systems Biology and are crucial for sustainable development in food, pharmaceuticals and bioproduction of the future. Advisor: Rajib Sah

    Metabolic heterogeneity and the roles of CodY and CcpA in central metabolism and S. aureus biofilm formation.

    Get PDF
    Staphylococcus aureus is a metabolically versatile human pathogen, causing disease in many areas of the body. Its versatility can be attributed to the fact that it utilizes a variety of tools to adapt to many different environments, including toxins to scavenge from the host and multiple transporters to compete for its preferred carbon sources. S. aureus can also survive in harsh conditions through biofilm development, which are notoriously recalcitrant to antibiotics and immune defenses. Biofilms exhibit marked heterogeneity, with division of labor for production of matrix components and differential gene expression among various niches within the biofilm. In this study, we investigated the development of metabolic heterogeneity as structures form during biofilm maturation. Additionally, we investigated how metabolic regulators control proper development of mature structures and their impact on biofilm matrix composition. We observed the initiation of metabolic heterogeneity before nutrient gradients could form within structures, consistent with recent findings that heterogeneity is a trait that begins from the first stages of biofilm development, when cells encounter a surface. Furthermore, we observed inactivation of CodY and CcpA have a substantial impact on central carbon and nitrogen metabolism as well as toxin production and biofilm development
    • …
    corecore