33,187 research outputs found

    A biologically inspired computational model of the Block Copying Task

    Get PDF
    We present in this paper a biologically inspired model of the Basal Ganglia which deals with Block Copying as a sequence learning task. By breaking a relatively complex task into simpler operations with well-defined skills, an approach which is termed as a skill-based machine design is used in the device of computational models to complete such tasks. Basal Ganglia are critically involved in sensorimotor control. From the learning aspects, Actor-Critic architectures have been proposed to model the Basal Ganglia and Temporal difference has been proposed as a learning algorithm. The model is implemented and simulation results are presented to show the capability of our model to successfully complete the task

    Computational Capacity and Energy Consumption of Complex Resistive Switch Networks

    Get PDF
    Resistive switches are a class of emerging nanoelectronics devices that exhibit a wide variety of switching characteristics closely resembling behaviors of biological synapses. Assembled into random networks, such resistive switches produce emerging behaviors far more complex than that of individual devices. This was previously demonstrated in simulations that exploit information processing within these random networks to solve tasks that require nonlinear computation as well as memory. Physical assemblies of such networks manifest complex spatial structures and basic processing capabilities often related to biologically-inspired computing. We model and simulate random resistive switch networks and analyze their computational capacities. We provide a detailed discussion of the relevant design parameters and establish the link to the physical assemblies by relating the modeling parameters to physical parameters. More globally connected networks and an increased network switching activity are means to increase the computational capacity linearly at the expense of exponentially growing energy consumption. We discuss a new modular approach that exhibits higher computational capacities and energy consumption growing linearly with the number of networks used. The results show how to optimize the trade-off between computational capacity and energy efficiency and are relevant for the design and fabrication of novel computing architectures that harness random assemblies of emerging nanodevices

    Computational model of MST neuron receptive field and interaction effect for the perception of self-motion

    Get PDF
    Biologically plausible approach is an alternative to conventional engineering approaches when developing algorithms for intelligent systems. It is apparent that biologically inspired algorithms may yield more expensive calculations when comparing its run time to the more commonly used engineering algorithms. However, biologically inspired approaches have great potential in generating better and more accurate outputs as healthy human brains. Therefore more and more new and exciting researches are being experimented everyday in hope to develop better models of our brain that can be utilized by the machines. This thesis work is an effort to design and implement a computational model of neurons from the visual cortex\u27s MST area (medial superior temporal area). MST\u27s primary responsibility is detecting self-motion from optic flow stimulus that are segmented from the visual input. The computational models are to be built with dual Gaussian functions and genetic algorithm as its principle training method, from the data collected through lab monkey\u27s MST neurons. The resulting computational models can be used in further researches as part of motion detection mechanism by machine vision applications, which may prove to be an effective alternative motion detection algorithm in contrast to the conventional computer vision algorithms such as frame differencing. This thesis work will also explore the interaction effect that has been discovered from the newly gathered data, provided by University of Rochester Medical Center, Neurology Department

    Mechanical prions: Self-assembling microstructures

    Full text link
    Prions are misfolded proteins that transmit their structural arrangement to neighboring proteins. In biological systems, prion dynamics can produce a variety of complex functional outcomes. Yet, an understanding of prionic causes has been hampered by the fact that few computational models exist that allow for experimental design, hypothesis testing, and control. Here, we identify essential prionic properties and present a biologically inspired model of prions using simple mechanical structures capable of undergoing complex conformational change. We demonstrate the utility of our approach by designing a prototypical mechanical prion and validating its properties experimentally. Our work provides a design framework for harnessing and manipulating prionic properties in natural and artificial systems.Comment: Added supplements, 25 pages, 11 figure

    "Going back to our roots": second generation biocomputing

    Full text link
    Researchers in the field of biocomputing have, for many years, successfully "harvested and exploited" the natural world for inspiration in developing systems that are robust, adaptable and capable of generating novel and even "creative" solutions to human-defined problems. However, in this position paper we argue that the time has now come for a reassessment of how we exploit biology to generate new computational systems. Previous solutions (the "first generation" of biocomputing techniques), whilst reasonably effective, are crude analogues of actual biological systems. We believe that a new, inherently inter-disciplinary approach is needed for the development of the emerging "second generation" of bio-inspired methods. This new modus operandi will require much closer interaction between the engineering and life sciences communities, as well as a bidirectional flow of concepts, applications and expertise. We support our argument by examining, in this new light, three existing areas of biocomputing (genetic programming, artificial immune systems and evolvable hardware), as well as an emerging area (natural genetic engineering) which may provide useful pointers as to the way forward.Comment: Submitted to the International Journal of Unconventional Computin
    • …
    corecore