40,890 research outputs found

    ADEPT2 - Next Generation Process Management Technology

    Get PDF
    If current process management systems shall be applied to a broad spectrum of applications, they will have to be significantly improved with respect to their technological capabilities. In particular, in dynamic environments it must be possible to quickly implement and deploy new processes, to enable ad-hoc modifications of single process instances at runtime (e.g., to add, delete or shift process steps), and to support process schema evolution with instance migration, i.e., to propagate process schema changes to already running instances. These requirements must be met without affecting process consistency and by preserving the robustness of the process management system. In this paper we describe how these challenges have been addressed and solved in the ADEPT2 Process Management System. Our overall vision is to provide a next generation process management technology which can be used in a variety of application domains

    Successful Management of an Outsourced Large-scale Digitization Newspaper Project

    Full text link
    This article uses the case study of the Nevada Digital Newspaper Project (https://nvdnp.wordpress.com/), an extension of the National Digital Newspaper Program (https://www.loc.gov/ndnp/), to introduce proven strategies on how to successfully manage a large-scale digitization project. It provides tips on how to stay within the timeline and deliver products with outstanding quality, leveraging limited human resources, and engaging an external digitization vendor. It discusses practical project management techniques and tools, strategies for establishing collaborative vendor partnerships, and strategies for efficient communication with stakeholders

    IDMB archaeology case study: Summary

    No full text

    An Approach for Supporting Ad-hoc Modifications in Distributed Workflow Management Systems

    Get PDF
    Supporting enterprise-wide or even cross-organizational business processes is a characteristic challenge for any workflow management system (WfMS). Scalability at the presence of high loads as well as the capability to dynamically modify running workflow (WF) instances (e.g., to cope with exceptional situations) are essential requirements in this context. Should the latter one, in particular, not be met, the WfMS will not have the necessary flexibility to cover the wide range of process-oriented applications deployed in many organizations. Scalability and flexibility have, for the most part, been treated separately in the relevant literature thus far. Even though they are basic needs for a WfMS, the requirements related with them are totally different. To achieve satisfactory scalability, on the one hand, the system needs to be designed such that a workflow instance can be controlled by several WF servers that are as independent from each other as possible. Yet dynamic WF modifications, on the other hand, necessitate a (logical) central control instance which knows the current and global state of a WF instance. For the first time, this paper presents methods which allow ad-hoc modifications (e.g., to insert, delete, or shift steps) to be performed in a distributed WfMS; i.e., in a WfMS with partitioned WF execution graphs and distributed WF control. It is especially noteworthy that the system succeeds in realizing the full functionality as given in the central case while, at the same time, achieving extremely favorable behavior with respect to communication costs

    Knowledge-Intensive Processes: Characteristics, Requirements and Analysis of Contemporary Approaches

    Get PDF
    Engineering of knowledge-intensive processes (KiPs) is far from being mastered, since they are genuinely knowledge- and data-centric, and require substantial flexibility, at both design- and run-time. In this work, starting from a scientific literature analysis in the area of KiPs and from three real-world domains and application scenarios, we provide a precise characterization of KiPs. Furthermore, we devise some general requirements related to KiPs management and execution. Such requirements contribute to the definition of an evaluation framework to assess current system support for KiPs. To this end, we present a critical analysis on a number of existing process-oriented approaches by discussing their efficacy against the requirements

    The organizational dynamics enabling patient portal impacts upon organizational performance and patient health: a qualitative study of Kaiser Permanente.

    Get PDF
    BackgroundPatient portals may lead to enhanced disease management, health plan retention, changes in channel utilization, and lower environmental waste. However, despite growing research on patient portals and their effects, our understanding of the organizational dynamics that explain how effects come about is limited.MethodsThis paper uses qualitative methods to advance our understanding of the organizational dynamics that influence the impact of a patient portal on organizational performance and patient health. The study setting is Kaiser Permanente, the world's largest not-for-profit integrated delivery system, which has been using a portal for over ten years. We interviewed eighteen physician leaders and executives particularly knowledgeable about the portal to learn about how they believe the patient portal works and what organizational factors affect its workings. Our analytical framework centered on two research questions. (1) How does the patient portal impact care delivery to produce the documented effects?; and (2) What are the important organizational factors that influence the patient portal's development?ResultsWe identify five ways in which the patient portal may impact care delivery to produce reported effects. First, the portal's ability to ease access to services improves some patients' satisfaction as well as changes the way patients seek care. Second, the transparency and activation of information enable some patients to better manage their care. Third, care management may also be improved through augmented patient-physician interaction. This augmented interaction may also increase the 'stickiness' of some patients to their providers. Forth, a similar effect may be triggered by a closer connection between Kaiser Permanente and patients, which may reduce the likelihood that patients will switch health plans. Finally, the portal may induce efficiencies in physician workflow and administrative tasks, stimulating certain operational savings and deeper involvement of patients in medical decisions. Moreover, our analysis illuminated seven organizational factors of particular importance to the portal's development--and thereby ability to impact care delivery: alignment with financial incentives, synergy with existing IT infrastructure and operations, physician-led governance, inclusive decision making and knowledge sharing, regional flexibility to implementation, continuous innovation, and emphasis on patient-centered design.ConclusionsThese findings show how organizational dynamics enable the patient portal to affect care delivery by summoning organization-wide support for and use of a portal that meets patient needs

    Next-generation Process Management with ADEPT2

    Get PDF
    Short time-to-market, easy adaptation to changes in business environment, and robustness of processes are key requirements in today’s business world. In the IT area of Business Process Management (BPM), solutions claim to satisfy these new demands, but are still not sufficient.\ud In this paper we present a short overview on how these challenges are tackled by the ADEPT and AristaFlow projects and demonstrate a prototypical implementation
    corecore