603 research outputs found

    On the Parameterized Complexity and Kernelization of the Workflow Satisfiability Problem

    Full text link
    A workflow specification defines a set of steps and the order in which those steps must be executed. Security requirements may impose constraints on which groups of users are permitted to perform subsets of those steps. A workflow specification is said to be satisfiable if there exists an assignment of users to workflow steps that satisfies all the constraints. An algorithm for determining whether such an assignment exists is important, both as a static analysis tool for workflow specifications, and for the construction of run-time reference monitors for workflow management systems. Finding such an assignment is a hard problem in general, but work by Wang and Li in 2010 using the theory of parameterized complexity suggests that efficient algorithms exist under reasonable assumptions about workflow specifications. In this paper, we improve the complexity bounds for the workflow satisfiability problem. We also generalize and extend the types of constraints that may be defined in a workflow specification and prove that the satisfiability problem remains fixed-parameter tractable for such constraints. Finally, we consider preprocessing for the problem and prove that in an important special case, in polynomial time, we can reduce the given input into an equivalent one, where the number of users is at most the number of steps. We also show that no such reduction exists for two natural extensions of this case, which bounds the number of users by a polynomial in the number of steps, provided a widely-accepted complexity-theoretical assumption holds

    Abduction in Well-Founded Semantics and Generalized Stable Models

    Full text link
    Abductive logic programming offers a formalism to declaratively express and solve problems in areas such as diagnosis, planning, belief revision and hypothetical reasoning. Tabled logic programming offers a computational mechanism that provides a level of declarativity superior to that of Prolog, and which has supported successful applications in fields such as parsing, program analysis, and model checking. In this paper we show how to use tabled logic programming to evaluate queries to abductive frameworks with integrity constraints when these frameworks contain both default and explicit negation. The result is the ability to compute abduction over well-founded semantics with explicit negation and answer sets. Our approach consists of a transformation and an evaluation method. The transformation adjoins to each objective literal OO in a program, an objective literal not(O)not(O) along with rules that ensure that not(O)not(O) will be true if and only if OO is false. We call the resulting program a {\em dual} program. The evaluation method, \wfsmeth, then operates on the dual program. \wfsmeth{} is sound and complete for evaluating queries to abductive frameworks whose entailment method is based on either the well-founded semantics with explicit negation, or on answer sets. Further, \wfsmeth{} is asymptotically as efficient as any known method for either class of problems. In addition, when abduction is not desired, \wfsmeth{} operating on a dual program provides a novel tabling method for evaluating queries to ground extended programs whose complexity and termination properties are similar to those of the best tabling methods for the well-founded semantics. A publicly available meta-interpreter has been developed for \wfsmeth{} using the XSB system.Comment: 48 pages; To appear in Theory and Practice in Logic Programmin

    Program Verification with Separation Logic

    Get PDF
    International audienceSeparation Logic is a framework for the development of modular program analyses for sequential, inter-procedural and concurrent programs. The first part of the paper introduces Separation Logic first from a historical, then from a program verification perspective. Because program verification eventually boils down to deciding logical queries such as the validity of verification conditions, the second part is dedicated to a survey of decision procedures for Separation Logic, that stem from either SMT, proof theory or automata theory. Incidentally we address issues related to decidability and computational complexity of such problems, in order to expose certain sources of intractability

    Hunting for Tractable Languages for Judgment Aggregation

    Get PDF
    Judgment aggregation is a general framework for collective decision making that can be used to model many different settings. Due to its general nature, the worst case complexity of essentially all relevant problems in this framework is very high. However, these intractability results are mainly due to the fact that the language to represent the aggregation domain is overly expressive. We initiate an investigation of representation languages for judgment aggregation that strike a balance between (1) being limited enough to yield computational tractability results and (2) being expressive enough to model relevant applications. In particular, we consider the languages of Krom formulas, (definite) Horn formulas, and Boolean circuits in decomposable negation normal form (DNNF). We illustrate the use of the positive complexity results that we obtain for these languages with a concrete application: voting on how to spend a budget (i.e., participatory budgeting).Comment: To appear in the Proceedings of the 16th International Conference on Principles of Knowledge Representation and Reasoning (KR 2018

    Parameterized aspects of team-based formalisms and logical inference

    Get PDF
    Parameterized complexity is an interesting subfield of complexity theory that has received a lot of attention in recent years. Such an analysis characterizes the complexity of (classically) intractable problems by pinpointing the computational hardness to some structural aspects of the input. In this thesis, we study the parameterized complexity of various problems from the area of team-based formalisms as well as logical inference. In the context of team-based formalism, we consider propositional dependence logic (PDL). The problems of interest are model checking (MC) and satisfiability (SAT). Peter Lohmann studied the classical complexity of these problems as a part of his Ph.D. thesis proving that both MC and SAT are NP-complete for PDL. This thesis addresses the parameterized complexity of these problems with respect to a wealth of different parameterizations. Interestingly, SAT for PDL boils down to the satisfiability of propositional logic as implied by the downwards closure of PDL-formulas. We propose an interesting satisfiability variant (mSAT) asking for a satisfiable team of size m. The problem mSAT restores the ‘team semantic’ nature of satisfiability for PDL-formulas. We propose another problem (MaxSubTeam) asking for a maximal satisfiable team if a given team does not satisfy the input formula. From the area of logical inference, we consider (logic-based) abduction and argumentation. The problem of interest in abduction (ABD) is to determine whether there is an explanation for a manifestation in a knowledge base (KB). Following Pfandler et al., we also consider two of its variants by imposing additional restrictions over the size of an explanation (ABD and ABD=). In argumentation, our focus is on the argument existence (ARG), relevance (ARG-Rel) and verification (ARG-Check) problems. The complexity of these problems have been explored already in the classical setting, and each of them is known to be complete for the second level of the polynomial hierarchy (except for ARG-Check which is DP-complete) for propositional logic. Moreover, the work by Nord and Zanuttini (resp., Creignou et al.) explores the complexity of these problems with respect to various restrictions over allowed KBs for ABD (ARG). In this thesis, we explore a two-dimensional complexity analysis for these problems. The first dimension is the restrictions over KB in Schaefer’s framework (the same direction as Nord and Zanuttini and Creignou et al.). What differentiates the work in this thesis from an existing research on these problems is that we add another dimension, the parameterization. The results obtained in this thesis are interesting for two reasons. First (from a theoretical point of view), ideas used in our reductions can help in developing further reductions and prove (in)tractability results for related problems. Second (from a practical point of view), the obtained tractability results might help an agent designing an instance of a problem come up with the one for which the problem is tractable
    • …
    corecore