2 research outputs found

    Applying MILP/Heuristic algorithms to automated job-shop scheduling problems in aircraft-part manufacturing

    Get PDF
    This work presents efficient algorithms based on Mixed-Integer Linear Programming (MILP) and heuristic strategies for complex job-shop scheduling problems raised in Automated Manufacturing Systems. The aim of this work is to find alternative a solution approach of production and transportation operations in a multi-product multi-stage production system that can be used to solve industrial-scale problems with a reasonable computational effort. The MILP model developed must take into account; heterogeneous recipes, single unit per stage, possible recycle flows, sequence-dependent free transferring times and load transfer movements in a single automated material-handling device. In addition, heuristic-based strategies are proposed to iteratively find and improve the solutions generated over time. These approaches were tested in different real-world problems arising in the surface-treatment process of metal components in the aircraft manufacturing industry.Fil: Aguirre, Adrian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Nacional del Nordeste; ArgentinaFil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina. Universidad Nacional del Nordeste; ArgentinaFil: García Sanchez, Alvaro. Universidad Politecnica de Madrid; EspañaFil: Ortega Mier, Miguel. Universidad Politecnica de Madrid; Españ

    Optimisation approaches for supply chain planning and scheduling under demand uncertainty

    Get PDF
    This work presents efficient MILP-based approaches for the planning and scheduling of multiproduct multistage continuous plants with sequence-dependent changeovers in a supply chain network under demand uncertainty and price elasticity of demand. This problem considers multiproduct plants, where several products must be produced and delivered to supply the distribution centres (DCs), while DCs are in charge of storing and delivering these products to the final markets to be sold. A hybrid discrete/continuous model is proposed for this problem by using the ideas of the Travelling Salesman Problem (TSP) and global precedence representation. In order to deal with the uncertainty, we proposed a Hierarchical Model Predictive Control (HMPC) approach for this particular problem. Despite of its efficiency, the final solution reported still could be far from the global optimum. Due to this, Local Search (LS) algorithms are developed to improve the solution of HMPC by rescheduling successive products in the current schedule. The effectiveness of the proposed solution techniques is demonstrated by solving a large-scale instance and comparing the solution with the original MPC and a classic Cutting Plane approach adapted for this work
    corecore