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ABSTRACT

GEOMETRIC REPRESENTATION LEARNING

FEBRUARY 2021

LUKE VILNIS

B.Sc., DUKE UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew K. McCallum

Vector embedding models are a cornerstone of modern machine learning methods for

knowledge representation and reasoning. These methods aim to turn semantic questions

into geometric questions by learning representations of concepts and other domain objects

in a lower-dimensional vector space. In that spirit, this work advocates for density- and

region-based representation learning. Embedding domain elements as geometric objects

beyond a single point enables us to naturally represent breadth and polysemy, make asym-

metric comparisons, answer complex queries, and provides a strong inductive bias when

labeled data is scarce. We present a model for word representation using Gaussian den-

sities, enabling asymmetric entailment judgments between concepts, and a probabilistic

model for weighted transitive relations and multivariate discrete data based on a lattice of

axis-aligned hyperrectangle representations (boxes). We explore the suitability of these

embedding methods in different regimes of sparsity, edge weight, correlation, and inde-

pendence structure, as well as extensions of the representation and different optimization

vii



strategies. We make a theoretical investigation of the representational power of the box

lattice, and propose extensions to address shortcomings in modeling difficult distributions

and graphs.
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CHAPTER 1

INTRODUCTION

1.1 Representation, Learning, and Inference

A fundamental problem in artificial intelligence and machine learning is that of repre-

sentation. Before a machine can reason over data, that data must be represented in a way

that allows for useful inferences to be made, and model parameters to be fit and adjusted.

Early AI systems, such as the General Problem Solver [66], represent and reason over

data symbolically — knowledge is represented as a set of abstract discrete symbols, along

with rewriting rules that permit various transformations between them, with reasoning car-

ried out by search. Learning-based systems, such as the perceptron [62], would go on to

augment or replace this purely symbolic approach with manually engineered feature-based

representations. Such manually engineered feature representations include counts of terms

or word n-grams for representing language [79, 88, 77], mel-frequency cepstral coefficients

for audio waveforms [58], and SIFT [57] or HOG [24] features for representing images.

In the perceptron, the prototypical learning-based binary classification model, data

points are associated with fixed feature vectors, and classification decisions are scored using

the inner product with a parameter vector [62]. This representation allows the parameters

to be adjusted to maximize accuracy by following the gradient of an error surrogate on a

labeled dataset. In probabilistic modeling, the exponential family fills the same role as the

perceptron — unnormalized log-probabilities for events are computed by the inner product

of parameters and a feature representation of the variables called the sufficient statistics

[87].
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After symbolic reasoning is augmented by manual featurization, the next step is repre-

sentation learning or feature learning. Rather than relying on hand-crafted feature func-

tions, representation learning seeks to take a very informative, but hopelessly sparse and/or

high-dimensional representation of the data, and condense this into a small enough dimen-

sion that useful parameter estimation can be performed. One set of representation learning

methods are the self-supervised, also known as unsupervised, algorithms. In these, com-

plex data is broken up into pieces and representations are learned so as to make it easy

to reconstruct (learning representations for one task and using them on a different one is

generally known as transfer learning).

These self-supervised algorithms range from simple count-based models, such as dis-

tributional word representations, where words are represented by sparse vectors of counts

of nearby words from a corpus [39, 20], to representations in terms of word clusters [17],

to nonlinear compression models such as autoencoders and restricted Boltzmann machines

[43, 75].

In addition to transfer-learning approaches to feature learning, some models learn fea-

ture representations from labeled data during supervised training. The neural network ap-

proaches, such as the multi-layer perceptron or embedding-based methods [78], parame-

terize a mapping from symbolic data to several layers of continuous representations, effec-

tively learning the feature functions with which to represent data.

While standard feature learning focuses on learning transformations of fixed input data

to best inform a prediction over output variables, an equally important type of represen-

tation is the way the output variables themselves are presented to the inference algorithm.

As mentioned previously, exponential families are one such representation, where con-

figurations of inference variables are represented as a vector of sufficient statistics and

scored with a linear energy function to produce log-probabilities. The graphical modeling

paradigm (in most cases) defines a subset of exponential families [87]. They allow infer-

ence over complex structures by representing them not symbolically, but with a collection
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of sufficient statistics functions designed to work with algorithms such as dynamic pro-

gramming. While not learning a representation of the variables of interest, the graphical

modeling formalism uses particular hand-designed representations to perform consistent

and tractable predictions over large sets of interacting variables.

While less heavily explored, methods for learning representation of inference variables

(sometimes called output representations) have been studied, including learning the struc-

ture of graphical models [26], sum-product networks [34], and structured prediction energy

networks [8].

This thesis will explore novel methods of representation learning, called geometric rep-

resentations, that naturally lend themselves towards certain prediction and reasoning prob-

lems, enabling both inference and learning to take place in the same space and operate on

the same objects.

1.2 Geometric Representations

(a) Gaussian embeddings (b) Box embeddings

Figure 1.1: An illustration of two geometric embedding methods representing the relation-
ship between attributes mammal, herbivore, and rabbit.
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The majority of machine learning operates in some way on a geometric space, usually

a vector space. Classic representation learning algorithms such as distributed word vectors

create a vector space model where neighborhoods of vectors correspond to semantically

similar words. This thesis advocates moving beyond vectors, taking these geometric in-

tuitions and designing richer ways to represent data. Rather than points we can imagine

learning ovals, boxes, and cones, objects that naturally possess properties of asymmetric

inclusion, specificity, breadth, transitive ordering, etc. Geometric representations are a nat-

ural way to provide an inductive bias when dealing with data that naturally possesses these

relationships, in both supervised and unsupervised settings.

In this thesis, we present two novel types of geometric representations, the Gaussian

embeddings, and the box embeddings.

Definition 1 (Gaussian embedding). Given a set of objects S, a Gaussian embedding of

S is a function f : S → L2(Rd) which associates each object s ∈ S with a multivariate

Gaussian density function f(s) = φs(x;µs,Σs) over Rd.

The Gaussian embeddings [85, 2, 3, 12], represent objects as elements of a space of

Gaussian distributions, with asymmetric comparisons given by KL- and alpha- divergences,

and symmetric compatibility given by function-space inner products. These comparison

functions leverage the geometry of e.g. the level sets of Gaussian densities to define nat-

ural geometric notions of soft subset inclusion, arising automatically from the form of the

Gaussian function.

After the Gaussian embeddings, there was further work on geometric representation

learning, leading to the development of models such as order embeddings [84, 55], which

represent objects as components of a finite-dimensional vector lattice, as well as Poincaré

embeddings [67] and hyperbolic entailment cones [32], which represent objects as regions

in hyperbolic space.

In response to further development in geometric representations, especially the work in

embedding objects into lattices of cone-shaped regions and probabilistic extensions thereof
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[55], we developed box embeddings [86, 80, 56], which represent objects as axis-aligned

hyperrectangles.

Definition 2 (Box embedding). Given a set of objects S, and a measurable space (ΩBox, E)

with ΩBox ⊆ Rd, a box embedding of S is a function f : S → E which associates each

object s ∈ S with a box-shaped (axis-aligned hyperrectangular) subset of ΩBox,

xs,∧, xs,∨ ∈ ΩBox ⊆ Rd and ∀j ∈ {1, . . . , d}, xs,∧j < xs,∨j

f(s) =
d∏
j=1

[xs,∧j , xs,∨j ].

Further, if the underlying measurable space (ΩBox, E) has a probability measure P , for

each s ∈ S we can define a binary random variable Xi such that Xi = 1f(s) is the indicator

function of the set f(s). The distribution P ({Xi}) is called a box probability model, and

the mapping S → (ΩBox → {0, 1}) is called a probabilistic box embedding of S.

While the above definition is slightly technical, the necessary background math to un-

derstand it is provided in Chapter 2, and a more detailed exposition of box embeddings is

provided in Chapter 5. In short, box embeddings associate each domain object with a box,

and define a probability distribution over those objects when considered as binary attributes.

The probability of each attribute is proportional to the size of its box, and co-occurrences

are determined by box overlaps.

Box embeddings can easily encode asymmetric relationships between concepts through

inclusion and overlap, and related properties such as transitivity. As is the intention with

other geometric representations, this inductive bias leaves less to be learned from the data

than with arbitrary relational models. Additionally, they provide a rich, consistent prob-

abilistic interpretation of the learned representations, and the ability to learn and model

complex interactions.
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In addition to the inductive bias provided by various geometric forms, the representa-

tions discussed in this thesis can be interpreted as connected to the concept of structured

prediction, and the probabilistic notions of event sets and latent variables.

1.2.1 Geometric Representation Learning as Structured Prediction

Representations in the form of richer geometric objects can lend themselves to natural

asymmetric relations, which may possess transitivity (a property of commonplace relations

such as partially ordered sets and lattices). These models do not only enjoy a strong in-

ductive bias, leaving less to be learned from the data than arbitrary relational models, but

at their best resemble a hybrid between embedding models and structured prediction. As

noted by Vendrov et al. [84] and Li et al. [55], while the models learn sets of embeddings,

these parameters obey rich structural constraints. The entire set can be thought of as one,

sometimes provably consistent, structured prediction, such as an ontology in the form of a

single directed acyclic graph, or a distribution over such objects.

In the case of order embeddings, or the lattice of box embeddings presented in this

thesis, implications between concepts are transitive, so while the model is learned by inde-

pendently sampled stochastic gradient descent updates, the final set of embeddings encodes

a consistent partial order, lattice, or probability distribution. An analogy can be made here

to other forms of inference which are cast as optimizing an energy function over a space of

probability distributions or assignments. However, it is the geometric structure of the rep-

resentation space that leads to a consistent joint prediction over the variables, rather than a

more abstract set of consistency constraints. For example, when using order embeddings to

predict graph edges, we predict an edge when the cone-shaped order embedding region is

contained within another region. In this case, the transitivity of the subset relation between

these geometric objects (convex cones) ensures that we always predict a transitive graph.
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1.2.2 Event Sets, Probability and Representation Learning

An alternative motivation for, and interpretation of, geometric representations comes

from the probabilistic notions of event sets and continuous latent variables.

Any introductory probability class teaches the definition of a probability distribution as

a combination of a sample space Ω, a (σ-)algebra of sets E , and a probability measure P .

Each element of the sample space Ω represents the outcome of some idealized experiment,

and given an outcome ω sampled according to P , we say that all of the events E ∈ E , such

that ω ∈ E, have occurred.

The probabilistic representations discussed in this thesis, probabilistic order embed-

dings (POE) and the box lattice, can be interpreted through exactly this lens. That is, each

box Box(X) corresponds to a binary random variable X defined as the indicator function

of the set Box(X). A full probability distribution over all of the binary variables {Xi} is

thus defined by the positions of all of the latent box representations, and the base measure

P from which outcomes in Ω are sampled. This corresponds to a novel form of probabilis-

tic learning, where rather than learning the parameters of a distribution, we are inferring

the underlying structure of an event space. Alternately, we are learning the support of an

indicator random variable. An illustration of this correspondence is given in Figure 1.2.

A further connection between geometric representation learning and probability theory

comes from the notion of continuous latent variable models. In a continuous latent variable

model, e.g. the variational autoencoder [48, 71], observations in the domain of interest

correspond to sets of points in a learned, smooth continuous space. Higher probability

observations correspond to larger latent regions, with the entire latent space organized by

similarity. Concretely, define a generative story line where we sample a Gaussian latent

variable from a white prior distribution P (Z), and then map that through e.g. a neural net-

work language model decoder P (X|Z) to generate a sentence, as in Bowman et al. [15].

The vectors in the latent space, distributed according to P (Z), act as representations of the

decoded sentence X , and the regions given high probability by posterior distribution over
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Figure 1.2: Interpretation of box embedding model in terms of events in the base proba-
bility space Ω. Each of the outcomes ω1, ω2, ω3 sampled according to the base measure P
corresponds to a realization of the binary variables P (mammal, herbivore, rabbit)

representations given a sentence, P (Z|X), take the form of contiguous subsets (ellipsoidal

in the case of Gaussian posterior approximators). In this case, the latent representations are

not explicitly parametrized geometric objects, but rather self-organized implicit subsets.

An illustration of this is given in Figure 1.3. Moreover, work in complex posterior approx-

imations for approximate inference in continuous latent variable models [70] corresponds

to learning irregular geometric shapes for the high probability regions in code space for a

given observation.

1.2.3 Overview

In this thesis, we develop embedding methods that map domain objects to represen-

tations possessing richer geometric structure than the popular vector embedding models.

These representations allow novel forms of reasoning to be performed directly in the em-

bedded space, using geometric properties to express ideas of asymmetry, hierarchy, and

entailment. We present a model that embeds words in the space of Gaussian distributions,
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Figure 1.3: Illustration of the latent organization of continuous sentence embedding vari-
ables in a variational autoencoder applied to language modeling. The outer circle represents
the white Gaussian prior, while the smaller ovals represent Gaussian posteriors over sen-
tence representations, with similar sentences given nearby representations.

as well as probabilistic box embeddings, a model that represents objects as elements of a

lattice of axis-aligned hyperrectangles. We propose two learning methods for the box lat-

tice: a method based on surrogate functions, and an approximation inspired by Gaussian

convolutions. Finally, we examine theoretical and practical properties of the box lattice and

present extensions to deal with its weaknesses. The remainder of the thesis is organized as

follows. In Chapter 3.3, we present some basic concepts in probability and measure the-

ory, an abridged background on energy-based modeling and learning, and a description of

some of the application areas of this thesis and baseline approaches to them. In Chapter 3,

we present the Gaussian word embedding model, as well as related follow-on work using

Gaussian embeddings. In Chapter 4, we give some background on order theory and lattice

theory, and present order embeddings [84], Poincaré embeddings [67], and related mod-

els. In Chapter 5, we present the box lattice and the probabilistic box embedding model.

In Chapter 6, we present a smoothed training method for probabilistic box embeddings.
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In Chapter 7, we identify some theoretical strengths and weaknesses of box embeddings

compared to other methods, identify a class of counterexample distributions that cannot

be represented by box embeddings, and present an extension of the model to solve this

problem.

1.3 Summary of Contributions

• A model for embedding words in the space of Gaussian distributions, allowing for

easy asymmetric comparison inspired by geometric containment within level-sets of

ellipsoids (3).

• A generalization of probabilistic order embeddings to arbitrary base measures and

formalization in terms of random variables (4).

• Probabilistic box embeddings, a model for embedding concepts as axis-aligned hy-

perrectangles (boxes), with an accompanying partial order and lattice structure over

the box embeddings, as well as a measure that allows the boxes to represent proba-

bility distributions over concepts (5).

• Methods for training box embeddings to model probability distributions:

– A surrogate lower-bound of the likelihood (5)

– A smooth relaxation of the energy function inspired by Gaussian convolutions

(6)

• Theoretical examination of some representational properties of box embeddings and

related models (7.3).

• Extensions of probabilistic box embeddings to handle modeling failure cases of the

original model (7.5).
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1.4 Declaration of Collaborations

The following work described in this thesis has been previously published and/or done

in collaboration with other researchers.1

• Work on Gaussian embeddings, presented in Chapter 3, was previously published as

Vilnis and McCallum [85].

• The work introducing box embeddings and generalizing probabilistic order embed-

dings, presented in Chapters 4 and 5, was done in collaboration with Xiang Li (equal

contribution) and Shikhar Murti and previously published as Vilnis et al. [86].

• The work on smoothed learning for box embeddings, presented in Chapter 6, was

done in collaboration with Xiang Li (equal contribution), Dongxu Zhang, and Michael

Boratko and previously published as Li et al. [56].

• The ongoing work on representational power of box embeddings, presented in Chap-

ter 7, has been done in collaboration with Michael Boratko, Dongxu Zhang, and

Xiang Li.

1Note that all of the work presented here was done under the guidance of Professor Andrew McCallum.
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CHAPTER 2

PRELIMINARY BACKGROUND

This thesis will draw on mathematics broadly from the areas of probability theory and

order theory. The mathematical content of this chapter will focus mostly on probability,

with definitions from order theory introduced in Chapter 4.

In order to motivate and formalize the models which are the content of this thesis,

we first establish some definitions and background. Because some of our contributions

are interleaved with the related work, the background will be presented in two different

chapters. This chapter concerns itself with basic definitions common to many different

machine learning models. The remainder of the background, concerning order theory and

derived models, will be presented in Chapter 4.

2.1 Notation

Throughout the thesis, we will attempt to keep certain types of notation for common

concepts consistent. This notation is presented in Table 2.1.

2.2 Measures

To introduce the small amount of probability theory we will need for this thesis, we

first provide several definitions from analysis. This will allow us to define the notion of

measure, a mathematical concept that allows us to sensibly define volumes, lengths, areas,

and similar concepts for many types of sets.

The first notion we need is that of a topological space.
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Symbol Meaning
P (·) A probability measure or probability distribution.

X : Ω→ Ω′ A random variable.
X ∼ P The random variable X has distribution P .

PX(·), P (X) The probability measure associated with the random variable X.
P (X = x), P (X ∈ E) The probability of an event under the distribution of X.

fX(x) The probability density associated with the continuous random variable X.
FX(x) The (cumulative) distribution function of the continuous random variable X.
pX(x) The probability mass function associated with the discrete random variable X.
E[·] The expectation of a random variable.

φ(x;µ, σ) The probability density function of the normal distribution.
Φ(x;µ, σ) The cumulative distribution function of the normal distribution.
N (µ,Σ) Multivariate normal distribution.

DKL(Q‖P ) KL divergence from P to Q.
E(x, y, w) An energy function with inputs x, outputs y, and weights w.
a ∨ b The join of two lattice elements or maximum of two numbers.
a ∧ b The meet of two lattice elements or minimum of two numbers.
a, b Variables representing scalars.
u, v Variables representing vectors.
U, V Variables representing matrices.
〈·, ·〉 The inner product between two vectors.
σ(·) The logistic sigmoid function.

Table 2.1: Notation

Definition 3 (Topological space). A topological space is an ordered pair (S, T ) where S

is a set and T is a collection of subsets, called open sets, that satisfy the following four

conditions:

1. ∅ ∈ T

2. S ∈ T

3. For any finite number of sets in T , their intersection is also in T .

4. For any arbitrary (possibly countably or uncountably infinite) number of sets in T ,

their union is also in T .

The set T is called a topology on S. A topological space gives us a notion of the

connectivity structure of a set when considered as a geometric object, that is, which subsets

are nearby (share neighborhoods with) other sets.
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Definition 4 (Basis). Let T be a topology on S, and B ⊂ T . If T is the smallest topology

that contains B, then we say B is a basis for T .

Remark. We refer to the operation to produce a topology T from a basis B as taking the

closure of B under unions and finite intersections, and we call T closed under unions and

finite intersections. We say that T is generated by B.

On the real line R, a natural topology is generated by the open intervals, corresponding

to a simple linear connectivity structure.

Example (Standard topology). The set of open intervals in R, (a, b) := {x ∈ R | a < x <

b }, is a basis for a topology on R, called the standard topology on R.

We can also define a topology generated by the singleton sets. This topology is most

useful on finite sets, like spaces of discrete structures.

Example (Discrete topology). The set of singleton subsets of any set S, B := { {x} | x ∈

S }, is a basis for a topology on S, called the discrete topology on X .

In addition to these topological concepts, which give a notion of connectivity and near-

ness between subsets, we introduce some concepts from measure theory, which will give

us a notion of the size of various subsets. First we define a σ-algebra.

Definition 5 (σ-algebra). A σ-algebra (or σ-field) on a set S is a collection F of subsets of

S that satisfies the following conditions:

1. S ∈ F

2. For any countable number of sets in F , their union is also in F .

3. For any set in F , its complement is also in F .

Note that this definition implies that F contains the empty set, and is also closed under

countable intersections.
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Definition 6 (Borel σ-algebra). The Borel σ-algebra on a topological space (S, T ), which

will be the only σ-algebra that we concern ourselves with in this thesis, is the smallest

σ-algebra containing all of the open sets T of S. The elements of the σ-algebra are called

Borel sets. That is, we generate the Borel sets by taking the closure of T under complement,

countable union, and countable intersection.

Given a σ-algebra F on a set S, we can define a measure.

Definition 7 (Measure). Given a set S and a σ-algebra F over S, a measure is a function

µ from F to R ∪ {∞} satisfying the following properties:

1. Null empty set: µ(∅) = 0.

2. Non-negativity: µ(A) ≥ 0 for all A ∈ F .

3. Countable additivity: If {Ai} is a countable collection of pairwise disjoint sets in

F , then µ(
⋃
iAi) =

∑
i µ(Ai).

Remark. An ordered pair of a set and a σ-algebra (S,F) is called a measurable space.

Definition 8 (Measure space). An ordered triple (S,F , µ), where S is a set, F is a σ-

algebra on S, and µ is a measure on F , is called a measure space.

Definition 9 (Measurable function). Let (S,F , µ) be a measure space and (T,G) be a

measurable space, and f be a function from S to T . We call f a measurable function if

f−1(B) ∈ F for all B ∈ G.

A Borel measure on a topological space (S, T ) is any measure µ defined on the Borel

σ-algebra on (S, T ).

As we have previously stated, a measure corresponds to a notion of length, area, or

volume. We can use this intuition to arrive at a good choice of standard measure for many

sets. For example, let us define a measure on R with the Borel σ-algebra given by the

standard topology generated by open intervals. Assign µ([a, b]) = b − a for an interval
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[a, b]. Now, given a subset E ⊂ R let A be a countable collection of intervals whose union

contains E, and C be the family of all such collections of intervals. Then,

µ(E) = inf
A∈C

∑
[a,b]∈A

µ([a, b])

Note that this definition agrees with our intuitive notion of length for sets that can be ap-

proximated by a union of intervals.

In a slight abuse of terminology, but not one that is important for purposes of this

thesis, we will refer to this as the Lebesgue measure on R (it is actually the restriction of

the Lebesgue measure to the Borel sub-σ-algebra of the Lebesgue σ-algebra, but that is a

mouthful).

In order to extend measures to higher dimensional spaces than simply R, we define the

notions of box topology and product measure.

Definition 10 (Box topology). Given two topological spaces (S, T ) and (T,U), define the

box topology on the product space S × T as the topology generated by the basis {A×B |

A ∈ T , B ∈ U }.

The standard topology on Rn can be constructed as the box topology on n copies of R

equipped with the standard topology. That is, the standard topology on Rn is generated by

Cartesian products of open intervals in each dimension.

Definition 11 (Product measure). Let (S,F , µ) and (T,G, ν) be measure spaces. LetF⊗G

denote the σ-algebra on the Cartesian product set S × T which is generated by sets of the

form {A × B | A ∈ F , B ∈ G }. Define a product measure, µ × ν, on the measure space

(S × T,F ⊗ G, µ× ν), as a measure satisfying

(µ× ν)(A×B) = µ(A)ν(B)

for all A ∈ F and B ∈ G. For all measures of interest in this thesis, this requirement

uniquely defines the measure.
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Figure 2.1: Illustration of the product Lebesgue measure in two dimensions, approximating
the area of an arbitrary set with a sequence of rectangles.

A product measure can be defined on Rn, equipped with the standard topology and

associated Borel σ-algebra. As in the 1-dimensional construction, let µ([a1, b1] × ... ×

[an, bn]) = (b1 − a1)...(bn − an) for a product of intervals [a1, b1] × ... × [an, bn]. Now,

given a subset E ⊂ R let A be a countable collection of products of intervals whose union

contains E, and C be the family of all such collections. Then,

µ(E) = inf
A∈C

∑
[a1,b1]×...×[an,bn]∈A

µ([a1, b1]× ...× [an, bn])

In a similar minor abuse of terminology to the 1-dimensional case, we will refer to this as

the Lebesgue measure on Rn. Figure 2.1 demonstrates an approximation of the area of a

set with a sequence of rectangles.
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2.3 Probability

With our definitions from basic analysis in hand, we move on to introduce some con-

cepts from probability theory. A probabilistic model is formalized in terms of a probability

space, a set of outcomes that occur randomly. What those outcomes are and with what

probability they occur is given by an ordered triple (Ω, E , P ), which defines a certain kind

of measure space.

Definition 12 (Probability space). Let (Ω, E , P ) be a measure space such that E is the Borel

σ-algebra over the base set Ω with respect to some topology T , and let the measure P be

normalized such that P (Ω) = 1. Then we call Ω the sample space, E the set of events, and

P the probability measure. This ordered triple is referred to as a probability space.

One interpretation of a probability space is as a model of a certain kind of situation. We

can “run” the model to produce one of the outcomes in the sample space ω ∈ Ω, and we say

that all of the events in E containing ω have occurred. The semantics of (Ω, E , P ) are such

that with an infinite number of runs, we will see the relative frequencies of different events

occur proportional to the measure given by P . This is called the frequentist interpretation

of probability.

Remark. This assignment of probabilities to events is called a probability distribution,

which is another term for the probability measure P , because they are both functions from

events to probabilities. The only difference is we usually refer to P as a probability dis-

tribution when P is our chief object of interest, and a probability measure when we are

using it to integrate some other function over the sample space, such as a random variable

(introduced in the sequel).

Example (Uniform distribution). Let Ω = [0, 1], E be the Borel σ-algebra restricted to

[0, 1], and P be the Lebesgue measure restricted to E . Then the probability space (Ω, E , P )

describes a uniform distribution over [0, 1]. That is, for any interval [a, b] ⊂ [0, 1], the
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probability of a random element ω from the sample space falling into that interval is equal

to b− a.

To extend and further formalize the concept of probability distributions, we introduce

the notion of random variable.

Definition 13 (Random variable). Let (Ω, E , P ) be a probability space, and (Ω′,F) be a

measurable space. A random variable is a measurable function X : Ω → Ω′, and the

probability that X takes on a value in a set E ⊂ Ω′ is given by P (X ∈ E) = P ({ω ∈ Ω |

X(ω) ∈ E }).

Remark (Pushforward measure). As the above definition suggests, a random variable, in

addition to being a function from Ω to Ω′, can also be thought of as inducing a new prob-

ability triple (Ω′,F , P ), with the new probability measure P defined as above, and the

original measure referred to as the base measure. This is called the pushforward measure

and sometimes written as PX when just re-using P would be ambiguous. Often random

variables are discussed directly in terms of these measures rather than using a potentially

more cumbersome definition via functions, and we say that X ∼ P , X has distribution P

and P is the probability distribution of X .

Example (Indicator random variables). Given a probability space (Ω, E , P ) and an event

E ∈ E , an indicator random variable of E is a random variable 1E : Ω → {0, 1} that

takes on the value 1 on the set E and 0 otherwise. Note that
∫

Ω
1EdP (ω) = P (E). These

variables play a special role in this thesis, as some of the representations learned by our

models can be described as indicator random variables of certain simple events.

For the common case of real-valued random variables, the concept of a distribution

function is useful.
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Definition 14 ((Cumulative) distribution function). The distribution function, also known

as the cumulative distribution function or CDF, of a real-valued random variable X is

defined as

FX(x) = P (X ≤ x)

FX is a function R → R and the probability that X lies in the interval (a, b] can be calcu-

lated as P (a < x ≤ b) = FX(b)− FX(a).

For any continuous random variable, we also have the notion of a probability density

function.

Definition 15 (Probability density function). The probability density function or PDF of a

random variable X : Ω→ Ω′ is a function fX : Ω′ → R+ such that

P (X ∈ E) =

∫
x∈E

fX(x)dx

for any subsetE in Ω′ and some base measure on Ω′, usually taken as the standard Lebesgue

measure.

We will not formally define the Lebesgue integral used in the above definition, but it is

equivalent to the standard Riemann integral in all the applications in this thesis.

For the case of continuous real-valued random variables, the following result holds,

similar to the fundamental theorem of calculus:

∫ b

a

fX(x)dx = FX(b)− FX(a)
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Example (Gaussian random variable). Define the standard Gaussian PDF,

φ(x) =
1√
2π
e−

1
2
x2 ,

and the Gaussian distribution function,

Φ(x) =

∫ x

−∞
φ(x)dx.

Now given the probability triple (Ω, E , P ), where Ω = (0, 1), E is the Borel σ-algebra

restricted to (0, 1), and P is the Lebesgue measure restricted to E , we define a Gaussian

random variable X : (0, 1)→ R as

X(ω) = Φ−1(ω).

As we discussed earlier, we commonly push the base measure P forward through X to

create the Gaussian measure on R,

γ(A) =

∫
x∈A

φ(x)dx,

and work with this object directly.

For discrete random variables, we instead have the notion of a probability mass func-

tion.

Definition 16 (Probability mass function). For a discrete random variable X : Ω→ Ω′, the

probability mass function or PMF is a function pX : Ω′ → [0, 1] such that

pX(x) = P (X = x).
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Remark. As we discuss in more detail Section 2.6, in the context of probabilistic modeling,

when we have a parameterized family of distributions which we are trying to fit to a certain

set of observed data, the probability density (or mass) function evaluated on that data is

referred to as the likelihood function. It is a function of the parameters and we call it the

likelihood of the data given those parameters. Model selection is often done by maximizing

this function.

Given a probability mass function or a probability density over a random variable X ,

we can define the expectation of a function g as

E[g(X)] =

∫
x

fX(x)g(x)dx or
∑
x

pX(x)g(x).

The expectation can be used to define many interesting functions in probability theory,

but one which we will use in several places throughout this thesis is the Kullback-Liebler

divergence (KL-divergence), which is an asymmetric distance function between two ran-

dom variablesX and Y (or more generally, measures) having densities fX and fY , with the

same codomain Ω′, defined as

DKL(Y ‖X) =

∫
Ω′
fX(ω′) log(

fX(ω′)

fY (ω′)
)dω′, (2.1)

A similar formula holds for the case of discrete random variables,

DKL(Y ‖X) =
∑
Ω′

pX(ω′) log(
pX(ω′)

pY (ω′)
),

This is read as the KL-divergence from P (X) to P (Y ), and along with providing a

natural distance between distributions, has several connections to inference and learning in

probabilistic models.

Definition 17 (Marginal and joint probability). With a probability space (Ω, E , P ) and a

collection of random variables X1 : Ω → Ω1, ..., Xn : Ω → Ωn, define the measure of a

22



product of events E1 × ... × En ∈ Ω1 × ... × Ωn as P (X−1
1 (E1) ∩ ... ∩ X−1

n (En)) and

extend the measure to the Borel σ-algebra generated by the box topology on the entire

product space. This is called the joint distribution of X1, ..., Xn, written as P (X1, ..., Xn)

or PX1×...×Xn . We can restrict this distribution to any subset of the variables X1, ..., Xn, by

slotting in the entire sample space Ωk for the variables we want to remove. This is called

marginalizing Xk, and the resulting distribution is called the marginal distribution of the

remaining variables. For example, given three random variables (X1, X2, X3), the marginal

distribution of X1 and X2 is given as

PX1×X2(E1 × E2) = P (E1 × E2 × Ω3).

when applied to a product of events E1 × E2, and extended to the rest of the Borel sets as

usual. Further, if the joint distribution has a density (or mass) function, the marginal density

(or mass) function can be found by integrating (summing) out the marginalized variables

using Lebesgue or counting measure,

fX1×X2(x1, x2) =

∫
x3∈Ω3

fX1×X2×X3(x1, x2, x3)dx3

pX1×X2(x1, x2) =
∑
x3∈Ω3

pX1×X2×X3(x1, x2, x3)

Finally, we introduce the notion of conditional probability. Given a probability space

(Ω, E , P ), let A ∈ E and B ∈ E be two events. Then we define the conditional probability

P (A|B) :=
P (A ∩B)

P (B)
.

When B is a set of measure zero, such as a singleton, this definition does not apply (in

the continuous case). In this case, there are technical considerations beyond the scope of

this chapter, but for our purposes it is enough to state the following in terms of random
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variables. For a probability space (Ω, E , P ), and two random variables, X : Ω → Ω′ and

Y : Ω → Ω′′, push forward the measure P onto associated σ-algebras F and G. Then the

conditional probability P (Y ∈ A|X = x) is a function from F to probability measures on

(Ω′′,G) such that for an event A ∈ G,

∫
x

fX(x)P (Y ∈ A|X = x)dx = P (Y ∈ A).

Having introduced these basic definitions from probability, we move on to some concepts

and applications that are more specific to machine learning and our domain in particular.

2.4 Energy-Based Models

An energy function assigns a real-valued numeric score to a configuration of variables.

Here, the term variables is used in the informal sense to refer to any objects of relevance to

the model, whether in-domain (e.g. a movie recommendation for a user, or a part-of-speech

tag for a token), or at a higher level (e.g. the parameter vector of a classifier).

For example, a binary linear classifier that maps patterns x ∈ Rd to outcomes y ∈

{−1, 1}, using the parameter vector w ∈ Rd, has the energy function

E(x, y, w) = −yw>x.

Because many energy functions are parametrized by some observed variables (like x) and

model parameters (like w), we will sometimes elide the explicit w or x arguments when the

context is clear. For example, in binary classification, we are given a pattern x and asked

to predict a label y. In order to make these relationships clear, we could slightly abuse

notation and write the binary classification energy function as

E(y) = −yw>x.
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This notation lends itself to the interpretation that E defines a family of energy functions

over {−1, 1}, parametrized by the choice of x and w, rather than a single energy function

over all three. Either interpretation can be more useful, depending on the application.

Remark (MAP inference). The most basic task to which an energy function is applied is

that of MAP inference. In MAP inference, given the settings of some variables, we attempt

to predict the settings of other variables. With an energy-based model, we do this by finding

the lowest-energy configuration of our model consistent with those pre-set variables. To

return to our example of the binary classifier, for a given input pattern x and parameter

vector w, we predict the label y by performing energy minimization

y∗ = arg min
y∈{−1,1}

E(y)

= arg min
y∈{−1,1}

−yw>x

= sign(w>x).

This gives the familiar decision rule for binary linear classification.

Remark (Structured prediction). Energy-based models are often applied to structured pre-

diction, defined as the task of jointly predicting multiple variables, which interact to make

up a single complex object, so as to minimize an error defined jointly over those variables

or that object. While the definition is not entirely rigorous, normally, when an output vari-

able has a clear compositional structure, or once the cardinality of a discrete output space

is large enough that we cannot comfortably enumerate it, we are performing structured

prediction. In this thesis we will mainly concern ourselves with models of large sets of

variables which interact with one another non-trivially, consistently, and in some cases are

evaluated jointly. Much of this thesis concerns itself with structured prediction, although

our approaches and applications may differ greatly from the usual use of this term.
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2.5 Probabilistic Energy-Based Models

Given any energy function, we can define a probability density or mass function over

Y and an associated random variable Y :

fY (y) =
exp(−E(y))

Z
,

where Z is the normalization constant, which takes an energy-weighted average over all

possible outcomes

Z =

∫
y′∈Y

exp(−E(y′))dy.

Definition 18 (Exponential families). The above mapping from energy-based models to

probability distributions leads us to a special class of probabilistic models, called exponen-

tial families, can be written in terms of specifically factorized underlying energy function:

E(y, θ) = − log h(y)− θ>S(y)

fY (y) =
h(y) exp(θ>S(y))

Z
,

where h(·) : Y → R+ is the base measure, θ ∈ Rd is the vector of natural parameters,

and S(·) : Y → Rd is called the sufficient statistics function. In exponential families, the

normalization constant Z is also known as the partition function.

Remark (Marginal inference). Given a probabilistic model over many variables, we often

want to compute the marginal distribution over only a few variables of interest, averaging

over the other variables. The task of computing marginals is known as marginal inference,

and is one of the chief concerns of this thesis.
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2.6 Learning

2.6.1 Loss functions

In order to apply an energy function to the task of inference, in most cases there are as-

sociated parameters that must be adjusted based on observed data. This interaction between

the labeled data and the energy function is mediated by a loss function. The loss function

takes one or more sets of variable assignments, termed training examples, and using the

current energy function produces a real-valued numeric score, the loss. The goal of learn-

ing is to adjust the energy function’s parameters to minimize loss on the training examples.

For example, the perceptron loss is defined, for an energy function E and training example

yi, as

`(yi) = E(yi)− E(y∗)

y∗ = arg min
y∈Y

E(y).

Specialized to our running example of binary linear classification, we have

`(xi, yi, w) = max(−yiw>xi, 0).

Taking the subgradient of this loss function with respect to θ, we see the familiar update

rule for the binary perceptron, justifying the name, and also providing a perspective on

perceptron learning as stochastic subgradient descent on a loss function, which is discussed

in the next section.

A similar loss, which we use in this thesis, goes by several names, including the struc-

tured SVM loss. Similar to the perceptron loss, we want to give the correct value yi a lower

score than every other value, but we also want to create a positive margin of at least m

between the score of the correct value and every other value

`(yi) = max(0,m+ max
y 6=yi

E(y)− E(yi)).

27



The final family of loss functions we use in this thesis comes from the perspective of

probabilistic modeling. Given an exponential family model, or any parametric distributions

in general, we often want to fit the parameters to observed data by maximizing the likelihood

of the data or, equivalently minimizing the negative log-likelihood. The latter convention

fits right into our loss minimization framework.

If Y is a random variable whose probability distribution has the following density,

fY (y) =
h(y) exp(θ>S(y))

Z
,

Then the negative log likelihood − log fY (y|θ) for some observed data y is a loss function

for fitting θ to match our observations.

A common model for probabilistic binary classification is the Bernoulli log-likelihood,

corresponding to logistic regression in the probabilistic framework, and the log-loss in the

energy framework.

Minimizing negative log-likelihood is also equivalent to minimizing the KL-divergence

from the model to the empirical distribution of data, giving further intuition for our choice

of objective function.

2.6.2 Learning with stochastic gradient descent

General supervised learning problems take the form of an optimization, with the goal of

finding a parameter vector w that has low generalization error for a particular distribution

of inputs and target variables P (X, Y ),

w∗ = arg min
w

E[`(X, Y,w)].

This is generally done by minimizing a regularized loss over a set of training examples

{(xi, yi)},
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w∗ = arg min
w

1

n

∑
i

`(xi, yi, w) +R(w), (2.2)

where R is some regularization function which penalizes the model for being too complex,

to encourage generalization.

A common approach to solving these problems, and the one which will be used through-

out this thesis, is stochastic gradient descent (or a similar and usually equivalent framework

called online gradient descent).

Stochastic gradient descent (SGD) uses the structure of the regularized loss minimiza-

tion equation (2.2) to derive an efficient randomized approximation to the gradient of the

sum of losses term.

First, define the minibatch gradient function,

g({i1, ..., ik}) =
1

k

∑
i∈{i1,...,ik}

∇w`(xi, yi, w),

which calculates the average gradient of the loss function when applied to a set of examples

indexed by the indices {i1, ..., ik}.

Now, let Ik be a random variable following a uniform distribution over all size-k subsets

of the index set {1, ..., n}. Then g(Ik) is called the minibatch stochastic gradient estimator

with batch size k, and it is an unbiased estimator of the gradient with respect to the entire

training set, since

∇w
1

n

n∑
i

`(xi, yi, w) = E[g(Ik)].

That is, by picking one or more examples at random from the training data, and computing

the average gradient only with respect to those examples, we get an unbiased estimate of

the true gradient of the learning problem.

Methods which use only a sequence of (possibly stochastic) gradients to optimize an

objective function are known as first-order methods and are often preferred in machine
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learning and other high dimensional problems because of their linear complexity scaling

with model size. This can also be looked at as doing a repeated regularized minimization

of a linear approximation of the target function.

Given such a sequence of gradients {gt}, we obtain a sequence of parameter vectors

{θt} using a variety of update rules (also known as learning algorithms). The most basic

update rule is the plain SGD update rule,

wt+1 = arg min
w
〈−

t∑
i

ηigi, w〉+
1

2
‖w‖2

2

= wt − ηtgt.

where {ηt} is a sequence of step sizes or learning rates. The definition in terms of arg min

shows how this can be viewed as minimization of quadratically regularized linear approx-

imations. This type of algorithm in the context of online learning is often referred to as

follow the regularized leader (FTRL).

A slightly more complicated update is the Adagrad update rule [27], which scales the

gradients with a (usually diagonal) matrix transform, adapting to the geometry of the loss

function,

Ht = diag

{ t∑
i

ηigig
>
i

} 1
2


wt+1 = wt − ηtH−1

t gt

A very popular adaptive method introduced later, Adam [47], uses an additional mo-

mentum term, which uses a moving average of gradients, and a “de-biasing” step, as well

as adaptive learning per-coordinate learning rates like Adagrad. This update is more com-

plicated to write down.
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mt = β1mt−1 + (1− β1)gt

Vt = β2Vt−1 + (1− β2)gtg
>
t

m̂t =
1

1− βt1
mt

V̂t =
1

1− βt2
Vt

wt = wt−1 − ηV̂
− 1

2
t m̂t

We use this algorithm in the majority of our experiments.

2.7 Applications

This thesis mostly concerns itself with applications in natural language processing,

knowledge representation, and knowledge base completion. For readers who are unfa-

miliar with these fields, we will attempt here to give a slightly more detailed description

of the major applications, topics, and tasks in this thesis, along with common approaches

where appropriate, to avoid duplication in the later chapters.

2.7.1 Word Representations

Fitting with the recurring theme in this thesis, the goal of word representation (also

called word embedding) is to map every word type w in some vocabulary V to a represen-

tation, such as a sparse or dense vector, a function, or a geometric object. Once mapped

to this space, the representations of the words should capture certain semantic properties

in their structure and relationships to one another. Similar words are meant to have similar

representations, in ways that match up with human-sourced similarity scores such as those

in Figure 2.2, but with much more coverage.

Here we provide a basic example of a prediction-based method for learning word repre-

sentations, popularized in the word2vec library [59], and we use this framework to develop

our own word representations in Chapter 3.
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Figure 2.2: Example human-sourced semantic similarity scores for words. Word represen-
tation learning can automatically capture these intuitive notions from large text corpora.

Remark. Here we are talking only about representation of word types, not word tokens.

A word type is an element of the vocabulary, and a word token is a particular observation

of that type. That is, the word “dog” when considered as a context-independent concept

is a word type. The second word in the phrase “The dog chased the ball” is a word to-

ken. The distinction is analogous to the class vs. instance distinction in object-oriented

programming. Later work has focused much more heavily on in-context word token repre-

sentations (cite ELMO and BERT), which we do not explore in this thesis.

In unsupervised prediction-based learning of word representations, we observe a se-

quence of word tokens {w1, ..., wN} ∈ V , which we process into a sequence of train-

ing examples (wi, Ci), where wi is the i’th word token, called the focus word token, and

Ci = wi−c:i+c,\i is a set of context taken from a window of c tokens behind and c tokens

ahead of wi, excluding wi itself.

Given these training examples, we define an energy based model on focus words and

contexts. The parameters of this model will include our learned representations. Finally,

we train these parameters by minimizing a loss function on the training examples. For a

concrete example, we will discuss the skip-gram word embedding model [59].

The skip-gram model uses the negative dot product of two types of word vectors as the

energy, and several variants of a negative log likelihood as the loss function. The simplest
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Figure 2.3: The canonical distributed word embedding algorithm. Energy is decreased
between nearby words, and increased between randomly sampled word pairs.

model uses a softmax log likelihood over the entire vocabulary:

E(wf , wc) = −〈vwf , v′wc〉

L(wf , C) = −
∑
wc∈C

exp(−E(wf , wc))∑
w′∈V exp(−E(wf , w′))

Note that the word vectors associated with context tokens, v′wc come from a separate embed-

ding matrix V ′ ∈ R|V|×d than the word vectors associated with focus tokens, which come

from V ∈ R|V|×d The model is often approximated using a variant on noise contrastive

estimation (cite NCE) called negative sampling, where the softmax over the vocabulary is

replaced by a binary classification objective using observed context words for positive ex-

amples, and randomly sampled vocabulary words as negative examples, as shown in Figure

2.3. This loss function is defined as

L(wf , C) = − log σ(−E(wf , wc)) +
k∑
i=1

log(1− σ(−E(wf , w
(i)
n )))

where w(i)
n are sampled random elements of V distributed according to the negative sam-

pling distribution P (Wn), usually proportional to a fractional power of word frequency.

Upon training the skip-gram word embedding model, the context vectors V ′ are usually

discarded, and the word vectors in the matrix V are used for representation, and can be

used to solve word analogy problems through arithmetic, to find similar words, and in
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downstream models to provide additional semantic information when labeled training data

is scarce.

2.8 Matrix Factorization

Low-rank bilinear interaction models for collaborative filtering are another classic ap-

plication of embedding-based learning. wherein each user and item are assigned embed-

ding vectors u and v in Rd, and the energy for a (user, item) pair is given by the scalar

product

E(u, v) = −u>v.

In matrix form, this can be written as the energy function

E(useri, itemj) = −(UV >)ij,

where U ∈ R|users|×d and V ∈ R|items|×d, making UV > a matrix in R|users|×|items| of rank d,

the dimension of the embedding space.

There is a slight abuse of notation going on in these two definitions. In the former, the

energy is defined on pairs of dense vectors (u, v) ∈ Rd × Rd = Y , with the embedding

mapping having been already implicitly performed. In the latter, it is defined over pairs

of discrete symbols (useri, itemj) ∈ Users × Items = Y , and the embedding mapping

takes the form of row-wise selection from the parameter matrices U and V . The latter

presentation makes it clear that inference should only be performed over the finite set of

symbols (rows), while the former makes the scalar-product nature of the energy function,

and the form of the embeddings, clearer. We will sometimes switch between different

presentations of an energy function, especially in the case of embeddings, when context

makes the interpretation unambiguous.
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Figure 2.4: A fragment of the WordNet hypernymy graph.

Matrix factorization, like other forms of embedding-based learning, lend itself to certain

types of geometric thinking. Since, when u’s and v’s all have the same norm, −u>v is

equivalent to ‖u− v‖2
2 (up to a constant), the energy function behaves much like a distance

function. In this case, although the model may have been trained to score pairs (u, v), it

makes sense to ask a question like “what u′ is most similar to u?” and to answer it by

searching through u’s nearest neighbors. This sort of geometric reasoning about learned

representations underlies much of the development of the models presented in this thesis.

2.8.1 Knowledge Graphs

Knowledge graphs, also called knowledge bases (KBs) are a term for groups of rela-

tions, ordered tuples, or alternately hypergraphs, representing database-style facts. The

matrix factorization model for recommendation described in the previous section could be

described as a model for predicting a single relation, (LIKES-MOVIE, User, Movie). These

predictions are made by taking the model score (energy) for a (User, Movie) pair, given by

the negative dot product −u>v, and predicting an edge only when the energy is below a

certain threshold tuned on a development set.

An example multi-relational knowledge graph could contain relations such as BORN-

IN, LOCATED-IN, WORKS-AT. Sample elements of this graph might look like (LOCATED-
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Figure 2.5: Example negative and positive entailment relations between words.

IN, Seattle, Washington) and (WORKS-AT, Bill Gates, Microsoft). These could be thought

of as simply labeled edges in a graph, but relations with more than two arguments like

(HAS-PARENTS, Gene, Bob, Linda) correspond to labeled hyperedges in a hypergraph.

Matrix factorization and embedding models are often used for predicting this sort of multi-

relational data as well.

One knowledge graph of particular interest in this thesis is the hypernymy graph of

WordNet. This graph represents a transitive relation Is-A defined on different senses of

dictionary words. A fragment of this is depicted in Figure 2.4 with transitive edges elided.

We will discuss this example more in the next section. Furthermore, we go into greater

detail about general transitive relations, especially partially ordered sets, in Chapter 4.

2.8.2 Entailment

A specific type of knowledge graph is an entailment graph, which is a transitive relation

between interpreted as logical propositions. A generalization of this is often called textual

entailment, which is a soft, probabilistic relaxation of the binary logical entailment relation.

That is, an entailment is regarded as true if a human reading it would generally infer that it

is true. Implicature is another word (more common in linguistics) for this soft, common-

sense variety of entailment.

In this thesis we experiment with two main types of entailment. The first is between

fragments of text in context, and the second is between dictionary definitions of words,
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word-senses, or concepts. An example of different types of positive and negative entailment

relations between words is depicted in Figure 2.5.

In the context of textual entailment between sentences or text fragments, the more gen-

eral (entailing) text is known as simply the text or the premise, while the more specific

text implied by the former is known as the hypothesis. Use of the term “hypothesis,” with

no other context implies that it is entailed by the premise, but in a context where we are

trying to determine the truth of a candidate hypothesis, we might determine that candidate

hypothesis to be either entailed, neutral, or contradictory.

In the context of entailment between words or concepts, the more general concept is

known as the hypernym, and the more specific, the hyponym.

2.8.3 Density Estimation

Density estimation is the general task of modeling a probability distribution given a

sample set of instantiations of the random variables. That is, we have some probabilis-

tic model Pmodel(X|θ), parameterized by a set of weights θ, and we want to adjust these

weights to model the true data distribution Pdata, from which we have a bunch of samples

xi.

θ∗ = arg min
θ
−
∑
i

logPmodel(xi|θ)

In this thesis, we focus on two types of density estimation. The first, is a generalization

of the aforementioned knowledge graph models to probabilistic or weighted knowledge

graphs, where instead of predicting the presence or absence of edges, we predict the prob-

ability of a (hyper)edge’s existence. Matrix factorization models and other types of binary

classifiers can be used for these density estimation tasks as well, with model scores or en-

ergies being treated as negative log probabilities of edge presence and calibrated under an

appropriate loss function. An example task in this realm is weighted entailment, where
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we determine the probability of a hypothesis being true given a certain premise. A more

detailed description of this application is given in the next subsection.

The second type of density estimation problems we focus on are distributions over mul-

tiple binary variables, which we use to predict the probability of collections of attributes.

For example, in a market basket task, we would like to predict which products, attributes,

recommendations, or services are commonly used by the same user. So, if we were build-

ing such a model for a grocery store, we might give a high probability to a collection of

products like (Chips,Cheese,Salsa,Guacamole), because someone is going to make na-

chos. While this can be cast as a weighted hypergraph model over a single relation with

arbitrarily many arguments, the graph-based interpretation is often less useful in this case.

Regardless, these problems are often handled with the same matrix-factorization based

models as the previous case, where only pairwise probabilities are predicted and inference

over clusterings is done in an ad-hoc manner.

2.8.4 Open-Domain Graphs

While matrix factorization serves as a good baseline model for many of the previous

applications, in the case of (weighted) textual entailment between sentences or sentence

fragments, the space of all possible sentences is far too large to assign each one its own

embedding parameters. We call this case an open-domain task because the domain of all

possible inputs is effectively infinite. What is needed in this case is a general method for

mapping possibly variable-length sequences to a fixed size feature space.

While a general survey of neural network architecture is beyond the scope of this thesis,

we include a description of the Long Short-Term Memory (LSTM) [44] recurrent neural

network, a common method for performing this mapping.

The LSTM maps a sequence of input vectors {xt}, such as word embeddings, to a

sequence of output vectors {ht} using the following equations at each time step:
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ft = σg(Wfxt + Ufht−1 + bf )

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uiht−1 + bo)

c̃t = σh(Wcxt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ c̃t

ht = ot ◦ σh(ct)

where ◦ represents the elementwise (Hadamard) product, σg is the logistic sigmoid func-

tion, σh is the hyperbolic tangent, and c0 and h0 are initialized as zero vectors. The notation

is suggestive of the purpose of each component. ft, it and ot are the forget, input, and output

gates, taking on values between 0 and 1, which, combined with pointwise multiplication,

allow them to control how much the ct and ht vectors incorporate different information

sources at each time step. When used to represent an entire sequence of length T , with the

final output vector hT is used as the representation, or an average of the ht across all time

steps.

Given this vector, we simply treat it as an embedding of the sequence and can use

normal embedding-based methods to make our predictions (e.g. predicting the probability

of textual entailment using the negative dot product as a log-probability), i.e.

P (Hypothesis = true|Premise = true) = σ(〈LSTMh(Hypothesis),LSTMp(Premise)〉).
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CHAPTER 3

GAUSSIAN WORD REPRESENTATIONS

3.1 Introduction

In this chapter we introduce a method that moves beyond vector point representations

to potential functions [1], or continuous densities in latent space. In particular we ex-

plore Gaussian function embeddings (with diagonal covariance), in which both means and

variances are learned from data. Gaussians innately represent uncertainty, and provide a

distance function per object. KL-divergence between Gaussian distributions is straightfor-

ward to calculate, naturally asymmetric, and has a geometric interpretation as an inclusion

between families of ellipses.

There is a long line of previous work in mapping data cases to probability distribu-

tions, perhaps the most famous being radial basis functions (RBFs), used both in the kernel

and neural network literature. We draw inspiration from this work to propose novel word

embedding algorithms that embed words directly as Gaussian distributional potential func-

tions in an infinite dimensional function space. This allows us to map word types not only

to vectors but to soft regions in space, modeling uncertainty, inclusion, and entailment, as

well as providing a rich geometry of the latent space.

After discussing related work and presenting our algorithms below we explore proper-

ties of our algorithms with multiple qualitative and quantitative evaluation on several real

and synthetic datasets. We show that concept containment and specificity matches com-

mon intuition on examples concerning people, genres, foods, and others. We compare our

embeddings to Skip-Gram on seven standard word similarity tasks, and evaluate the abil-

ity of our method to learn unsupervised lexical entailment. We also demonstrate that our
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training method also supports new styles of supervised training that explicitly incorporate

asymmetry into the objective.

We conclude with a short review of some of the extensions to Gaussian embeddings

that have been proposed in the literature since the publication of the original work.

3.2 Related Work

Gaussian embeddings build on a long line of work on both distributed and distributional

semantic word vectors, including distributional semantics, neural language models, and

count-based language models.

Related work in probabilistic matrix factorization [63] embeds rows and columns as

Gaussians, and some forms of this do provide each row and column with its own variance

[76]. Given the parallels between embedding models and matrix factorization [25, 72, 54],

this is relevant to our approach. However, these Bayesian methods apply Bayes’ rule to

observed data to infer the latent distributions, whereas our model works directly in the

space of probability distributions and discriminatively trains them. This allows us to go

beyond the Bayesian approach and use arbitrary (and even asymmetric) training criteria,

and is more similar to methods that learn kernels [53] or function-valued neural networks

such as mixture density networks [10].

Other work in multiplicative tensor factorization for word embeddings [49] and metric

learning [90] learns some combinations of representations, clusters, and a distance metric

jointly; however, it does not effectively learn a distance function per item. Fitting Gaussian

mixture models on embeddings has been done in order to apply Fisher kernels to entire

documents [22, 21]. Preliminary concurrent work from Kiyoshiyo et al. [50] describes a

significantly different model similar to Bayesian matrix factorization, using a probabilis-

tic Gaussian graphical model to define a distribution over pairs of words, and they lack

quantitative experiments or evaluation.
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Figure 3.1: Learned diagonal
variances, as used in evaluation
(Section 3.6), for each word,
with the first letter of each word
indicating the position of its
mean. We project onto gener-
alized eigenvectors between the
mixture means and variance of
query word Bach. Nearby words
to Bach are other composers e.g.
Mozart, which lead to similar pic-
tures.

In linguistic semantics, work on the distributional inclusion hypothesis [33], uses tra-

ditional count-based vectors to define regions in vector space [28] such that subordinate

concepts are included in these regions. In fact, one strength of our proposed work is that

we extend these intuitively appealing ideas (as well as the ability to use a variety of asym-

metric distances between vectors) to the dense, low-dimensional distributed vectors that

are now gaining popularity.

3.3 Background

As we describe in detail in Chapter 2, in unsupervised (or self-supervised) learning

of word vectors, we observe a sequence of word tokens w1, ..., wN each representing an

instance of a word type (element of some vocabulary set V), and the goal is to map each

word type to a vector such that types that appear in similar contexts have similar vectors.

To achieve this, we define an energy function between word types and fit its parame-

ters to minimize the energy between words and their observed contexts. The parameters

corresponding to word types are then used as word embeddings or word representations.

In the word2vec Skip-Gram [59] word embedding model, the energy function takes the

form of a negative dot product between the vectors of an observed word and an observed

context−〈vwf , v′wc〉. The loss function is a binary logistic regression negative log likelihood

that treats the score of the focus word wf and its observed context wc as the score of a
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positive example, and the score of the word and a randomly sampled context as the score

of a negative example. For completeness, we reproduce this loss function here:

L(wf , C) = − log σ(−E(wf , wc)) +
k∑
i=1

log(1− σ(−E(wf , w
(i)
n ))),

where w(i)
n are sampled random elements of V .

Backpropagating [75] this loss to the word vectors trains them to be predictive of their

contexts, achieving the desired effect (words in similar contexts have similar vectors). In re-

cent work, word2vec has been shown to be equivalent to factoring certain types of weighted

pointwise mutual information matrices [54].

In the terminology, the contribution of this chapter is a pair of energy functions for

training Gaussian distributions to represent word types.

3.4 Warmup: Empirical Covariances

Given a pre-trained set of word embeddings trained from contexts, there is a simple way

to construct variances using the empirical variance of a word type’s set of context vectors.

For a word w with N word vector sets {c(w)i} representing the words found in its

contexts, and window size W , the empirical variance is

Σw =
1

NW

N∑
i

W∑
j

(c(w)ij − w)(c(w)ij − w)>

This is an estimator for the covariance of a distribution assuming that the mean is fixed

at w. In practice, it is also necessary to add a small ridge term δ > 0 to the diagonal of the

matrix to regularize and avoid numerical problems when inverting.

However, in Section 3.6.2 we note that the distributions learned by this empirical esti-

mator do not possess properties that we would want from Gaussian distributional embed-

dings, such as unsupervised entailment represented as inclusion between ellipsoids. By
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discriminatively embedding our predictive vectors in the space of Gaussian distributions,

we can improve this performance. Our models can learn certain forms of entailment during

unsupervised training, as discussed in Section 3.6.2 and exemplified in Figure 3.1.

3.5 Energy-Based Learning of Gaussians

As discussed in Section 3.3, our architecture learns Gaussian distributional embeddings

to predict words in context given the current word, and ranks these ahead of negatively

sampled words. We present two energy functions to train these embeddings.

3.5.1 Symmetric Similarity: Expected Likelihood or Probability Product Kernel

While the dot product between two means of independent Gaussians is a perfectly valid

measure of similarity (it is the expected dot product), it does not incorporate the covariances

and would not enable us to gain any benefit from our density function representation.

The most logical next choice for a symmetric similarity function would be to take the

inner product between the distributions themselves. Recall that for two (well-behaved)

functions f, g ∈ Rn → R, a standard choice of inner product is

∫
x∈Rn

f(x)g(x)dx

i.e. the continuous version of
∑

i figi = 〈f, g〉 for discrete vectors f and g.

This idea seems very natural, and indeed has appeared before – the idea of mapping

data cases w into probability distributions (often over their contexts), and comparing them

via integrals has a history under the name of the expected likelihood or probability product

kernel [45].

Claim (Gaussian expected likelihood). Let fi(xi;µi,Σi) and fj(xj;µj,Σj) be probabil-

ity density functions for two independent multivariate Gaussian random variables Xi ∼

N (µi,Σi) and Xj ∼ N (µj,Σj). Then the expected likelihood has the explicit formula
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EL(fi, fj) =

∫
x∈Rn

fi(x;µi,Σi)fj(x;µj,Σj)dx = fk(0;µi − µj,Σi + Σj), (3.1)

where fk(0;µi−µj,Σi + Σj) is a Gaussian density function parameterized by µ = µi−µj

and Σ = Σi + Σj , evaluated at 0.

Proof. Recall that the multivariate Gaussian PDF has the formula:

f(x;µ,Σ) =
1

(2π)
k
2 det(Σ)

1
2

exp(−1

2
(x− µ)>Σ−1(x− µ)).

First we introduce a new argument x′ so that

EL(x′, fi, fj) =

∫
x∈Rn

fi(x
′ − x;−µi,Σi)fj(x;µj,Σj)dx,

and E(0, fi, fj) = E(fi, fj), our original function of interest. Note that the density of the

sum of two independent random variables is given by the convolution of the two densities.

fX+Y = fX ∗ fy.

So now we can see that the function EL(x′, fi, fj) is the density of the sum of the two

random variables −Xi and Xj , X ′ = Xj − Xi. The characteristic function of the sum of

−Xi and Xj is

ϕXj−Xi(t) = E[eit(Xj−Xi)] = E[eitXj ]E[e−itXi ],

the product of the characteristic functions of Xj and −Xi.
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The multivariate Gaussian distribution has the characteristic function

ϕ(t) = exp(iµ>t− 1

2
t>Σt),

so the characteristic function of the sum is

ϕXj−Xi(t) = exp(iµ>j t−
1

2
t>Σjt) exp(−iµ>i t−

1

2
t>Σjt)

= exp(i(µj − µi)>t−
1

2
t>(Σj + Σi)t),

which is just the characteristic function of a Gaussian distribution parameterized by µ =

µj − µi and Σ = Σi + Σj . This means that

EL(x′, fi, fj) = fk(x
′;µj − µi,Σi + Σj),

for a Gaussian density fk, and

EL(fi, fj) = fk(0;µj − µi,Σi + Σj) = fk(0;µi − µj,Σi + Σj)

by symmetry.

While the proof of this identity follows from the form of the characteristic function, it

is a consequence of the broader fact that the Gaussian is a stable distribution, i.e. the sum

of two Gaussian random variables is another Gaussian.

Given this similarity function between two Gaussians, and using our conventions of

energy minimization, we define the expected likelihood energy as

EEL(fi, fj) = − log EL(fi, fj).

Since we aim to discriminatively train the weights of the energy function, and the ex-

pected likelihood is always positive, we work not with this quantity directly, but with its
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logarithm. This has two motivations: firstly, we plan to use ranking loss, and ratios of densi-

ties and likelihoods are much more commonly worked with than differences — differences

in probabilities are less interpretable than an odds ratio. Secondly, it is easier numerically,

as otherwise the quantities can get exponentially small and harder to deal with.

The negative logarithm of EL(fi, fj) (in d dimensions) is

− log fk(0;µi − µj,Σi + Σj)

=
1

2
log det(Σi + Σj) +

1

2
(µi − µj)>(Σi + Σj)

−1(µi − µj) +
d

2
log(2π).

Recalling that the gradient of the log determinant is ∂
∂A

log detA = A−1, and the gradient

∂
∂A
x>A−1y = −A−>xy>A−> [69] we can take the gradient of this energy function with

respect to the means µ and covariances Σ:

∂ logE(fi, fj)

∂µi
= −∂ logE(fi, fj)

∂µj
= ∆ij

∂ logE(fi, fj)

∂Σi

=
∂ logE(fi, fj)

∂Σj

=
1

2
((Σi + Σj)

−1 −∆ij∆
>
ij)

where ∆ij = (Σi + Σj)
−1(µi − µj)

For diagonal and spherical covariances, these matrix inverses are trivial to compute, and

even in the full-matrix case can be solved very efficiently for the small dimensionality

common in embedding models. If the matrices have a low-rank plus diagonal structure,

they can be computed and stored even more efficiently using the matrix inversion lemma.

This negative log-energy has an intuitive geometric interpretation as a regularized dis-

tance measure. Gaussians are measured as close to one another based on the distance

between their means, as measured through the Mahalanobis distance defined by their joint

inverse covariance. Recalling that log detA+ const. is equivalent to the log-volume of the

ellipse spanned by the principle components of A, we can interpret this other term of the

energy as a regularizer that prevents us from decreasing the distance by only increasing
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joint variance. This combination pushes the means together while encouraging them to

have more concentrated, sharply peaked distributions in order to have low energy.

3.5.2 Asymmetric Similarity: KL Divergence

In addition to the symmetric expected likelihood energy function, training Gaussian

representations through KL-divergence is also a sensible choice of objective. This energy

function can be used when training them to encode their context distributions, or when

incorporating more explicit directional supervision, such as entailment from a knowledge

base or WordNet. For asymmetric similarity, we minimize the KL divergence as our choice

of energy function.

Recall the definition of KL divergence given in chapter 2,

DKL(Y ‖X) =

∫
Ω′
fX(ω′) log(

fX(ω′)

fY (ω′)
)dω′, (3.2)

between two distributions P (X) and P (Y ) over the same domain (random variables shar-

ing the same codomain).

Similar to the expected likelihood, the KL divergence also has a tractable closed form

solution for Gaussians:

Claim (Gaussian KL-divergence). Let fi(xi;µi,Σi) and fj(xj;µj,Σj) be probability den-

sity functions for two independent multivariate Gaussian random variablesXi ∼ N (µi,Σi)

andXj ∼ N (µj,Σj). Then the KL-divergence betweenXi andXj in terms of the densities

fi and fj has the explicit formula

EKL(fi, fj) = DKL(Xi||Xj)

=
1

2

(
log |ΣjΣ

−1
i | − d+ tr(ΣiΣ

−1
j ) + (µi − µj)>Σ−1

j (µi − µj)
)

(3.3)
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Proof. First, we write the KL divergence in terms of expectations,

DKL(Xi||Xj) =E[log fi(Xi)]− E[log fj(Xi)]

=E[−1

2

(
log |Σi|+ (Xi − µi)>Σ−1

i (Xi − µi) + k log(2π)
)
]−

E[−1

2

(
log |Σj|+ (Xi − µj)>Σ−1

j (Xi − µj) + k log(2π)
)
]

=− 1

2

(
log |ΣiΣ

−1
j |+ E[(Xi − µi)>Σ−1

i (Xi − µi)]−

E[(Xi − µj)>Σ−1
j (Xi − µj)]

)
.

The expectation of a quadratic form with respect to a random variable ε is given by

E[ε>Aε] = E[
〈
A, εε>

〉
]

=
〈
A,E[εε>]

〉
=
〈
A,Σ + µµ>

〉
= tr(AΣ) + µ>Aµ

where Σ and µ are the covariance and mean of ε. Plugging in this identity, we have

DKL(Xi||Xj)

= −1

2

(
log |ΣiΣ

−1
j |+ E[(Xi − µi)>Σ−1

i (Xi − µi)]− E[(Xi − µj)>Σ−1
j (Xi − µj)]

)
= −1

2

(
log |ΣiΣ

−1
j |+ tr(I) + 0>Σi0− tr(ΣiΣ

−1
j )− (µi − µj)>Σ−1

j (µi − µj)
)

=
1

2

(
log |ΣjΣ

−1
i | − d+ tr(ΣiΣ

−1
j ) + (µi − µj)>Σ−1

j (µi − µj)
)

KL divergence is a natural energy function for representing entailment between con-

cepts – a low KL divergence from x to y indicates that we can encode y easily as x, im-

plying that y entails x. In the context of being used as an energy function on Gaussian
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embeddings, we will denote it as EKL. This can be more intuitively visualized and inter-

preted as a soft form of inclusion between the level sets of ellipsoids generated by the two

Gaussians – if there is a relatively high expected log-likelihood ratio (negative KL), then

most of the mass of y lies inside x.

Just as in the previous case, we can compute the gradients for this energy function in

closed form:

∂EKL(fi, fj)

∂µi
= −∂EKL(fi, fj)

∂µj
= −∆′ij

∂EKL(fi, fj)

∂Σi

=
1

2
(Σ−1

i ΣjΣ
−1
i + ∆′ij∆

′>
ij − Σ−1

i )

∂EKL(fi, fj)

∂Σj

=
1

2
(Σ−1

j − Σ−1
i )

where ∆′ij = Σ−1
i (µi − µj)

using the fact that ∂
∂A

tr(X>A−1Y ) = −(A−1Y X>A−1)> and ∂
∂A

tr(XA) = X> [69].

3.5.3 Uncertainty of Inner Products

Another benefit of embedding objects as probability distributions is that we can look at

the distribution of dot products between vectors drawn from two Gaussian representations.

This distribution is not itself a one-dimensional Gaussian, but it has a finite mean and vari-

ance with a simple structure in the case where the two Gaussians are assumed independent

[16]. For the distribution P (Z) when Z = X>Y , we have

µz = µ>x µy

Σz = µ>x Σxµx + µ>y Σyµy + tr(ΣxΣy)

this means we can find e.g. a lower or upper bound on the dot products of random samples

from these distributions, that should hold some given percent of the time. Parameterizing
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this energy by some number of standard deviations c, we can also get a range for the dot

product as:

µ>x µy ± c
√
µ>x Σxµx + µ>y Σyµy + tr(ΣxΣy)

We can choose c in a principled way using an (incorrect) Gaussian approximation, or more

general concentration bounds such as Chebyshev’s inequality.

3.5.4 Learning

To learn our model, we need to pick an energy function (EL or KL), a loss function

(max-margin), and a set of positive and negative training pairs.

In our work, we use a slightly different loss function than Skip-Gram word2vec em-

beddings. Our energy functions take on a more limited range of values than do vector dot

products, and their dynamic ranges depend in complex ways on the parameters. Both ener-

gies, negative EL and KL, can only take on positive values. The word2vec loss is a logistic

binary classification loss, and it relies on being able to push the energy of positive pairs to

negative infinity, and the energy of negative pairs to infinity. That is, this loss relies on the

ability to adjust the energy surface in an absolute manner.

We can avoid this problem by using a loss function that only compares different energies

rather than looking at their absolute magnitude — a ranking-based loss. We choose a max-

margin ranking objective, similar to that used in Rank-SVM [46] or Wsabie [89], which

pushes scores of positive pairs above negatives by a margin,

Lm(wf , wp, wn) = max(0,m− E(wf , wp) + E(wf , wn)),

where m > 0 is a positive margin, w is the focus word type, wp is the positive context word

type, and wn is the negative context word type.

As the landscape is highly nonconvex, it is also helpful to add some regularization to

the parameters.
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We regularize the means and covariances differently, since they are different types of

geometric objects. The means should not be allowed to grow too large, so we can add a

simple hard constraint to the `2 norm:

‖µi‖2 ≤ C, ∀i

However, the covariance matrices need to be kept positive definite as well as reasonably

sized. This is achieved by adding a hard constraint that the eigenvalues λi lie within the

hypercube [m,M ]d for constants m and M .

mI ≺ Σi ≺MI, ∀i

For diagonal covariances, this simply involves either applying the min or max function to

each element of the diagonal to keep it within the hypercube, Σii ← max(m,min(M,Σii)).

Controlling the bottom eigenvalues of the covariance is especially important when train-

ing with expected likelihood, since the energy function includes a log det term that can give

very high scores to small covariances, dominating the rest of the energy.

We optimize the parameters using AdaGrad [27] and stochastic gradients in small mini-

batches containing 20 sentences worth of tokens and contexts. More experimental details

are given in the next section, along with parameter settings in Appendix A.1.

3.6 Evaluation

We evaluate the representation learning algorithms on several qualitative and quanti-

tative tasks, including modeling asymmetric and linguistic relationships, uncertainty, and

word similarity. All Gaussian experiments are conducted with 50-dimensional vectors, with

diagonal variances except where noted otherwise. Unsupervised embeddings are learned

on the concatenated ukWaC and WaCkypedia corpora [5], consisting of about 3 billion to-

kens. This matches the experimental setup used by [6], aside from leaving out the small
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British National Corpus, which is not publicly available and contains only 100 million to-

kens. All word types that appear less than 100 times in the training set are dropped, leaving

a vocabulary of approximately 280 thousand word types.

When training word2vec Skip-Gram embeddings for baselines, we follow the above

training setup (50 dimensional embeddings), using our own implementation of word2vec

to change as little as possible between the two models, only the loss function. We train

both models with one pass over the data, using separate embeddings for the focus word

types and context word types, 1 negative sample per positive example, and the same sub-

sampling procedure as in the word2vec paper [59]. The only other difference between the

two training regimes is that we use a smaller `2 regularization constraint when using the

word2vec loss function, which improves performance vs. the diagonal Gaussian model

which does better with “spikier” mean embeddings with larger norms (see the comment in

Section 3.6.4). The original word2vec implementation uses no `2 constraint, but we saw

better performance when including it in our training setup.

3.6.1 Specificity and Uncertainty of Embeddings

In Figure 3.2, we examine some of the 100 nearest neighbors of several query words

as we sort from largest to smallest variance, as measured by determinant of the covariance

matrix, using diagonal Gaussian embeddings. Note that more specific words, such as jovi-

ality and electroclash have smaller variance, while polysemous words or those denoting

broader concepts have larger variances, such as mix, mind, and graph. This is not merely

an artifact of higher frequency words getting more variance – when sorting by those words

whose rank by frequency and rank by variance are most dissimilar, we see that genres with

names like chillout, avant, and shoegaze overindex their variance compared to how fre-

quent they are, since they appear in different contexts. Similarly, common emotion words

like sadness and sincerity have less variance than their frequency would predict, since they
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Query Word Nearby Words, Descending Variance
rock mix sound blue folk jazz rap avant hardcore chillout shoegaze powerpop

electroclash
food drink meal meat diet spice juice bacon soya gluten stevia
feeling sense mind mood perception compassion sadness coldness sincerity

perplexity diffidence joviality
algebra theory graph equivalence finite predicate congruence topology

quaternion symplectic homomorphism

Figure 3.2: Elements of the top 100 nearest neighbor sets for chosen query words, sorted
by descending variance (as measured by determinant of covariance matrix). Note that less
specific and more ambiguous words have greater variance.

have fairly fixed meanings. Another emotion word, coldness, is an uncommon word with a

large variance due to its polysemy.

3.6.2 Entailment

The general NLP task of learning textual entailment is discussed in more detail in Chap-

ter 2. As can be seen qualitatively in Figure 3.1, our embeddings can learn some forms of

unsupervised entailment directly from the source data. We evaluate quantitatively on the

Entailment dataset of [6]. Our setup is essentially the same as theirs but uses slightly less

data, as mentioned in the beginning of this section. We evaluate with Average Precision

and best F1 score. We include the best F1 score (by picking the optimal threshold at test)

because this is used by [6], but we believe AP is better to demonstrate the correlation of

various asymmetric and symmetric measures with the entailment data.

In Figure 3.3, we compare the performance of the model with variances learned jointly

during embedding training by using the expected likelihood objective, with empirical vari-

ances gathered from contexts on pre-trained word2vec-style embeddings. We compare

both diagonal (D) and spherical (S) variances, using both cosine similarity between means,

and KL divergence. Baseline asymmetric measurements, such as the difference between

the sizes of the two embeddings, did worse than the cosine. We see that KL divergence
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Model Test Similarity Best F1 AP
[6] E balAPinc 75.1 –
Empirical (D) E KL 70.05 .68
Empirical (D) E Cos 76.24 .71
Empirical (S) E KL 71.18 .69
Empirical (S) E Cos 76.24 .71
Learned (D) E KL 79.01 .80
Learned (D) E Cos 76.99 .73
Learned (S) E KL 79.34 .78
Learned (S) E Cos 77.36 .73

Figure 3.3: Entailment: We compare empirical and learned variances, both diagonal (D)
and spherical (S). E is the dataset of [6]. Measures of similarity are symmetric (cosine be-
tween means) and asymmetric (KL) divergence for Gaussians. balAPinc is an asymmetric
similarity measure specific to sparse, distributional count-based representations.

between the entailed and entailing word does not give good performance for the empirical

variances, but beats the count-based balAPinc measure when used with learned variances.

For the baseline empirical model to achieve reasonable performance when using KL

divergence, we regularized the covariance matrices, as the unregularized matrices had very

small entries. We regularized the empirical covariance by adding a small ridge δ to the

diagonal, which was tuned to maximize performance, to give the largest possible advantage

to the baseline model. Interestingly, the empirical variances do worse with KL than the

symmetric cosine similarity when predicting entailment. This appears to be because the

empirically learned variances are so small that the choice is between either leaving them

small, making it very difficult to have one Gaussian located “inside” another Gaussian,

or regularizing so much that their discriminative power is washed out. Additionally, when

examining the empirical variances, we noted that common words like “such,” which receive

very large variances in our learned model, have much smaller empirical variances relative

to rarer words. A possible explanation is that the contrastive objective forces variances of

commonly sampled words to spread out to avoid loss, while the empirical variance sees

only “positive examples” and has no penalty for being close to many contexts at once.
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Figure 3.4: Synthetic experiments on embedding two simple hierarchies in two dimen-
sions directly using KL divergence. The embedding model captures all of the hierarchical
relationships present in the tree. Sibling leaves are pushed into overlapping areas by the
objective function.

While these results indicate that we can do as well or better at unsupervised entailment

than previous distributional semantic measures, we would like to move beyond purely unsu-

pervised learning. Although certain forms of entailment can be learned in an unsupervised

manner from distributional data, many entailing relationships are not present in the training

text in the form of lexical substitutions that reflect the is-a relationship. For example, one

might see phrases such as “look at that bird,” “look at that eagle,” “look at that dog,” but

rarely “look at that mammal.” One appealing aspect of our models versus count-based ones

is that they can be directly discriminatively trained to embed hierarchies.

3.6.3 Directly Learning Asymmetric Relationships

In Figure 3.4, we see the results of directly embedding simple tree hierarchies as Gaus-

sians. We embed nodes as Gaussians with diagonal variances in two-dimensional space

using gradient descent on the KL divergence between parents and children. We create

a Gaussian for each node in the tree, and randomly initialize means. Negative contexts

come from randomly sampled nodes that are neither ancestors nor descendants, while pos-

itive contexts come from ancestors or descendants using the appropriate directional KL

divergence. Unlike our experiments with symmetric energy, we must use the same set of

embeddings for nodes and contexts, or else the objective function will push the variances
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to be unboundedly large. Our training process captures the hierarchical relationships, al-

though leaf-level siblings are not differentiated from each other by this objective function.

This is because out of all the negative examples that a leaf node can receive, only one will

push it away from its sibling node.

3.6.4 Word Similarity Benchmarks

We evaluate the embeddings on seven different standard word similarity benchmarks

[74, 81, 42, 61, 18, 91, 30]. A comparison to all of the state of the art word-embedding

numbers for different dimensionalities as in [7] is out of the scope of this evaluation. How-

ever, we note that the overall performance of our 50-dimensional embeddings matches

or beats reported numbers on these datasets for the 80-dimensional Skip-Gram vectors at

wordvectors.org [29], as well as our own Skip-Gram implementation. Note that the num-

bers are not directly comparable since we use a much older version of Wikipedia (circa

2009) in our WaCkypedia dataset, but this should not give us an edge.

While it is good to sanity-check that our embedding algorithms can achieve standard

measures of distributional quality, these experiments also let us compare the different types

of variances (spherical and diagonal). We also compare against Skip-Gram embeddings

with 100 latent dimensions, since our diagonal variances have 50 extra parameters.

We see that the embeddings with spherical covariances have an overall slight edge over

the embeddings with diagonal covariances in this case, in a reversal from the entailment

experiments. This could be due to the diagonal variance matrices making the embeddings

more axis-aligned, making it harder to learn all the similarities and reducing model ca-

pacity. To test this theory, we plotted the absolute values of components of spherical and

diagonal variance mean vectors on a q-q plot and noted a significant off-diagonal shift,

indicating that diagonal variance embedding mean vectors have “spikier” distributions of

components, indicating more axis-alignment.
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Dataset SG (50d) SG (100d) L/50/m/S L/50/d/S L/50/m/D L/50/d/D
SimLex 29.39 31.13 32.23 29.84 31.25 30.50
WordSim 59.89 59.33 65.49 62.03 62.12 61.00
WordSim-S 69.86 70.19 76.15 73.92 74.64 72.79
WordSim-R 53.03 54.64 58.96 54.37 54.44 53.36
MEN 70.27 70.70 71.31 69.65 71.30 70.18
MC 63.96 66.76 70.41 69.17 67.01 68.50
RG 70.01 69.38 71.00 74.76 70.41 77.00
YP 39.34 35.76 41.50 42.55 36.05 39.30
Rel-122 49.14 51.26 53.74 51.09 52.28 53.54

Figure 3.5: Similarity: We evaluate our learned Gaussian embeddings (L) with spherical
(S) and diagonal (D) variances, on several word similarity benchmarks, compared against
standard Skip-Gram (SG) embeddings on the trained on the same dataset. We evaluate
Gaussian embeddings with both cosine between means (m), and cosine between the distri-
butions themselves (d) as defined by the expected likelihood inner product.

We also see that the distributions with diagonal variances benefit more from including

the variance in the comparison (d) than the spherical variances. Generally, the data sets

in which the cosine between distributions (d) outperforms cosine between means (m) are

similar for both spherical and diagonal covariances. Using the cosine between distributions

never helped when using empirical variances, so we do not include those numbers.

3.7 Later Work on Gaussian Embeddings

After the initial publication of Gaussian embeddings, other researchers were able to

extend the model and apply it on some additional tasks and domains, a few representative

samples of which we recap below.

3.7.1 Mixture Gaussian Embeddings

Athiwaratkun and Wilson [2] use embeddings parametrized as Gaussian mixture mod-

els to represent polysemous words with multiple distinct meanings, encoding the distribu-

tion of word w as
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fw(x) =
K∑
i=1

pw,iN (x;µw,i,Σw,i)

They use the expected likelihood / probability product kernel as an energy between word

distributions in order to train the embeddings, which has a closed form in the case of Gaus-

sian mixture models,

∫
f(x)g(x)dx =

K∑
i=1

K∑
j=1

pf,ipg,j

∫
N (x;µf,i,Σf,i)N (x;µg,j,Σg,j)dx

=
K∑
i=1

K∑
j=1

pf,ipg,jN (0;µf,i − µg,j,Σf,i + Σg,j).

They evaluate this model on multi-sense word similarity datasets and find that it gives

improved performance, with quantitative analysis showing reductions in variance of repre-

sentations for polysemous words, as expected.

3.7.2 Supervised Gaussian Knowledge Graph Embedding

He et al. [40] apply Gaussians to knowledge graph embedding, modifying the popular

Trans-E method [13] to use Gaussian representations of relations and entities. Given three

Gaussians representing the head, the tail, and the relation, (Nh,Nt,Nr), we define the

distribution of the difference between head and tail

Ne(µh − µt,Σh + Σt)

and then calculate the KL divergence between that and the relation distribution,

∫
N (x;µr,Σr) log

N (x;µh − µt,Σh + Σt)

N (x;µr,Σr)
dx

The authors achieve strong results on WN18 and WN11 WordNet-derived datasets for link-

prediction and triplet classification, as well as the FB13 and FB15k knowledge graph com-

pletion datasets, derived from Freebase. Both datasets describe multirelational graphs, and
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the authors claim that the density-based representation specifically enables them to better

handle many-to-one and one-to-many relations.

3.7.3 Unsupervised Gaussian Graph Embedding

Bojchevski and Günnemann [12] introduce a methodology to learn unsupervised Gaus-

sian representations of graphs, graph2gauss, in which the geometry of the learned repre-

sentations can give information about the diversity of neighboring nodes.

The embeddings are learned using a personalized ranking approach applied to the KL

divergence energy function between densities associated to each node. The objective seeks

to rank each node in a k-hop neighborhood as closer in terms of KL-divergence than all of

the nodes in a k + 1-hop neighborhood.

They optimize the following objective between nodes, with Eij = DKL(fj|fi) repre-

senting the KL divergence from fi to fj , and N representing the neighborhood of a node:

L =
∑
i

∑
k<l

∑
jk∈Nik

∑
jl∈Nil

(
E2
ijk

+ exp(−Eijl)
)
.

They apply the model to link prediction, as well as node classification on learned em-

beddings, and find especially that the uncertainty of the Gaussian representation helps to

predict neighborhood diversity (the number of classes in a given neighborhood of a node).

3.8 Conclusion

In this chapter we introduced a method to embed word types into the space of Gaussian

distributions, and learn the embeddings directly in that space. This allows us to represent

words not as low-dimensional vectors, but as densities over a latent space, directly repre-

senting notions of uncertainty and enabling a richer geometry in the embedded space. We

demonstrated the effectiveness of these embeddings on a linguistic task requiring asym-

metric comparisons, as well as standard word similarity benchmarks, learning of synthetic

hierarchies, and several qualitative examinations.
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While the initial work focused on the unsupervised setting, synthetic experiments on toy

hierarchies, as well as numerous follow-up work by other researchers on applications to su-

pervised graph learning problems, point towards the suitability of geometric representation

learning for supervised modeling of ordered and hierarchical structures. However, while

the Gaussian embeddings hint at this sort of hierarchical or graph-like structure, there are

problems when attempting to encode those structures directly as Gaussians. For example,

Gaussian embeddings induce ellipsoidal regions in space, but the intersection of two such

regions is not itself an ellipsoid, and it is difficult to compute its volume. In the following

chapters, we will explore the mathematics of order theory, especially in vector lattices, its

application to geometric representation learning for hierarchies, and the way it motivates

and shapes follow-on work.
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CHAPTER 4

LATTICES AND POSETS

4.1 Introduction

Given that Gaussian embeddings were inspired by the desire to find an embedding

format that naturally lends itself to asymmetric comparisons, such as those inherent in A-

causes-B or A-is-a-B transitive, entailment-style relations, it is appropriate that we now turn

to examine the formalism of order theory. Order theory formalizes certain types of asym-

metric relationships between objects in ways that prove valuable for designing geometric

embedding models, as well as tying them into probability theory in interesting ways.

4.1.1 Partial Orders and Lattices

A non-strict partially ordered set (poset) is a pair P,�, where P is a set, and � is a

binary relation. For all a, b, c ∈ P ,

Reflexivity: a � a

Antisymmetry: a � b � a implies a = b

Transitivity: a � b � c implies a � c

This generalizes the standard concept of a totally ordered set to allow some elements to

be incomparable. Posets provide a good formalism for the kind of acyclic directed graph

data found in many knowledge bases with transitive relations.

A lattice is a poset where any subset of elements has a single unique least upper bound,

and greatest lower bound. In a bounded lattice, the set P contains two additional elements,
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> (top), and ⊥ (bottom), which denote the least upper bound and greatest lower bound of

the entire set.

A lattice is equipped with two binary operations, ∨ (join), and ∧ (meet). a ∨ b denotes

the least upper bound of a, b ∈ P , and a∧ b denotes their greatest lower bound. A bounded

lattice must satisfy these properties:

Idempotence: a ∧ a = a ∨ a = a

Commutativity: a ∧ b = b ∧ a and a ∨ b = b ∨ a

Associativity: a ∧ b ∧ c = a ∧ (b ∧ c) and (a ∨ b ∨ c) = a ∨ (b ∨ c)

Absorption: a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a

Bounded: ⊥ � a � >

Note that the extended real numbers, R ∪ {−∞,∞}, form a bounded lattice (and in fact,

a totally ordered set) under the min and max operations as the meet (∧) and join (∨) op-

erations. So do sets partially ordered by inclusion, with ∩ and ∪ as ∧ and ∨. Thinking of

these special cases gives the intuition for the fourth property, absorption.

The ∧ and ∨ operations can be swapped, along with reversing the poset relation �, to

give a valid lattice, called the dual lattice. In the real numbers this just corresponds to a

sign change. A semilattice has only a meet or join, but not both.

4.1.2 Order Embeddings (Vector Lattice)

Vendrov et al. [84] introduced a method for embedding partially ordered sets and a task,

partial order completion, an abstract term for applications like hypernym or entailment

prediction, and general learning of transitive relations (see a discussion of some of these

tasks in 3.3). The goal is to learn a mapping from the partially-ordered data domain to

some other partially-ordered space that will enable generalization.
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Definition 19 (Order embedding). Vendrov et al. [84]

A function f : (S,�S)→ (T,�T ) is an order-embedding if for all a, b ∈ S

a �S b ⇐⇒ f(a) �T f(b)

Remark. While the term “order-embedding” is useful for our machine learning applica-

tions by analogy to other types of embeddings, the above construction could also simply

be viewed as a standard injective poset homomorphism.

They choose T to be a vector space, and the order�T to be based on the reverse product

order on Rn
+, which specifies for (u, v) ∈ Rn

+

u � v ⇐⇒ ∀i ∈ {1..n}, ui ≥ vi, (4.1)

so an embedding is below another in the hierarchy if all of the coordinates are larger, and

0 provides a top element. An example of this can be seen in Figure 4.1b. We will call this

particular order embedding into a vector space with this product ordering standard order

embeddings, or just order embeddings when the context is clear.

This ordering is optimized from examples of ordered elements and negative samples

via a max-margin loss. Concretely, in the formalism of energy-based learning, Vendrov

et al. [84] define an asymmetric energy function between pairs of embeddings,

E(u, v) = ‖max(0, v − u)‖2
2. (4.2)

Remark. Although the norm used in the energy function 4.2 is not explicitly specified in

Vendrov et al. [84], an examination of the released code shows it to be the 2-norm.
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Using this energy function, they define a loss,

∑
(u,v)∈P

E(u, v) +
∑

(u′,v′)∈N

max(0, α− E(u′, v′)),

where P and N are the sets of vectors corresponding to positive and negative examples,

and α is a margin hyperparameter.

Although Vendrov et al. [84] do not explicitly discuss it, their model does not just

capture partial orderings, but is a standard construction of a vector (Hilbert) lattice, in

which the operations of meet and join can be defined as taking the pointwise maximum

and minimum of two vectors, respectively [92]. This observation is also used in [55] to

generate extra constraints for training order embeddings.

As noted in the original work, these single point embeddings can be thought of as

regions, i.e. the axis-aligned cone extending out from the vector towards infinity. All

concepts “entailed” by a given concept must lie in this cone. We will make this precise.

Definition 20 (Cone lattice). An (axis-aligned) cone lattice is constructed using a subset

S ⊆ Rd along with a set of axis-aligned cones T = {Cone(Xi)}ni=1 in S, parametrized by

origin vectors {xi,∨},

xi,∨ ∈ S ⊆ Rd, 1 ≤ i ≤ n

Cone(Xi) = {u | uj ≥ xi,∨j , 1 ≤ i ≤ d, u ∈ S }, 1 ≤ i ≤ n.

Define an ordering on the set of cones T using the subset relation,

Cone(A) � Cone(B) ⇐⇒ Cone(A) ⊆ Cone(B),

so (T,�) forms a poset. We can add a natural meet operation defined using set intersection,
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Cone(A) ∧ Cone(B) = Cone(A) ∩ Cone(B) = Cone(C)

= {u | ui ≥ max(a∨i , b
∨
i ) = c∨i , 1 ≤ i ≤ d, u ∈ S },

so the origin vector for the meet is the pointwise maximum of the two origin vectors of the

operands. The resulting structure (T,∧) forms a meet semilattice. Finally, we can add a

join operation by finding the least upper bounding cone,

Cone(A) ∨ Cone(B) = Cone(C)

= {u | ui ≥ min(a∨i , b
∨
i ) = c∨i , 1 ≤ i ≤ d, u ∈ S },

so the origin vector for the join is the pointwise minimum of the two origin vectors of the

operands. The triplet (T,∧,∨) is the axis-aligned cone lattice.

Remark. The original definition of standard order embeddings is given as a relation be-

tween vectors, but sometimes it is more convenient to think of the order embedding as a

cone lattice. This is an isomorphic poset, and when the context is clear we will sometimes

treat standard order embeddings explicitly as cones rather than vectors.

(a) Order embeddings (b) Probabilistic order embeddings

Figure 4.1: Example (standard and probabilistic) order embeddings in two dimensions. In
the probabilistic case, the area of each cone corresponds to a Bernoulli probability.
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4.2 Probabilistic Order Embeddings

Lai and Hockenmaier [52] built on the “region” idea to derive a probabilistic formu-

lation (which we will refer to as POE) to model entailment probabilities in a consistent,

hierarchical way, demonstrated in Figure 4.1b.

Noting that all of OE’s regions obviously have the same infinite area under the standard

(Lebesgue) measure of Rn
+, they propose a probabilistic interpretation. For each poset ele-

ment a ∈ S with associated standard order embedding vector f(a) ∈ Rn
+, they introduce a

new Bernoulli random variable,A. The Bernoulli probabilities P (A = 1) or joint Bernoulli

probabilities P (A = 1, B = 1), for variables (A,B) with a∨ = f(a) and b∨ = f(b), are

given by the volume of these associated cones under the exponential measure:

P (A = 1) = exp(−
∑
i

a∨i ) =

∫
u�a∨

exp(−‖u‖1)du

P (A = 1, B = 1) = exp(−‖max(a∨i , b
∨
i )‖1)

where � is defined as in equation 4.1, and replacing sums with `1 norms for brevity since

all coordinates are positive. Note that P (A = 1, B = 1) can also be looked at as P (C =

1) for some C associated to a cone u ∧ v, since the meet of two vectors is simply the

intersection of their area cones. While having the intuition of measuring the areas of cones,

this also automatically gives a valid probability distribution over concepts since this is just

the product likelihood under a coordinatewise exponential distribution.

We can generalize this to non-exponential measures with the following formal defini-

tion of a probabilistic order embedding.

Definition 21 (Cone Probability Model and Probabilistic Order Embedding). Let (ΩCone,

E , PCone) be a probability space where where ΩCone ⊆ Rd. Let {Cone(Xi)}ni=1 be a set of

axis-aligned cones in ΩCone, as in the cone lattice (Definition 20),
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xi,∨ ∈ ΩCone ⊆ Rd

Cone(Xi) = {u | uj ≥ xi,∨j , 1 ≤ i ≤ d, u ∈ ΩCone }.

Further, define a set of indicator random variables {Xi} for these cone-shaped events,

Xi : ΩCone → {0, 1} = 1Cone(Xi), 1 ≤ i ≤ n

X−1
i ({1}) = Cone(Xi), 1 ≤ i ≤ n.

We will denote the distribution of X1, ..., XN as P (X1, ..., XN), dropping the Cone sub-

script on P , to make it clear we are talking about the discrete pushforward measure on

{0, 1}N induced by PCone and not the measure PCone defined on a subset of Rd. We will

call this probability space and associated random variables a cone probability model.

If each Xi = f(a) for some mapping f : S → (ΩCone → {0, 1}) from a finite set

S to random variables in the cone probability model, we call this a probabilistic order

embedding of S.

Remark. Note that the above definition implies that joint probabilities over multiple vari-

ables can be calculated by inclusion-exclusion with set intersection and complement over

Cone(Xi), e.g.

P (X1 = 1, X2 = 1, X3 = 0) = PCone(Cone(X1) ∩ Cone(X2) ∩ Cone(X3)c).

Example. Using the formalism of definition (21), the probabilistic order embedding of Lai

and Hockenmaier [52] is a cone model (ΩCone, E , PCone) with ΩCone = Rd
+ and PCone(E) =∫

ω∈E exp(−‖ω‖1)dω, along with the standard order embedding mapping from domain ob-

jects to cones. We will refer to this model as standard probabilistic order embeddings, or

just probabilistic order embeddings when the context is clear.
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Figure 4.2: Converting densities to regions in hierarchical density order embeddings.

4.3 Hierarchical Density Order Embeddings

Athiwaratkun and Wilson [3] introduced the hierarchical density order embeddings,

an approach to Gaussian embeddings that incorporates some of the lessons from order

theory introduced by order embeddings. First, they note that a partial order on (probability)

densities can be induced by looking at the set of values where the function has greater than

a certain amount of density. That is, looking at certain level sets of densities, along with

their interiors. Using this idea, densities can be endowed with a partial order �η, defined

as

f �η g ⇐⇒ {x : f(x) > η} ⊆ {x : g(x) > η}

for a threshold η ≥ 0. This ordering is depicted in Figure 4.2. This is an elegant

way to endow density functions with a partial order that uses our intuitions about level

sets, considering that the normal vector lattice ordering (a function’s graph being strictly

above or below another function’s graph) trivially makes all normalized density functions

incomparable.

Remark. This definition does not technically yield a partial order on all arbitrary densities,

but a preorder, as it does not necessarily satisfy antisymmetry (though it does for Gaussians

and most other parametric distributions).
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The next idea comes from the fact that the asymmetric divergences used to compare

probability distributions (such as KL- and α- divergences) penalize deviation in one direc-

tion or another based on a certain rough notion of inclusion. That is, when finding the KL

divergence from p to q, we have a shorter distance if the level sets of p are “inside” the level

sets of q, than if the opposite is true. This can be understood by looking at the interpretation

of KL divergence as encoding data from a distribution based on a code derived from a dif-

ferent distribution, where the inclusive (“mode-seeking”) behavior leads to less distance.

While the partial order defined above is theoretically pleasing, it is difficult to calculate

for many distributions, including simple Gaussians. This inspires a soft surrogate to the

original order. Using the intuition that divergence is higher in one direction than the other

when level sets are included, the soft approximation simply uses a thresholded divergence,

dγ(f, g) = max(0, D(f‖g)− γ)

for some threshold γ > 0. The authors show that this modified divergence/ordering

function gives state-of-the-art results when using Gaussian embeddings to model super-

vised partial ordering tasks such as WordNet.

4.4 Hyperbolic Embeddings

Analogs to both standard embedding models, and order-embedding-like cone embed-

dings, have also been defined in hyperbolic space. Hyperbolic space is a generalization

of Euclidean space Rd to a manifold of constant negative curvature, a geometric prop-

erty which enables it to more accurately embed tree-like graphs (in the sense of distance

preservation). While hyperbolic space is not a vector space because it is not closed un-

der addition, and thus not a vector lattice, one can define a closely related object called a

gyrovector space.
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4.4.1 Poincaré embeddings

While hyperbolic embeddings of data were previously used for modeling network topol-

ogy and shortest-path routing [11, 51], the first such work to do so in the context of rep-

resentation learning for the type of applications studied in this thesis (e.g. learning and

representing latent entailment hierarchies) was the Poincaré embeddings of Nickel and

Kiela [67]. These embeddings represent each variable with a point inside the Poincaré

ball, a representation of hyperbolic space embedded in Euclidean space such that the hy-

perbolic distance between points increases exponentially as a function of the Euclidean

distance from the origin. Specifically, the hyperbolic distance between two points u and v

represented in their Euclidean coordinates within the Poincaré ball of radius 1, is given as

arcosh(1 + 2
‖u− v‖2

(1− ‖u‖2)(1− ‖v‖2)
).

The authors leverage this to automatically learn concept hierarchies by noting that highly

specific concepts are distant (conceptually) from many other concepts, while more general

concepts are closer. This means what when training a graph embedding representing con-

ceptual distance, embeddings of more generic concepts will organize near the center of the

Poincaré ball, and more specific ones will move to the periphery. An ad-hoc asymmetric

similarity function is defined as

is-a(u, v) = −(1 + α(‖v‖ − ‖u‖))d(u, v),

where α > 0 is a hyperparameter, and d is the hyperbolic distance. This will give a high

score to is-a(u, v) and predict an entailment link if two concepts are close together (the

d(u, v) term), and one of them is significantly closer to the origin, indicating it is more

generic.
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4.4.2 Hyperbolic entailment cones

While Poincaré embeddings use an ad-hoc scoring function, along with the geometry of

hyperbolic space and its Euclidean representation in the Poincaré ball, to predict hierarchy

and entailment links between concepts, a more principled approach is possible. Hyperbolic

entailment cones [32] fuse the graph-embedding benefits of hyperbolic space with the idea

of representing concepts as cone-shaped regions, as in order embeddings. They note that

when considering any two axis-aligned cones in d-dimensional Euclidean space (e.g. order

embeddings), the volume of each that is disjoint from the other must be bounded in all but

d of the cones. This implies difficulties in representing very widely branching hierarchies

using cone embeddings. They define a type of cone in hyperbolic space that does not suffer

from this issue, due to the exponentially expanding volume.

While a convex cone S in Euclidean space is defined as a set closed under positive

linear combinations,

u, v ∈ S =⇒ αv1 + βv2 ∈ S, α, β ≥ 0,

hyperbolic entailment cones generalize this to hyperbolic space by using the exponential

mapping from the tangent space. For a manifold M and a point on the manifold x, the

tangent bundle is an association of each such point with its tangent space TxM. The

tangent space at x is a vector space which intuitively, when considering that manifold as

an embedded surface in Euclidean space, can be represented as the tangent (hyper)plane at

that point.

For a manifold M and a point on the manifold x, the exponential map expx(v) :

TxM → M takes a vector in the tangent space at x within a certain radius of the origin

(infinite in the case of hyperbolic space) and maps it to the point on the manifold corre-

sponding to a geodesic of the same length starting off in the same direction at the starting

point x. Hyperbolic entailment cones generalize convex cones to hyperbolic space by map-
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ping a standard convex cone S in the Euclidean tangent space to its image exp(S) under

the exponential map.

They specifically choose a restricted family of cones in order to preserve closed form

expressions for relevant quantities, choosing cones which are defined symmetrically and

entirely by their apex point x. The cones can face in any direction as long as they are

symmetric around a line from the origin through x, their apertures (angle at the peak) are a

function only of the magnitude of the apex point, and set containment gives them a partial

order such that ‖x′‖ ≥ ‖x‖ implies that Conex′ ⊆ Conex.

Ganea et al. [32] show that in hyperbolic space, the angle between two (geodesic) line

segments xy and 0x in the Poincaré ball is

Ξ(x, y) = arccos
( 〈x, y〉(1 + ‖‖2)− ‖x‖2(1 + ‖y‖2)

‖x‖‖x− y‖
√

1 + ‖x‖2‖y‖2 − 2〈x, y〉
)
,

and the entailment cone with apex x in the Poincaré ball Dd has the closed form expression

Cx = { y ∈ Dd | Ξ(x, y) ≤ arcsin(K
1− ‖x‖2

‖x‖
) },

where K is a small constant related to the constraints, often set to 0.1.

The authors train these cones in a supervised manner from entailment hierarchies to

contain one another by using a max-margin objective on the angles between apex points.

4.5 Conclusion

In this chapter we presented several concepts from order theory and showed their ap-

plication to geometric representation learning. However, these models are not without

weaknesses. The probabilistic order embeddings presented in this chapter are unable to

model negatively correlated variables, as discussed in Lai and Hockenmaier [52]. In the

next chapter we will introduce another probabilistic, lattice-based model, the box lattice,
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that builds on these vector lattice based methods to increase expressivity and solve this

correlation problem.
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CHAPTER 5

BOX EMBEDDINGS

5.1 Introduction

In this chapter, we present a method for representing data in terms of boxes (axis-

aligned hyperrectangles). This geometric representation learning algorithm explicitly pa-

rameterizes regions in latent space in order to learn a complex probabilistic interaction

model for binary data.

In the introductory chapter, we discussed the similarity between learning in certain

embedding models, and structured prediction. While learning the set of embeddings, the

embeddings obey structural constraints in their relationships to one another, and predictions

derived from those embeddings obey related constraints. While the structured prediction

analogy applies best to Order Embeddings (OE), which embeds consistent partial orders,

other region- and density-based representations have been proposed for the express purpose

of inducing a bias towards asymmetric relationships. For example, the Gaussian Embed-

ding (GE) model discussed in Chapter 3 aims to represent the asymmetry and uncertainty in

an object’s relations and attributes by means of uncertainty in the representation. However,

while the space of representations is a manifold of probability distributions, the model is

not truly probabilistic in that it does not model asymmetries and relations in terms of prob-

abilities, but in terms of asymmetric comparison functions such as the originally proposed

KL divergence and the recently proposed thresholded divergences [3].

Probabilistic models are especially compelling for modeling ontologies, entailment

graphs, and knowledge graphs. Their desirable properties include an ability to remain

consistent in the presence of noisy data, suitability towards semi-supervised training using
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the expectations and uncertain labels present in these large-scale applications, the naturality

of representing the inherent uncertainty of knowledge they store, and the ability to answer

complex queries involving more than 2 variables. Note that the final one requires a true

joint probabilistic model with a tractable inference procedure, not something provided by

e.g. matrix factorization.

We take the dual approach to density-based embeddings and model uncertainty about

relationships and attributes as explicitly probabilistic, while basing the probability on a

latent space of geometric objects that obey natural structural biases for modeling transitive,

asymmetric relations. The most similar work are the probabilistic order embeddings (POE)

of Lai and Hockenmaier [52], which apply a probability measure to each order embedding’s

forward cone (the set of points greater than the embedding in each dimension), assigning

a finite and normalized volume to the unbounded space. However, POE suffers severe

limitations as a probabilistic model, including an inability to model negative correlations

between concepts, which motivates the construction of our box lattice model.

Our model represents objects, concepts, and events as boxes, with an event’s unary

probability coming from the box volume and joint probabilities coming from overlaps. This

contrasts with POE’s approach of defining events as the forward cones of vectors, extending

to infinity, integrated under a probability measure that assigns them finite volume.

One desirable property of a structured representation for ordered data, originally noted

in Vendrov et al. [84] is a “slackness” shared by OE, POE, and our model: when the model

predicts an “edge” or lack thereof (i.e. P (a|b) = 0 or 1, or a zero constraint violation in

the case of OE), being exposed to that fact again will not update the model. Moreover,

there are large degrees of freedom in parameter space that exhibit this slackness, giving

the model the ability to embed complex structure with 0 loss when compared to models

based on symmetric inner products or distances between embeddings, e.g. bilinear GLMs

[23], Trans-E [13], and other embedding models which must always be pushing and pulling

parameters towards and away from each other.
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Our experiments demonstrate the power of our approach to probabilistic ordering-

biased relational modeling. First, we investigate an instructive 2-dimensional toy dataset

that both demonstrates the way the model self organizes its box event space, and enables

sensible answers to queries involving arbitrary numbers of variables, despite being trained

on only pairwise data. We achieve a new state of the art in denotational probability mod-

eling on the Flickr entailment dataset [52], and a matching state-of-the-art on WordNet

hypernymy [84, 60] with the concurrent work on thresholded Gaussian embedding of Athi-

waratkun and Wilson [3], achieving our best results by training on additional co-occurrence

expectations aggregated from leaf types.

We find that the strong empirical performance of probabilistic ordering models, and our

box lattice model in particular, and their endowment of new forms of training and querying,

make them a promising avenue for future research in representing structured knowledge.

5.2 Related Work

In addition to the related work in structured embeddings mentioned in the introduc-

tion, our focus on directed, transitive relational modeling and ontology induction shares

much with the rich field of directed graphical models and causal modeling [68], as well

as learning the structure of those models [41]. Work in undirected structure learning

such the Graphical Lasso [31] is also relevant due to our desire to learn from pairwise

joint/conditional probabilities and moment matrices, which are closely related in the set-

ting of discrete variables.

Especially relevant research in Bayesian networks are applications towards learning

taxonomic structure of relational data [4], although this work is often restricted towards

tree-shaped ontologies, which allow efficient inference by Chu-Liu-Edmonds’ algorithm

[19], while we focus on arbitrary DAGs.

As our model is based on populating a latent “sample space” into boxes (products of in-

tervals), it is especially reminiscent of the Mondrian process [73]. However, the Mondrian
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process partitions the space as a high dimensional tree (a non-parametric kd-tree), while

our model allows the arbitrary box placement required for DAG structure, and is much

more tractable in high dimensions compared to the Mondrian’s Bayesian non-parametric

inference.

Embedding applications to relational learning constitute a huge field to which it is im-

possible to do justice, but one general difference between our approaches is that e.g. a

matrix factorization model treats the embeddings as objects to score relation links with,

as opposed to POE or our model in which embeddings represent subsets of probabilistic

sample space which are directly integrated. They are full probabilistic models of the joint

set of variables, rather than embedding-based approximations of only low-order joint and

conditional probabilities. That is, any set of our parameters can answer any arbitrary prob-

abilistic question (possibly requiring intractable computation), rather than being fixed to

modeling only certain subsets of the joint.

Embedding-based learning’s large advantage over the combinatorial structure learning

presented by classical PGM approaches is its applicability to large-scale probability distri-

butions containing hundreds of thousands of events or more, as in both our WordNet and

Flickr experiments.

5.3 Method

We develop a probabilistic model for transitive relational data based on hyperrectangle

(box) embeddings that can model both positive and negative correlations. Since this is

precisely the domain for which probabilistic order embeddings (discussed in Chapter 4)

were defined, we first motivate our choice to abandon these cone-based models.

5.3.1 Correlations from Cone Measures

Remark. The geometric intuition behind the following proof is well illustrated in Figure

5.1
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Claim. Let (ΩCone, E , P ) along with two indicator random variables A and B be a cone

probability model as defined in 21. That is,

a∨, b∨ ∈ ΩCone ⊆ Rd

Cone(A) = {u | ui ≥ a∨i , 1 ≤ i ≤ d, u ∈ ΩCone }

Cone(B) = {u | ui ≥ b∨i , 1 ≤ i ≤ d, u ∈ ΩCone }

A,B = 1Cone(A),1Cone(B)

for two parameter vectors a∨ and b∨. Further, assume that the base measure P is a product

measure on a product space ΩCone ⊆ Rd that decomposes coordinatewise into probability

measures Pi. Finally, assume that the functions Fi(x) = Pi((∞, x)∩ΩCone) are monotone

increasing.

Then cov(A,B) ≥ 0 for any settings of the model parameters. That is, cone probability

models under a large class of base measures cannot model negative correlations.

Proof. For the product measure P we have

P (Cone(X)) =
d∏
i

Pi([x
∨
i ,∞) ∩ ΩCone)

=
d∏
i

Fi(∞)− Fi(x∨i )

=
d∏
i

1− Fi(x∨i ),

since the axis-aligned cones decompose as a set product along with the measure.

The latter expression is just the area of the box
∏d

i [Fi(xi), 1] ∈ [0, 1]d, under the stan-

dard Lebesgue (uniform) measure. Note that these boxes have only half the degrees of

freedom of general boxes, since their per-dimension maximum is always 1 (intuitively,

they have one end ”stuck at infinity” since the cone extends to infinity.) Denote this box

Box(X).
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Let (ΩBox,F , PBox) be a probability space with ΩBox = [0, 1]d and PBox equal to the

standard Lebesgue measure. There is a measure-preserving bijection between the events

Cone(X) and Box(X) because each Fi is monotone increasing and thus invertible.

So, W.L.O.G. we can consider the two boxes Box(A) and Box(B) corresponding to our

cones in the original space, and letting Fi(a∨i ) = ui and Fi(b∨i ) = vi, their intersection in

the unit hypercube ΩBox is
∏n

i [max(ui, vi), 1].

Recall the formula for the covariance of two Bernoulli random variables:

cov(A,B) = E[AB]− E[A]E[B]

= P (Cone(A) ∩ Cone(B))− P (Cone(A))P (Cone(B))

= P (Box(A) ∩ Box(B))− P (Box(A))P (Box(B))

=
d∏
i

(1−max(ui, vi))−
d∏
i

(1− ui)(1− vi) ≥ 0

since the right contains all the terms of the left and can only grow smaller.

An open question for future work is what non-product measures this claim also ap-

plies to. Note that some non-product measures, such as multivariate Gaussian, can be

transformed into product measures easily (whitening) and the above proof would still ap-

ply. It seems probable that some measures, nonlinearly entangled across dimensions, could

encode negative correlations in cone volumes. However, it is not generally tractable to

integrate high-dimensional cones under arbitrary non-product measures.

5.3.2 Box Lattices

The above proof gives us intuition about the possible form of a better representation.

Cones can be mapped into boxes within the unit hypercube while preserving their measure,

and the lack of negative correlation between any two variables in a box probability model

seems to come from the large size of the intersection of two cones, corresponding to the
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positive E[AB] term, which dominates the covariance formula. This large intersection

comes about due to “pinning” the maximum coordinate of each box to 1 in every dimension.

To remedy this, we propose to learn representations in the space of all boxes (axis-

aligned hyperrectangles), gaining an extra degree of freedom over the cone probability

model, and allowing us to create as much or as little overlap as we like between two boxes.

Figure 5.1 gives a demonstration of how the amount of overlap created by different box and

cone representations affects the covariance. These representations can be learned with a

suitable probability measure in Rn, the nonnegative orthant Rn
+ (as with the original prob-

abilistic order embedding), or directly in the unit hypercube with the standard Lebesgue

measure, which we use in many of our applications.

First, we will provide a formal definition of a lattice structure over boxes.

Definition 22 (Box lattice). A box lattice is constructed using a subset S ⊆ Rd along with

a set of boxes (axis-aligned hyperrectangles), T = {Box(Xi)}ni=1 in S, each parameterized

by a pair of vectors (xi,∧, xi,∨) representing the minimum and maximum coordinates of the

box on each axis:

xi,∧, xi,∨ ∈ S ⊆ Rd and ∀j ∈ {1, . . . , d}, xi,∧j < xi,∨j

In terms of these parameters, the boxes are defined as

Box(Xi) =
d∏
j=1

[xi,∧j , xi,∨j ] = {u | xi,∧j ≤ uj ≤ xi,∨j , j ∈ {1, . . . , d}, u ∈ S }.

We can define an ordering on the set of boxes T using the subset relation,

Box(A) � Box(B) ⇐⇒ Box(A) ⊆ Box(B),
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so (T,�) forms a poset. We can add a natural meet operation defined using set intersection,

Box(A) ∧ Box(B) = Box(A) ∩ Box(B)

Box(A) ∧ Box(B) = ⊥ if Box(A) and Box(B) disjoint, else

Box(A) ∧ Box(B) =
d∏
j=1

[max(a∧j , b
∧
j ),min(a∨j , b

∨
j )].

The resulting structure (T,∧) forms a meet semilattice. Finally, we can add a join operation

by finding the least upper bounding box,

Box(A) ∨ Box(B) =
d∏
j=1

[min(a∧j , b
∧
j ),max(a∨j , b

∨
j )].

Note that this join operation is different from a standard union of sets because it always

produces a (smallest enclosing) box, rather than an arbitrary union of hyperrectangles. The

triplet (T,∧,∨) is the box lattice. This lattice is always bounded below, with ⊥ = ∅, and

bounded above with > = S when S is itself a box.

This lattice, considered on its own terms as a non-probabilistic object, is strictly more

general than the cone lattice in any dimension, which is proven in Section 7.1.

Remark. As mentioned above, we associate each variable X with two parameter vectors,

the minimum and maximum value of the box at each dimension. Practically, for numerical

reasons these are stored as a minimum and a positive offset, plus an ε term to prevent boxes

from becoming too small and underflowing.

As our original motivation for developing boxes was to model different correlations

than the cone probability model, we now apply the box lattice to define a probabilistic

model. Much of this definition will follow the cone probability model (21), mutatis mutan-

dis.
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Definition 23 (Box probability model). Let (ΩBox, E , PBox) be a probability space where

ΩBox ⊆ Rd. Let {Box(Xi)}Ni=1 be a set of boxes in ΩBox. As in the box lattice (Definition

22), each is parameterized by a pair of vectors

xi,∧, xi,∨ ∈ ΩBox ⊆ Rd and ∀j ∈ {1, . . . , d}, xi,∧j < xi,∨j .

In terms of these parameters, the boxes are defined as

Box(Xi) =
d∏
j=1

[xi,∧j , xi,∨j ].

Further, define a set of indicator random variables {Xi} for these box-shaped events,

Xi : ΩBox → {0, 1} = 1Box(Xi)

X−1
i ({1}) = Box(Xi).

We will denote the distribution ofX1, ..., XN as P (X1, ..., XN), dropping the Box subscript

on P , to make it clear we are talking about the discrete pushforward measure on {0, 1}N

induced by PBox and not the measure PBox defined on a subset of Rd. We will call this

probability space and associated random variables a box probability model.

If each Xi = f(a) for some mapping f : S → (ΩBox → {0, 1}) from a finite set S to

random variables in the box probability model, we call this a probabilistic box embedding

of S.

Remark. As in the case of the cone probability model, the above definition implies that

joint probabilities over multiple variables can be calculated by inclusion-exclusion with set

intersection and complement over Box(Xi), e.g.

P (X1 = 1, X2 = 1, X3 = 0) = PBox(Box(X1) ∩ Box(X2) ∩ Box(X3)c).
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It remains to show that this representation can represent both positive and negative

correlations.

Claim. Let (Ω, E , P ) be a probability space with Ω = [0, 1]n. Let Box(A) and Box(B)

be two boxes in Ω, and let A : Ω → {0, 1} = 1Box(A) and B : Ω → {0, 1} = 1Box(B) be

indicator random variables of those events in Ω, that is, let A−1({1}) and B−1({1}) be

products of intervals in Ω. There exist boxes Box(A) and Box(B) such that the correlation

between the the two variables, corr(A,B), can take on any value in [−1, 1].

Proof. Boxes can clearly model disjointness (exactly −1 correlation if the total volume of

two disjoint boxes equals 1). Two identical boxes give their concepts exactly correlation 1.

The area of the meet is continuous with respect to translations of intersecting boxes, and all

other terms in correlation stay constant, so by continuity of the correlation function (and the

intermediate value theorem) a box probability model can achieve all possible correlations

for a pair of variables.

This proof can be extended to boxes in Ω = Rn compare Ω = Rn, where the base

probability measure is a product measure, by the previous reduction.

A demonstration in two dimensions of the different possible correlation structures from

box and cone embeddings can be found in Figure 5.1.

Limitations: Note that this model cannot perfectly describe all possible probability

distributions or concepts as embedded objects. For example, the complement of a box

is not a box. However, queries about complemented variables can be calculated by the

Inclusion-Exclusion principle, made more efficient by the fact that all non-negated terms

can be grouped and calculated exactly. We show some toy exact calculations with negated

variables in Appendix 5.5. Also, note that in a knowledge graph often true complements are

not required — for example mortal and immortal are not actually complements, because

the concept color is neither.
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(a) Positive covariance (b) Zero covariance (c) Negative covariance

Figure 5.1: A visualization of the Bernoulli covariance formula E[AB] − E[A]E[B] for
box and cone embeddings in the unit square in two dimensions, showing positive, zero,
and negative correlation.

Additionally, requiring the total probability mass covered by boxes to equal 1, or ex-

actly matching marginal box probabilities while modeling all correlations is a difficult box-

packing-type problem and not generally possible. Modeling limitations aside, the union of

boxes having mass < 1 can be seen as an open-world assumption on our KB (not all points

in space have corresponding concepts, yet).

5.3.3 Learning

While inference (calculation of pairwise joint, unary marginal, and pairwise conditional

probabilities) in the box model is quite straightforward by taking intersections of boxes and

computing volumes (and their ratios), learning does not appear easy at first glance. While

the (sub)gradient of the joint probability with respect to the box embedding parameters

is nonzero when boxes intersect, it has zero derivative otherwise, making it unsuitable

for optimization. Instead we optimize a lower bound, which we arrive at using the join

operation in the box lattice, which finds the smallest enclosing box when applied to two

boxes.

For two variablesA andB and their associated boxes, clearly PBox(Box(A)∨Box(B)) ≥

PBox(Box(A) ∪ Box(B)), with equality only when Box(A) = Box(B), so this can give us
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a lower bound:

PBox(Box(A) ∧ Box(b)) = PBox(Box(A)) + PBox(Box(B))− PBox(Box(A) ∪ Box(B))

≥ PBox(Box(A)) + PBox(Box(B))− PBox(Box(A) ∨ Box(B)),

where PBox is the measure on the latent box space that gives probabilities according to the

volume of the associated box. This lower bound always exists and is nonzero, even when

the true joint probability is not. It is guaranteed to be nonpositive except when Box(A) and

Box(B) intersect, in which case the true joint likelihood should be used.

While a negative bound on a probability is odd, inspecting the bound we see that its

gradient will push the enclosing box to be smaller, while increasing areas of the individual

boxes, until they intersect, which is a sensible learning strategy.

Since we are working with small probabilities it is advisable to negate this term and

maximize the negative logarithm:

− log(δ + PBox(Box(A) ∨ Box(B))− PBox(Box(A))− PBox(Box(B))

This still has an unbounded gradient as the lower bound approaches 0, so it is also useful

to add a constant δ > 0 within the logarithm function to avoid numerical problems.

Since the likelihood of the full data is usually intractable to compute as a conjunction

of many negations, we optimize binary conditional and unary marginal terms separately by

maximum likelihood. This is called a composite likelihood method [83], and sometimes

called pseudolikelihood, though the latter usually refers to a composite of full leave-one-out

conditional distributions.

In this work, we parametrize the boxes as (min,∆ = max − min), with Euclidean

projections after gradient steps to keep our parameters in the unit hypercube and maintain

the minimum/delta constraints.
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Now that we have the ability to compute probabilities and (surrogate) gradients for arbi-

trary marginals in the model, and by extension conditionals, we will see specific examples

in the experiments.

5.4 Experiments

5.4.1 Warmup: 2D Embedding of a Toy Lattice

In these experiments we use P (V1|V2) not to denote the conditional distribution, but

instead to denote the probability P (V1 = 1|V2 = 1) by abuse of notation. We begin

by investigating properties of our model in modeling a small toy problem, consisting of

a small hand constructed ontology over 19 concepts, aggregated from atomic synthetic

examples and some manually specified conditional probabilities, a visualization of which

is provided in Figure 5.2. These manually specified examples are aggregated into a full

pairwise conditional probability distribution (CPD) with missing probabilities computed

using inclusion-exclusion. We model it using only 2 dimensions to enable visualization

of the way the model self-organizes its latent event space, ΩBox, training the model by

minimize weighted cross-entropy with both the unary marginals and pairwise conditional

probabilities. We also conduct a parallel experiment with POE as embedded in the unit

cube, where each representation is constrained to touch the faces x = 1, y = 1. In Figure

5.3, we show the representation of lattice structures by POE and the box lattice model as

compared to the abstract probabilistic lattice used to construct the data, shown in Figure

5.2, and compare the conditional probabilities produced by our model to the ground truth,

demonstrating the richer capacity of the box model in capturing strong positive and negative

correlations. In Table 5.3, we perform a series of multivariable conditional queries and

demonstrate intuitive results on high-order queries containing up to 4 variables, despite the

model being trained on only 2-way information.
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(a) Original lattice

(b) Ground truth CPD

Figure 5.2: Representation of the toy probabilistic lattice used in Section 5.4.1. Darker
color corresponds to more unary marginal probability. Edges represent specified condi-
tional probabilities, with the rest left up to inference. The associated CPD is obtained by a
weighted aggregation of leaf elements.
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(a) POE lattice (b) Box lattice

(c) POE CPD (d) Box CPD

Figure 5.3: Lattice representations and conditional probabilities from POE vs. box lattice.
Note how the box lattice model’s lack of “anchoring” to a corner allows it vastly more
expressivity in matching the ground truth CPD seen in Figure 5.2.
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P(grizzly bear | ... ) P(cactus | ... ) P(plant | ... )
P(grizzly bear) 0.12 P(cactus) 0.10 P(plant) 0.20
omnivore 0.29 green 0.16 green 0.37
white 0.00 plant 0.39 snake 0.00
brown 0.30 american, green 0.19 carnivore 0.00
omnivore, white 0.00 plant, green, american 0.40 cactus 0.78
omnivore, brown 0.38 american, carnivore 0.00 american, cactus 0.85

Table 5.3: Multi-way queries: conditional probabilities adjust when adding additional evi-
dence or contradiction. In contrast, POE can only raise or preserve probability when con-
ditioning.

term1 term2
craftsman.n.02 shark.n.03
homogenized milk.n.01 apple juice.n.01
tongue depresser.n.01 paintbrush.n.01
deerstalker.n.01 bathing cap.n.01
skywriting.n.01 transcript.n.01

Table 5.4: Negatively correlated variables produced by the model.

Method Test Accuracy %
transitive 88.2
word2gauss 86.6
OE 90.6
Li et al. [55] 91.3
DOE (KL) 92.3
POE 91.6
POE (100 dim) 91.7
Box 92.2
Box + CPD 92.3

Table 5.5: Classification accuracy on WordNet test set.

5.4.2 WordNet

We experiment on WordNet hypernym prediction, using the same train, development

and test split as Vendrov et al. [84], created by randomly taking 4,000 hypernym pairs from

the 837,888-edge transitive closure of the WordNet hypernym hierarchy as positive training

examples for the development set, 4,000 for the test set, and using the rest as training data.
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Negative training examples are created by randomly corrupting a train/development/test

edge (u, v) by replacing either u or v with a randomly chosen negative node. We use their

specific train/dev/test split, while Athiwaratkun and Wilson [3] use a different train/dev

split with the same test set (personal communication) to examine the effect of different

negative sampling techniques. We cite their best performing model, called DOE (KL).

Since our model is probabilistic, we would like a sensible value for the unary marginal

probability P (Ni = 1), where Ni is the random variable associated with node i. We assign

these marginal probabilities by looking at the number of descendants in the training graph

under a node, and normalizing over all nodes, taking P (Ni = 1) = | descendants(Ni) |
| nodes | .

Furthermore, we use the graph structure (only of the subset of edges in the training

set to avoid leaking data) to augment the data with approximate conditional probabili-

ties P (Ni = 1|Nj = 1). For each leaf node, we take the set of its ancestor nodes, and

increment a pairwise co-occurrence count for all pairs of variables in the set. We then

aggregate these pairwise counts, and divide by the number of leaves to get an approxi-

mate binary joint probability distribution between node variables, P (Ni = 1, Nj = 1) =

| Ni, Nj co-occur in ancestor set |
| leaves | . With this and the unary marginals, we can create a conditional

probability table, which we prune based on the difference of P (Ni = 1|Nj = 1) and

P (Ni = 1|Nj = 1), and add cross entropy with these conditional “soft edges” to the train-

ing objective. We refer to experiments using this additional data as Box + CPD in Table

5.5.

We use 50 dimensions in our experiments. Since our model has 2 parameters per dimen-

sion, we also perform an apples-to-apples comparison with a 100D POE model. As seen in

Table 5.5, we outperform POE significantly even with this added representational power.

We also observe sensible negatively correlated examples, shown in 5.4, in the trained box

model, while POE cannot represent such relationships. We tune our models on the devel-

opment set, with parameters documented in Appendix A.2.1. We observe that not only

does our model outperform POE, it beats all previous results on WordNet, aside from the
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concurrent work of Athiwaratkun and Wilson [3] (using different train/dev negative exam-

ples), the baseline POE model does as well. This indicates that probabilistic embeddings

for transitive relations are a promising avenue for future work. Additionally, the ability

of the model to learn from the expected ”soft edges” improves it to state-of-the-art level.

We expect that co-occurrence counts gathered from real textual corpora, rather than merely

aggregating up the WordNet lattice, would further strengthen this effect.

5.4.3 Flickr Entailment Graph

Figure 5.4: R between model and gold probabilities.

P (X = 1|Y = 1)
Full test data KL Pearson R
POE 0.031 0.949
POE* 0.031 0.949
Box 0.020 0.967
Unseen pairs
POE 0.048 0.920
POE* 0.046 0.925
Box 0.025 0.957
Unseen words
POE 0.127 0.696
POE* 0.084 0.854
Box 0.050 0.900

Table 5.6: KL and Pearson correlation between model and gold probability.
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We conduct experiments on the large-scale Flickr entailment dataset of 45 million im-

age caption pairs. We use the exactly same train/dev/test from Lai and Hockenmaier [52].

We use a slightly different unseen word pairs and unseen words test data, obtained from

the author. We include their published results and also use their published code, marked ∗,

for comparison.

For these experiments, we relax our boxes from the unit hypercube to the nonnegative

orthant and obtain probabilities under the exponential measure, p(x) = exp(−x). We en-

force the nonnegativity constraints by clipping the LSTM-generated embedding [44] for

the box minimum with a ReLU, and parametrize our ∆ embeddings using a softplus ac-

tivation to prevent dead units. As in Lai and Hockenmaier [52], we use 512 hidden units

in our LSTM to compose sentence vectors. We then apply two single-layer feed-forward

networks with 512 units applied to the final LSTM state to produce the embeddings. We

tune our models on the development set, with additional details given in Appendix A.2.2.

As we can see from Table 5.6, we note large improvements in KL and Pearson corre-

lation to the ground truth entailment probabilities. In further analysis, Figure 5.4 demon-

strates that while the box model outperforms POE in nearly every regime, the highest gains

come from the comparatively difficult to calibrate small entailment probabilities, indicating

the greater capability of our model to produce fine-grained distinctions.

5.5 Queries with Negated Variables

Section 5.3.2 mentions that although the complement of a box is not a box, queries

involving negated variables can be calculated exactly with Inclusion-Exclusion, demon-

strated in Table 5.7. Note that in this table, notation of the form P (V1|V2) does not refer to

a distribution, but instead is a slight abuse of notation for the probability P (V1 = 1|V2 = 1).

While there are many more interesting and efficient approaches, we simply use the formula

for calculating the volume of the union of hyperrectangles (a standard Inclusion-Exclusion

formula).
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This is equivalent since the intersection of complements of boxes is the complement of

the union of boxes.

We are asked to compute the probability of an assignment of variables such that some

take the value 1 and some take the value 0, we will call these two sets of variables Ti and

Fi

P (T1, ..., Tn = 1, F1, ..., Fn = 0).

In the box model, we know that this probability is given by

PBox(Box(T1) ∩ ... ∩ Box(Tn) ∩ Box(F1)c ∩ ... ∩ Box(Fn)c),

the volume of boxes intersected with complements of boxes, computed under the measure

PBox.

We first intersect all of the non-negated variables into one conjunction box, Box(T ). We

then calculate the volume of the union of T with the union of all of the boxes representing

negated variables,

v1 = PBox(T ∪ Box(F1) ∪ ... ∪ Box(Fn)).

We can calculate the volume of this union of hyperrectangles using inclusion-exclusion.

Finally, we calculate the volume of just the negated variables boxes,

v2 = PBox(Box(F1) ∪ ... ∪ Box(Fn)),

another union of hyperrectangles.

The original desired probability is then given by v1− v2, since this measures the size of

the area inside all of the true variables Ti that is also outside of the false variables Fi.
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P(deer | ... )
P(deer) 0.12
¬white 0.13
animal 0.50
¬white,animal 0.54
¬white,animal,herbivore 0.73
¬white, animal, herbivore, ¬rabbit 0.80
¬white, animal, ¬herbivore,¬rabbit 0.00

Table 5.7: Negated variables: queries on the toy data with negated variables, calculated
with Inclusion-Exclusion.

5.6 Conclusion

In this chapter, we presented an embedding for probabilistic modeling based on a lattice

of hyperrectangles. While showing much promise in modeling both probabilistic and non-

probabilistic partial order structures, and performing probabilistic queries, the training /

inference of latent boxes relies on an ad-hoc surrogate function in the disjoint case. The

search for better training methods motivates the next chapter.
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CHAPTER 6

SMOOTHED LEARNING FOR BOX EMBEDDINGS

6.1 Introduction

While intuitively appealing, the “hard edges” of boxes and their ability to become easily

disjoint, present difficulties for gradient-based optimization: when two boxes are disjoint

in the model, but have overlap in the ground truth, no gradient can flow to the model

to correct the problem. This is of special concern for (pseudo-)sparse data, where many

boxes should have nearly zero overlap, while others should have very high overlap. This

is especially pronounced in the case of e.g. market basket models for recommendation,

where most items should not be recommended, and entailment tasks, most of which are

currently artificially resampled into a 1:1 ratio of positive to negative examples. To address

the disjoint case, in the previous chapter we introduced an ad-hoc surrogate function. In

this chapter, we will look at this problem as inspiration for a new model, based on the

intuition of relaxing the hard edges of the boxes into smoothed density functions, using a

Gaussian convolution with the original boxes.

We demonstrate the superiority of our approach to modeling transitive relations on

WordNet, Flickr caption entailment, and a MovieLens-based market basket dataset. This

modification of the original box model matches or beats existing state of the art results,

while showing substantial improvements in the pseudosparse regime.

6.2 Related Work

Our approach to smoothing the energy landscape of the model using Gaussian convo-

lution is common in mollified optimization and continuation methods, and is increasingly
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making its way into machine learning models such as Mollifying Networks [38], diffusion-

trained networks [64], and noisy activation functions [37].

6.3 Method

6.3.1 Motivation: Optimization and Sparse Data

Recall that in the box probability model (ΩBox, E , PBox, {Xi}), as defined in Chapter 5,

the probability of a binary variable taking on the value 1 is given by

P (Xi = 1) = PBox(Box(Xi)),

the volume of the box Box(Xi), parameterized as a vector of minimum coordinates x∧i ,

and maximum coordinates x∨i . Without loss of generality, we will consider boxes in only 1

dimension. In this case, the volume under the uniform measure is given simply as

P (Xi = 1) = PBox(Box(Xi)) = x∨i − x∧i .

Computing the joint probability of two variables taking the value 1 is done by first taking

the intersection (or meet of the two boxes when viewed as elements of the box lattice), then

computing the volume:

P (X = 1, Y = 1) = PBox(Box(X) ∧ Box(Y )) = mh(min(x∨, y∨)−max(x∧i , y
∧)).

(6.1)

where mh(x) is the standard hinge function mh(x) = 0 ∨ x = max(0, x).

When using gradient-based optimization to learn box embeddings, an immediate prob-

lem identified in the original box embedding work is that when two concepts are incorrectly

given as disjoint by the model, no gradient signal can flow since the meet (intersection) is

exactly zero, with zero derivative, as inspection of the previous formula makes clear.
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The hinge function has a large flat plateau at 0 when intervals are disjoint. This issue

is especially problematic when the lattice to be embedded is (pseudo-)sparse, that is, most

boxes should have very little or no intersection, since if training accidentally makes two

boxes disjoint there is no way to recover with the naive measure. We previously proposed

a surrogate function to optimize in this case, but we will use a more principled framework

to develop alternate measures that avoid this pathology, improving both optimization and

final model quality.

6.3.2 Relaxed Geometry

(a) Unsmoothed Indicators (b) Convolution Kernel (c) Smoothed w/ Overlap

Figure 6.1: One-dimensional example demonstrating two disjoint indicators of intervals
before and after the application of a smoothing kernel. The area under the purple product
curve is proportional to the degree of overlap.

The intuition behind our approach is that the “hard edges” of the standard box em-

beddings lead to unwanted gradient sparsity, and we seek a relaxation of this assumption

that maintains the desirable properties of the base lattice model while enabling better op-

timization and preserving a geometric intuition. For ease of exposition, we will refer to

1-dimensional intervals with ΩBox = [0, 1] in this section, but the results carry through

from the representation of boxes as products of intervals and their volumes under the asso-

ciated product measures.

The first observation is that, considering boxes as indicator functions of intervals, we

can rewrite the measure of the joint probability P (X = 1, Y = 1) = PBox(Box(X) ∧
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Box(Y )) between intervals Box(X) = [x∧, x∨] and Box(Y ) = [y∧, y∨] as an integral of

the product of those indicators:

PBox(Box(X) ∧ Box(Y )) =

∫
ω∈ΩBox

1[x∧,x∨](ω)1[y∧,y∨](ω)dω

since the product has support (and is equal to 1) only in the areas where the two intervals

overlap.

A solution suggests itself in replacing these indicator functions with functions of in-

finite support. We elect for kernel smoothing, specifically convolution with a normalized

Gaussian kernel, equivalent to an application of the diffusion equation to the original func-

tional form of the embeddings (indicator functions) and a common approach to mollified

optimization and energy smoothing [65, 38, 64]. This approach is demonstrated in one

dimension in Figure 6.1.

Specifically, given Box(X) = [x∧, x∨], we associate the smoothed indicator function

f(ω;x∧, x∨, σ2) = 1[x∧,x∨](ω) ∗ φ(ω;σ2) =∫
ω′∈ΩBox

1[x∧,x∨](ω
′)φ(ω − ω′;σ2)dω′ =

∫ x∨

x∧
φ(ω − ω′;σ2)dω′

We then wish to evaluate, for two variables X and Y with associated smoothed indica-

tors f and g,

P̃φ(Box(X) ∧ Box(Y )) =

∫
ω∈ΩBox

f(ω;x∧, x∨, σ2
1)g(ω; y∧, y∨, σ2

2)dω (6.2)

We denote this function P̃φ(Box(X) ∧ Box(Y )) with a tilde because it is not a true proba-

bility measure. We will also overload the P̃φ function to apply to random variables as well

as their associated boxes, so by e.g. P̃φ(X = 1), we mean P̃φ(Box(X)). This definition
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can be extended to joint assignments of random variables using the inclusion-exclusion

formula and computing positive assignments as box overlaps.

The integral 6.2 admits a closed form solution.

Proposition 1. Let mΦ(x) =
∫

Φ(x)dx be an antiderivative of the standard normal CDF.

Let (a, b, c, d) = (x∧, x∨, y∧, y∨) for ease of notation. Then the solution to (6.2) is given

by,

P̃φ(Box(X) ∧ Box(Y )) = σ
(
mΦ( b−c

σ
) +mΦ(a−d

σ
)−mΦ( b−d

σ
)−mΦ(a−c

σ
)
)

(6.3)

≈
(
ρ soft( b−c

ρ
) + ρ soft(a−d

ρ
)
)
−
(
ρ soft( b−d

ρ
) + ρ soft(a−c

ρ
)
)

(6.4)

where σ =
√
σ2

1 + σ2
2 , soft(x) = log(1 + exp(x)) is the softplus function, the an-

tiderivative of the logistic sigmoid, and ρ = σ
1.702

.

Proof. The first line is proved in Section 6.5, the second approximation follows from the

approximation of Φ by a logistic sigmoid given in Bowling et al. [14].

Note that, in the zero-temperature limit, as ρ goes to zero, we recover the formula

P̃φ(Box(X) ∧ Box(Y )) = lim
ρ→0

(
ρ soft( b−c

ρ
) + ρ soft(a−d

ρ
)
)
−
(
ρ soft( b−d

ρ
) + ρ soft(a−c

ρ
)
)

=
(
mh(b− c) +mh(a− d)

)
−
(
mh(b− d) +mh(a− c)

)
= mh(b ∧ d− a ∨ c)

with equality in the last line because (a, b) and (c, d) are intervals. This last line is exactly

our original equation (6.1), which is expected from convolution with a zero-bandwidth

kernel (a Dirac delta function, the identity element under convolution). This is true for

both the exact formula using
∫

Φ(x)dx, and the softplus approximation.
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Unfortunately, for any ρ > 0, multiplication of Gaussian-smoothed indicators does not

give a valid meet operation on a function lattice, for the simple reason that f 2 6= f , except

in the case of indicator functions, violating the idempotence requirement of Section 4.1.1.

More importantly, for practical considerations, if we are to treat the outputs of P̃φ as

probabilities, the consequence is

P̃φ(X = 1|X = 1) =
P̃φ(X = 1, X = 1)

P̃φ(X = 1)
=
P̃φ(Box(X) ∧ Box(X))

P̃φ(Box(X))
6= 1 (6.5)

which complicates our applications that train on conditional probabilities. However, by

a modification of (6.3), we can obtain a function P̃ such that P̃ (Box(X) ∧ Box(X)) =

P̃ (Box(X)), while retaining the smooth optimization properties of the Gaussian model.

Recall that for the hinge function mh and two intervals (a, b) and (c, d), we have

(
mh(b− c) +mh(a− d)

)
−
(
mh(b− d) +mh(a− c)

)
= mh(b ∧ d− a ∨ c) (6.6)

where the left hand side is the zero-temperature limit of the Gaussian model from (6.3).

This identity is true of the hinge function mh, but not the softplus function.

However, an equation with a similar functional form as (6.6) (on both the left- and

right-hand sides) is true not only of the hinge function from the unsmoothed model, but

also true of the softplus. For two intervals x = (a, b) an y = (c, d), by the commutativity

of min and max with monotonic functions, we have

(
soft(b− c) ∨ soft(a− d)

)
∧
(

soft(b− d) ∨ soft(a− c)
)

= soft(b ∧ d− a ∨ c) (6.7)

In the zero-temperature limit, all terms in equations 6.3 and 6.7 are equivalent. However,

outside of this, (6.7) is idempotent for x = y = (a, b) = (c, d) (when considered as a

measure of overlap, made precise in the next paragraph), while (6.3) is not.
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This inspires us to define the pseudo-probabilities P̃ (X = 1) and P̃ (X = 1, Y = 1)

using a normalized version of (6.7) in place of (6.3). For the interval (one-dimensional

box) case, we define

P̃ (X = 1) ∝ soft(b− a)

P̃ (X = 1, Y = 1) ∝ soft(b ∧ d− a ∨ c)

which satisfies the idempotence requirement, P̃ (X = 1) = P̃ (X = 1, X = 1).

Because softplus upper-bounds the hinge function, it is capable of outputting values

that are greater than 1, and therefore must be normalized. In our experiments, we use two

different approaches to normalization. For experiments with a relatively small number of

entities (all besides Flickr), we allow the boxes to learn unconstrained, and divide each

dimension by the measured size of the global minimum and maximum (G∧i , G
∨
i ) at that

dimension

msoft,i(x) =
soft(x

ρ
)

soft(
G∨i −G∧i

ρ
)

For data where computing these values repeatedly is infeasible, we project onto the unit

hypercube and normalize by msoft(1). The final probability P̃ (X = 1) is given by the

product over dimensions

P̃ (X = 1) =
∏
i

msoft,i(x
∨
i − x∧i )

P̃ (X = 1, Y = 1) =
∏
i

msoft,i(x
∨
i ∧ y∨i − x∧i ∨ y∧i )

Note that, while equivalent in the zero temperature limit to the standard uniform probability

measure of the box model, this function, like the Gaussian model, is not a valid probability

measure on the entire joint space of events (the lattice). However, neither is factorization of
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a conditional probability table using a logistic sigmoid link function, which is commonly

used for the similar tasks. Our approach retains the inductive bias of the original box model,

is equivalent in the limit, and satisfies the necessary condition that P̃ (X = 1, X = 1) =

P̃ (X = 1). A comparison of the 3 different functions is given in Figure 6.2, with the

softplus overlap showing much better behavior for highly disjoint boxes than the Gaussian

model, while also preserving the meet property.

(a) Standard (hinge) overlap (b) Gaussian, σ ∈ {2, 6} (c) Softplus overlap

Figure 6.2: Comparison of different overlap functions for two boxes of width 0.3 as a
function of their centers. Note that in order to achieve high overlap, the Gaussian model
must drastically lower its temperature, causing vanishing gradients in the tails.

6.4 Experiments

6.4.1 WordNet

Method Test Accuracy %
transitive 88.2
word2gauss 86.6
OE 90.6
Li et al. [55] 91.3
POE 91.6
Box 92.2
Smoothed Box 92.0

Table 6.3: Classification accuracy on WordNet test set.
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We perform experiments on the WordNet hypernym prediction task in order to evalu-

ate the performance of these improvements in practice. The WordNet hypernym hierarchy

contains 837,888-edges after performing the transitive closure on the direct edges in Word-

Net. We used the same train/dev/test split as in Vendrov et al. [84]. Positive examples are

randomly chosen from the 837k edges, while negative examples are generated by swap-

ping one of the terms to a random word in the dictionary. Experimental details are given in

Appendix A.3.1.

The smoothed box model performs nearly as well as the original box lattice in terms of

test accuracy1. While our model requires less hyper-parameter tuning than the original, we

suspect that our performance would be increased on a task with a higher degree of sparsity

than the 50/50 positive/negative split of the standard WordNet data, which we explore in

the next section.

6.4.2 Imbalanced WordNet

In order to confirm our intuition that the smoothed box model performs better in the

sparse regime, we perform further experiments using different numbers of positive and neg-

ative examples from the WordNet mammal subset, comparing the box lattice, our smoothed

approach, and order embeddings (OE) as a baseline. The training data is the transitive re-

duction of this subset of the mammal WordNet, while the dev/test is the transitive closure

of the training data. The training data contains 1,176 positive examples, and the dev and

test sets contain 209 positive examples. Negative examples are generated randomly using

the ratio stated in the table.

As we can see from the table, with balanced data, all models include OE baseline, Box,

Smoothed Box models nearly match the full transitive closure. As the number of negative

examples increases, the performance drops for the original box model, but Smoothed Box

still outperforms OE and Box in all setting. This superior performance on imbalanced data

1Accuracy is calculated by applying the same threshold which maximized accuracy in dev set.
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is important for e.g. real-world entailment graph learning, where the number of negatives

greatly outweigh the positives.

Positive:Negative Box OE Smoothed Box
1:1 0.9905 0.9976 1.0
1:2 0.8982 0.9139 1.0
1:6 0.6680 0.6640 0.9561

1:10 0.5495 0.5897 0.8800

Table 6.4: F1 scores of the box lattice, order embeddings, and our smoothed model, for
different levels of label imbalance on the WordNet mammal subset.

6.4.3 Flickr

We conduct experiments on the Flickr entailment dataset. Flickr is a large-scale cap-

tion entailment dataset containing of 45 million image caption pairs. In order to perform an

apples-to-apples comparison with existing results we use the exact same dataset from Vilnis

et al. [86]. In this case, we do constrain the boxes to the unit cube, using the same experi-

mental setup as Vilnis et al. [86], except we apply the softplus function before calculating

the volume of the boxes.

We report KL divergence and Pearson correlation on the full test data, unseen pairs

(caption pairs which are never occur in training data) and unseen captions (captions which

are never occur in training data). As shown in Table 6.5, we see a slight performance gain

compared to the original model, with improvements most concentrated on unseen captions.

6.4.4 MovieLens

We apply our method to a market-basket task constructed using the MovieLens dataset.

Here, the task is to predict users’ preference for movie A given that they liked movie B.

We first collect all pairs of user-movie ratings higher than 4 points (strong preference)

from the MovieLens-20M dataset. From this we further prune to just a subset of movies

which have more than 100 user ratings to make sure that counting statistics are significant
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P (x|y)
Full test data KL Pearson R
POE 0.031 0.949
POE* 0.031 0.949
Box 0.020 0.967
Smoothed Box 0.018 0.969
Unseen pairs
POE 0.048 0.920
POE* 0.046 0.925
Box 0.025 0.957
Smoothed Box 0.024 0.957
Unseen captions
POE 0.127 0.696
POE* 0.084 0.854
Box 0.050 0.900
Smoothed Box 0.036 0.917

Table 6.5: KL and Pearson correlation between model and gold probability.

enough. This leads to 8545 movies in our dataset. We calculate the conditional probability

P (A|B) = P (A,B)
P (B)

= #rating(A,B)>4/#users
#rating(B)>4/#users

. We randomly pick 100K conditional probabili-

ties for training data and 10k probabilities for dev and test data 2.

We compare with several baselines: low-rank matrix factorization, complex bilinear

factorization [82], and two hierarchical embedding methods, POE [52] and the Box Lat-

tice [86]. Since the training matrix is asymmetric, we used separate embeddings for target

and conditioned movies. For the complex bilinear model, we added one additional vector

of parameters to capture the “imply” relation. We evaluate on the test set using KL diver-

gence, Pearson correlation, and Spearman correlation with the ground truth probabilities.

From the results in Table 6.6, we can see that our smoothed box embedding method

outperforms the original box lattice as well as all other baselines’ performances, especially

in Spearman correlation, the most relevant metric for recommendation, a ranking task.

2In the dev and test data, we also remove all the P (A|B) where P (B|A) appears in the training data.
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Figure 6.3: Distribution of probabilities in MovieLens Dataset.

The MovieLens dataset, while not truly sparse, has a large proportion of small prob-

abilities which make it especially suitable for optimization by the smoothed model. The

rough distribution of probabilities, in buckets of width 0.1, is shown in Figure 6.3.

KL Pearson R Spearman R
Matrix Factorization 0.0173 0.8549 0.8374
Complex Bilinear Factorization 0.0141 0.8771 0.8636
POE 0.0170 0.8548 0.8511
Box 0.0147 0.8775 0.8768
Smoothed Box 0.0138 0.8985 0.8977

Table 6.6: Performance of the smoothed model, the original box model, and several base-
lines on MovieLens.

6.4.4.1 Initialization Sensitivity

We perform an additional set of experiments to determine the robustness of the smoothed

box model to initialization. While the model is normally initialized randomly so that each

box is a product of intervals that almost always overlaps with the other boxes, we would

like to determine the models robustness to disjoint boxes in a principled way. While we

can control initialization, we cannot always control the intermediate results of optimiza-

tion, which may drive boxes to be disjoint, a condition from which the original, hard-edged

box model may have difficulty recovering. So, parameterizing the initial distribution of
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boxes with a minimum coordinate and a positive width, we adjust the width parameter so

that approximately 0%, 20%, 50%, and 100% of boxes are disjoint at initialization before

learning on the MovieLens dataset as usual. These results are presented in table 6.7. The

smoothed model does not seem to suffer at all from disjoint initialization, while the perfor-

mance of the original box model degrades significantly. From this we can speculate that

part of the strength of the smoothed box model is its ability to smoothly optimize in the

disjoint regime.

Approx. % Disjoint KL Pearson Spearman
Box Smooth Box Smooth Box Smooth

0% 0.0147 0.0138 0.8775 0.8985 0.8768 0.8977
20% 0.0172 0.0141 0.8668 0.8917 0.8608 0.8898
50% 0.0182 0.0141 0.8613 0.8908 0.8551 0.8910

100% 0.0346 0.0142 0.8401 0.8921 0.8167 0.8947

Table 6.7: Performance of the original box model and smoothed box model on MovieLens,
as a function of different degrees of disjointness upon initialization.

6.5 Proof of Gaussian Overlap Formula

We wish to evaluate, for two variables X and Y , with associated smoothed indicators

f and g,

f(x; a, b, σ2) = 1[a,b](x) ∗ φ(x;σ2) =

∫
R
1[a,b](z)φ(x− z;σ2)dz

=

∫ b

a

φ(x− z;σ2)dz

P̃φ(Box(X) ∧ Box(Y )) =

∫
R
f(x; a, b, σ2

1)g(x; c, d, σ2
2)dx (6.8)

Since the Gaussian kernel is normalized to have total integral equal to 1, so as not to change

the overall areas of the boxes, the concrete formula is

φ(z;σ2) =
1

σ
√

2π
e
−z2
2σ2
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Since the antiderivative of φ is the normal CDF, this may be recognized as the difference

Φ(x; a, σ2)−Φ(x; b, σ2), but this does not allow us to easily evaluate the integral of interest,

which is the integral of the product of two such functions.

To evaluate (6.8), recall the identity [45, 85]

∫
R
φ(x− µ1;σ2

1)φ(x− µ2;σ2
2)dx = φ(µ1 − µ2;σ2

1 + σ2
2) (6.9)

For convenience, let τ := 1√
σ2
1+σ2

2

. Applying Fubini’s theorem and using (6.9), we have

(̃P )φ(Box(X) ∧ Box(Y ))

=

∫
R

∫ b

a

φ(x− y;σ2
1) dy

∫ d

c

φ(x− z;σ2
2) dz dx

=

∫ d

c

∫ b

a

φ(y − z; τ−2) dy dz

=

∫ d

c

∫ b

a

Φ′(τ(y − z))τ dy dz

=

∫ d

c

Φ(τ(b− z))− Φ(τ(a− z)) dz

=
−1

τ
(mΦ(τ(b− d))−mΦ(τ(a− d))−mΦ(τ(b− c)) +mΦ(τ(a− c)))

and therefore, with σ = τ−1,

P̃φ(Box(X) ∧ Box(Y )) = σ
(
mΦ( b−c

σ
) +mΦ(a−d

σ
)−mΦ( b−d

σ
)−mΦ(a−c

σ
)
)

as desired.

6.6 Conclusion and Future Work

We presented an approach to smoothing the energy and optimization landscape of prob-

abilistic box embeddings and provided a theoretical justification for the smoothing. Due

to a decreased number of hyper-parameters this model is easier to train, and, furthermore,
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met or surpassed current state-of-the-art results on several interesting datasets. We further

demonstrated that this model is particularly effective in the case of sparse data and more

robust to poor initialization.

Tackling the learning problems presented by rich, geometrically-inspired embedding

models is an open and challenging area of research, which this work is far from the last

word on. This task will become even more pressing as the embedding structures become

more complex, such as unions of boxes or other non-convex objects. To this end, we will

continue to explore both function lattices, and constraint-based approaches to learning.

110



CHAPTER 7

REPRESENTATIONAL POWER OF BOX EMBEDDINGS

In this chapter we examine the representational capabilities of box embeddings, both

for probabilistic and non-probabilistic data, and propose extensions to handle some failure

cases. First, we examine some mathematical properties of the box lattice, especially as

compared to order embeddings and box embeddings. Secondly, we investigate the suitabil-

ity of box embeddings for predicting graph data. Finally, we identify a class of probability

distributions which are not representable using box embeddings, propose an extension to

remedy this deficiency, and test its efficacy on real-world data.

7.1 Properties of the Box Lattice

In this section, we cover some technical details about the box lattice model and its

properties especially as compared to the order embedding model.

7.1.1 Non-Distributivity

A lattice is called distributive if the following identity holds for all members x, y, z:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

Claim. Order embeddings form a distributive lattice.

Proof. This is a standard results on vector lattices shown in e.g. [92]

A non-distributive lattice is a strictly more general object, capable of modeling more

objects since it does not necessarily need to fulfill the above identity for all triples x, y, z.
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Claim. The box lattice is non-distributive.

Proof. Consider the box lattice in 1-dimension. Let x = [0, 0.3], y = [0.2, 0.6], and z =

[0.5, 1.0]. Then x ∧ (y ∨ z) = [0.2, 0.3], but (x ∧ y) ∨ (x ∧ z) = [0, 0.6] ∨ ⊥ = [0, 0.6].

This proves that the box lattice is a strict generalization of order embeddings, and not

equivalent to order embeddings of any dimensionality. Additionally, our choice of an ex-

ample containing disjoint elements hints at the importance of non-distributivity for our goal

of modeling disjoint events.

7.1.2 Pseudocomplemented

A lattice is called pseudocomplemented if for every element x there exists a unique

greatest element in the lattice x∗ that is disjoint from x and x ∧ x∗ = ⊥. The box lat-

tice is almost always pseudocomplemented, aside from symmetry concerns (for example,

a perfectly centered cube in the 2-dimensional box lattice of side length < 1 has 4 possible

equally large pseudocomplements. However any such symmetries can always be infinitesi-

mally perturbed without breaking order structure so the box lattice is pseudocomplemented

in a measure-theoretic sense. However, these pseudocomplements can be arbitrarily bad

approximations of the true complement set of a box, with the worst case scenario coming

from large, nearly-centered cubes.

7.2 Predicting Graphs with Box Embeddings

The box model can be viewed in two different ways. First, as a model of joint distribu-

tions P (X1, ..., XN) over a set of binary random variables {Xi}. This approach is detailed

in Chapter 5, and further examined later in this chapter. However, we are often interested in

simply predicting edges in a graph or partial order. Box embeddings provide such a model,

both with the box lattice, which creates a graph model based on inclusions, and with the

box probability model, in which the probabilities can be thresholded to predict the edges

of a DAG. That is, for a set of nodes {ai} we assign corresponding random variables {Xi},
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and for a threshold ε > 0, we assign an edge from ai to aj if the conditional probability

P (Xj = 1|Xi = 1) ≥ ε, and P (Xj = 1|Xi = 1) > P (X = 1i|Xj = 1). This gives a

model of transitive directed graphs based on whether the conditional implication from the

probability model meets a certain threshold. Setting ε = 1.0 predicts an edge only if a box

is fully included within another, corresponding to the partial order given by the box lattice

model, or the model of Subramanian and Chakrabarti [80].

In this section, we examine the ability of box, Gaussian, and order embeddings to rep-

resent graphs. We prove that box embeddings can be used to predict consistent directed

acyclic graphs through a simple thresholding procedure, but the same procedure does not

work when used with Gaussian embeddings. We conduct numerical experiments giving

strong evidence that this same procedure works with order embeddings as well.

7.2.1 Box Embedding

Assume we have a pairwise conditional probability table (CPD) between Bernoulli vari-

ables, that is, a matrix A such that each entry Aij = P (Xi = 1|Xj = 1) for a set of binary

random variables {Xi}. Assume also that we have access to the unary marginals for each

Bernoulli, and further that no unary marginals are exactly identical. If they are exactly iden-

tical, we can generate random independent Bernoulli parameters and their joint probability

table, and take a small convex combination with that to infinitesimally perturb the statis-

tics, so this proof is valid everywhere but on a set of measure 0 which we can approximate

arbitrarily well.

Claim. If all unary marginals are distinct, taking the elements of the pairwise CPD, remov-

ing the diagonal, and deleting an entry if P (Xi = 1|Xj = 1) < P (Xi = 1|Xj = 1), that

is if Aij < Aji, will result in a weighted adjacency matrix for an acyclic directed graph.

Proof. Order the variables X1...Xn so that P (Xi = 1) < P (Xj = 1) if i < j. Now an

entry of the CPD P (Xi = 1|Xj = 1) = P (Xi = 1, Xj = 1)/P (Xj = 1) = Cij is less than

Cji = P (Xi = 1, Xj = 1)/P (Xi = 1) if P (Xi = 1) < P (Xj = 1). So with the variables
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so ordered, if we use the CPD to create an adjacency matrix with an edge Cij = 1 if and

only if P (Xi = 1) < P (Xj = 1), it will be upper triangular with 0 on the diagonal. This is

a nilpotent matrix which means it is the adjacency matrix of an acyclic graph. This can be

easily seen since the entries of Ak are the set of K-hop neighbors, and if this set eventually

becomes empty, as in a nilpotent matrix, we have no cycles.

Since the labeling of our vertices is arbitrary, this means that our adjacency matrix

created by the proposed asymmetrizing procedure is always acyclic since it is similar to an

upper triangular matrix with zeros on the diagonal.

This holds as long as the unary marginals can always be ordered (which they can be

except on a set of measure zero, which symmetry can be broken with a small perturbation).

7.2.2 KL Divergences and Gaussian Embeddings

Assume the same setup as section 7.2.1, however in this case the scores in the matrix

come from (possibly thresholded if Aij − Aji < c) pairwise divergences between Gaus-

sian embeddings. We demonstrate that Gaussian embeddings can not consistently generate

graph structures from this same procedure as

Claim. There exist graphs produced by the above procedure that do not lead to directed

acyclic graphs if thresholded by deleting entries when Aij < Aji.

Proof. Consider the following set of 5 2-dimensional Gaussians with diagonal covariance:

G1 = N (x1; [−5,−3], diag ([3, 7]))

G2 = N (x2; [−3, 5], diag [(7, 4]))

G3 = N (x3; [−5,−6], diag ([8, 1]))

G4 = N (x4; [−7, 6], diag ([5, 5]))

G5 = N (x5; [9, 3], diag ([5, 9]))
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Applying asymmetrization and even pruning at a threshold of c = 1 (which is non-nilpotent

and does affect edges) produces a cycle between nodes 5, 1, and 3. There are certain

repeated numbers in the parameters, but this is not the cause of the issue. They are whole

numbers for ease of exposition, they were randomly generated and many more examples

can be created with arbitrary floating point numbers.

7.2.3 Order Embeddings

Order embeddings lie in an interesting middle ground between Gaussians and box em-

beddings. Interestingly, they cannot be consistently asymmetrized using the exact original

energy function (4.2) given in Chapter 4. However, a small modification to the original

energy function to change from the 2-norm to the 1-norm enables us to recover the desired

property, i.e. they can be consistently asymmetrized into directed acyclic graphs according

to the procedure in Section 7.2.1.

Claim. Order embeddings using the energy E(u, v) = ‖max(0, v − u)‖2
2 do not always

result in a directed graph (even if all vectors have unique norms) if we set Aij = E(ui, uj)

and select edges using the criterion Aij < Aji.

Proof. Consider the following set of 3 3-dimensional order embeddings:

u1 = (0.5, 0.6, 0.3)

u2 = (0.8, 0.0, 0.7)

u3 = (0.2, 0.3, 0.9).

Consider the matrix of pairwise energies,

A =


0 0.36 0.18

0.25 0 0.36

0.36 0.13 0

 .
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If we set C equal to the asymmetrized version of A, we have

C =


0 1 0

0 0 1

1 0 0

 .

Since this matrix is not nilpotent, the graph has a cycle.

Claim. Order embeddings using the energy E(u, v) = ‖max(0, v − u)‖1 always result in

a directed graph, as long as all vectors have unique 1-norms, if we set Aij = E(ui, uj) and

select edges using the criterion Aij < Aji.

Proof. Note that all order embedding vectors are in the positive orthant, so we have

E1(u, v) + ‖v‖1 =
∑
i

max(0, ui − vi) +
∑
i

vi

=
∑
i

max(ui, vi) = E1(v, u) + ‖u‖1

E1(u, v)− E1(v, u) = ‖u‖1 − ‖v‖1

E1(u, v) > E1(v, u) ⇐⇒ ‖u‖1 > ‖v‖1.

So, because all vectors have unique 1-norms, this means that if we order the graph nodes

from biggest to smallest, then asymmetrization of the matrix of pairwise energies gives us

nonzero entries only above the diagonal, which is a nilpotent matrix and thus we have a

DAG.

7.3 Limitations on Representation

As briefly mentioned in Chapter 5, the box model cannot represent all probability dis-

tributions. The fact that each variable is associated with a box, and more generally a convex

set, imposes limitations on the kind of probability distribution that can be modeled. In this
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section, we will characterize one such type of distribution, and discuss extensions to the

box model that enable it to model this distribution.

7.3.1 A Counterexample

When restricting the boxes to 1 or 2 dimensions, we can fairly easily come up with

sets of pairwise marginal constraints between variables that are infeasible as a box model

without adding more dimensions. Finding a counterexample that holds regardless of the

dimension of the box model requires a bit more work. We will present the counterexample

first geometrically in 2 dimensions, and then prove it in the general case.

Let A, B, and C be 3 binary random variables with the following joint distribution

P (A,B,C):

P (1, 1, 0) = P (1, 0, 1) = P (0, 1, 1) =
1

3
.

Note that this implies the constraints:

PBox(Box(A) ∩ Box(B)) = PBox(Box(A) ∩ Box(C)) = PBox(Box(B) ∩ Box(C)) =
1

3

Box(A) ∩ Box(B) ∩ Box(C) = ∅

A visual proof of the impossibility of realizing these constraints in two dimensions is illus-

trated in Figure 7.1. In order to avoid a three-way intersection between the boxes for A,

B, and C, the box for C must go in one of the four green regions, in any of which cases it

cannot satisfy both pairwise marginal constraints.

As an aside, this counterexample is also used to demonstrate some representational

limitations in the context of graphical models. This distribution is not representable by a

Markov Random Field with only three variables, but it is representable by a factor graph.

We can generalize this counterexample and visual proof in two dimensions to box mod-

els with arbitrary numbers of dimensions in the following proposition.
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(a) Sets A and B (b) Regions 1 and 2 (c) Regions 3 and 4

Figure 7.1: Any box that does not overlap A∩B will lie entirely within region 1, 2, 3 or 4,
and thus cannot intersect both A and B and satisfy the constraints.

Proposition 2. Let (Ω, E , P ) be a probability space, and let A,B,C : Ω → {0, 1} be

binary random variables such that

P (A ∧B), P (A ∧ C), P (B ∧ C) > 0

and

P (A ∧B ∧ C) = 0.

Then there exists an ε > 0 and some event E ∈ E such that, for any box lattice model Box,

|PBox(Box(E))− P (E)| > ε.

Proof. Since Box(A) must intersect Box(B), we must have

∀i ∈ {1, . . . , d}, a∨i > b∧i and b∨i > a∧i .

Similarly, since Box(A) must intersect Box(C),

∀i ∈ {1, . . . , d}, c∨i > a∧i and a∨i > c∧i

118



Figure 7.2: Union of boxes model in two dimensions.

and since Box(B) must intersect Box(C),

∀i ∈ {1, . . . , d}, c∨i > b∧i and b∨i > c∧i .

Combining these constraints we find

∀i ∈ {1, . . . , d}, c∨i > max(a∧i , b
∧
i ) and c∧i < min(a∨i , b

∨
i ),

but this implies that implies that Box(C) intersects Box(A) ∩ Box(B).

7.4 Unions of Boxes

The visual proof in Figure 7.1 suggests an extension of the model to remedy these lim-

itations. We can see that the necessary overlap constraints could be achieved by allowing

the variable C to correspond to a union of two different boxes, so it could overlap with both

A and B separately. This allows us to define a union of boxes model. An example of this

approach can be seen in Figure 7.2.
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Definition 24 (Union of boxes model). Let (ΩBox, E , PBox) be a probability space where

ΩBox ⊆ Rd. Let {Box(Xi)
j}i≤N,j≤M be a set of boxes in ΩBox. The boxes are parameter-

ized and defined as in Definition 23. Further, define a set of N indicator random variables,

each of which is an indicator of the union of M component boxes,

Si =
⋃
j≤M

Box(Xi)
j, Xi : ΩBox → {0, 1} = 1Si .

We call the probability space and associated random variables Xi a union of boxes model.

This model, for a large enough number of boxes, can arbitrarily approximate any prob-

ability distribution over theXi. For a naive construction, simply enumerate each element in

the finite set of outcomes in Ω corresponding to each joint setting of the random variables

X1, ..., XN . For each outcome, create a box with that volume for each of the variables

whose value is 1. This can even be done in one dimension. There are of course much more

efficient representations of many distributions, if we increase the dimensionality and merge

contiguous boxes for the same variable.

As with the standard box model, probabilities of events can be calculated using inclusion-

exclusion to calculate the volume of unions and complements of boxes under the measure

P∪Box. However, the cost of this is exponential not only in the number of negated variables,

but also the number of components, making it prohibitively computationally expensive to

calculate even some simple marginal distributions.

7.5 Additive Box Model

While volume calculations in the union of boxes model require computing with unions

of hyperrectangles and thus are exponentially complex, there is a way to associate multiple

boxes with each variable while retaining linear complexity of volume calculation. The idea

is to simply use a mixture of several box models, which we term the additive box model.
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Definition 25 (Additive box model). Let {(Ωj
Box, E j, P

j
Box)}j≤M be set of M probability

spaces where Ωj
Box ⊆ Rd. For each of the M component spaces, introduce a set of N boxes

{Box(Xi)
j}i≤N} in the j’th component space. For each of these boxes, define an indicator

random variable,

Xj
i : Ωj

Box → {0, 1} = 1Box(Xi)j .

For the final part of the construction, we make use of the disjoint or discriminated union

operation, written as t, which produces a union of two sets except that the resulting ele-

ments are tagged with the original set they come from. Finally, we define a new probability

space and set of random variables,

ΩAddBox =
⊔
j

Ωj
Box

Xi =
⊔
j

Xj
i

PAddBox =
⊔
j

wjP
j
Box

where wj are a set of nonnegative weights with
∑

j wj = 1. Let E be the smallest σ-algebra

on the disjoint union such that its restriction to each component Ωj
Box gives E j . We call the

triple (ΩAddBox, E , PAddBox) and associated random variables Xi an additive box model.

This model can also represent arbitrary probability distributions through a similar con-

struction to the one used for the union model, and in practice may be thought of as a union

of boxes model where each component box are restricted to certain slices of the space, as

demonstrated in Figure (7.3).

7.5.1 Universal Approximation

Both the additive box model and the union of boxes model can universally approximate

any discrete probability distribution on a collection of binary random variables. We present
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(a) Additive box model (b) Solved counterexample

Figure 7.3: A demonstration of the space partitioning used by the additive box model, as
well as a solution to the original counterexample.

here the proof in the case of the additive box model, since the union of boxes model can

reproduce the additive box model by duplicating each mixture component, then scaling

each one by the mixture weight and concatenating them into one model.

We first present a fairly impractical construction that allows for any joint distribution

on binary variables to be perfectly reproduced by an additive box model.

Proposition 3 (Universal approximation). Let P (X1, ..., XN) be a joint distribution over a

set of binary random variables {Xi}. This gives us a pushforward measure and probability

space (Ω, E , P ) where Ω = {0, 1}N . There exists an additive box model (ΩAddBox, F ,

PAddBox) with variables {X ′i} such that the pushforward measure P ′ on {0, 1}N induced

by those variables matches P .

Proof. For each outcome ω ∈ Ω = {0, 1}N , some subset of variables Xi are equal to 1,

some are equal to 0. For the former we say that ω is in the support of Xi. For this construc-

tion, we only need a 1-dimensional (interval) box model defined on the base sample space

[0, 1] under the uniform measure.
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Iterating through each outcome in the sample space Ω, associate with the jth outcome

ωj such a box model (Ωj
Box, E j, P

j
Box, {X

′j
i }Ni=1). For each of the X

′j
i that ωj is in the

support of, let X
′j
i = 1[0,1]. Otherwise, let X

′j
i = 0. Let the mixture weight wj = P (ωj).

Now, define the additive box model

ΩAddBox =
⊔
j

Ωj
Box

X ′i =
⊔
j

X
′j
i

PAddBox =
⊔
j

wjP
j
Box

where t is the disjoint union. Now we can see that for any outcome ωj , the preimage

under the X ′i will pick out exactly one of the mixture components and retrieve the weight

wj corresponding to the correct probability.

The previous construction is fairly contrived, always requiring a different mixture com-

ponent for every possible event, no matter how simple the underlying dependence structure

of the variables might be. We also have a separate approximation result which tracks more

with the intuition of how these models can approximate complex distributions with reason-

able numbers of components. Instead of directly approximating the binary distribution, we

will look at approximating the preimages of the random variables.

Proposition 4 (Approximating preimages). Let (Ω, E , P ) be a probability space with Ω =

[0, 1]d, P is the standard Lebesgue measure, and Xi : Ω → {0, 1} be a set of binary

random variables which are indicator functions of arbitrary Lebesgue-measurable subsets

of Ω. Then for any ε > 0 there exists an additive box model (ΩAddBox,F , PAddBox) with

variables {X ′i} such that for an outcome ω ∈ {0, 1}N , we have |P (ω)− P ′(ω)| < ε where

P and P ′ are the pushforward measures.

Proof. (Sketch.)
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1. Approximate the Lebesgue-measurable support of each Xi with a finite union of

disjoint boxes {Aji}.

2. Divide [0, 1]d up into a disjoint union of boxes Ωk such that no two of the boxes cor-

responding to the same Xi are in the same Ωk. If a box crosses a boundary between

Ωk’s, split it into two so that every box belongs to at most one Ωk

3. For each of the Ωk, create a mixture component and weigh that mixture component

by the volume of Ωk. The resulting additive model approximates the original P .

7.6 Experiments

In this section we present experiments with the additive box model in modeling lan-

guage data that exhibits versions of the counterexample problem in practice.

7.6.1 Google Syntactic N-Grams

We test the additive box model on a dataset of subject/verb/object triples constructed

from the Google Syntactic N-Gram Corpus [36]. The Syntactic N-gram corpus consists of

parse tree fragments which appear frequently in Google books, in several different patterns.

We use the extended-biarcs subsection of the data, and filter it down to triples with the

syntactic annotations (NSUBJ, VERB, DOBJ) and discard stopwords and determiners to get

subject/verb/object triples. The resulting dataset has 10,879,201 unique triples (words with

multiple parts of speech are treated as different types) along with the count of times they

appear in the corpus.

We construct a 90%/5%/5% train/validation/test split. For the train examples, the oc-

currence counts are used to produce a probability for each triple by normalizing over the

total counts in the training data. For validation and testing, we create two different vari-

ant classification datasets. In the first, we treat the 5% splits of examples as positive, and
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create an equal number of negative examples by randomly replacing a word in the triple

with another word sharing the same syntactic role. In the second, we use the same positive

examples but create the negative examples by sampling the replacement from a bucket of

words having the same frequency as the original, with ten equally sized buckets.

The motivation for using this dataset to test out additive boxes is that it presents an

example in modeling real-world data, where a version of our canonical counterexample

problem might occur. Namely, there may be sets of subjects, verbs, and objects such that

pairwise occurrences of them are common, but all three never show up together. For ex-

ample the triple (CHICKEN, EATS, EGG) would never exist in a corpus, even though sep-

arately, (CHICKEN, EATS, ·), (CHICKEN, ·, EGG), and (·, EATS, EGG) are all plausible pair-

ings. (MAN, BREATHES, UNDERWATER) is another such triple. In practice, when examin-

ing the data, we find many such examples where each pairwise probability is positive, but

the triplet never occurs.

We compare the additive model to the single-box model on both the random-negatives

and hard-negatives datasets. The models are trained by Bayesian hyperparameter optimiza-

tion using the Weights and Biases framework [9], allotting five hours of computation time

to each model and performing model selection using F1 score on the development set for

the random-negatives task. More experimental details are given in Appendix A.4.1. Both

models are trained and evaluated using the softbox objective on overlaps of SVO triples,

with pseudo-probabilities calculated as

P̃ ((S, V,O) = 1) =
∏
j

softplus
(

min(s∨j , v
∨
j , o

∨
j )−max(s∧j , v

∧
j , o

∧
j )
)
,

and trained using binary cross entropy on the gold probabilities.

Results are given in Table 7.3.

We see a moderate improvement in F1 score on both datasets when using the additive

box model, with larger improvements happening on the more difficult data set. The KL-
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F1 Acc KL
Validation-Hard

Single 75.01 75.81 3.59E-08
Additive 75.87 76.50 3.08E-08

Test-Hard
Single 74.97 75.76 3.40E-08
Additive 75.58 76.45 2.87E-08

Validation-Random
Single 91.80 91.75 2.33E-08
Additive 92.00 91.93 2.07E-08

Test-Random
Single 91.86 91.81 2.13E-08
Additive 92.06 91.99 1.86E-08

Table 7.3: Results on Google Syntactic N-Gram SVO classification task using single and
additive box models.

divergence training objective is extremely low for both models, which is expected since the

probabilities being regressed to are very small, making the loss hard to interpret.

We can confirm that the multi-box model is better able to create a separation between

the classes by plotting histogram heatmaps as a function of training iteration of the model

scores on the validation set with random negatives. The additive model properly assigns

very low probabilities to negative examples, as the additive model has a clear bimodal

distribution in model score on the validation set with random negatives, visible in Figure

7.4. The single box model, on the other hand, has less clear separation over time between

the two classes, even as its classification performance slightly improves, it is not properly

modeling the density.

7.7 Conclusion

In this chapter, we presented several properties of the box lattice and box probability

models, especially regarding its ability to represent certain graphs and distributions. We

characterized a class of probability distributions that are non-representable by box models

of any dimension, and then introduced two new models, the union of boxes model, and
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(a) Single box (b) Additive box

Figure 7.4: Heatmaps of model output on validation set with random negatives, as a func-
tion of training iteration. The single-box model does not maintain good separation between
the probability of positive and negative examples, as it cannot avoid spurious overlapping
with just one box.

a practical alternative, the additive box model, to solve this counterexample. We demon-

strated the ability of the additive box model to improve performance on a data set of sub-

ject/verb/object triples from the Google Syntactic N-Grams Corpus.
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CHAPTER 8

CONCLUSION

8.1 Contributions

This thesis explores the nascent field of geometric representation learning, a method

of data representation in which complex geometric objects are associated with data, and

inference is performed using properties of those objects. Specifically, we introduce two

models of geometric representation, the Gaussian embedding and box embedding models,

and situate them within the related literature on hyperbolic embeddings, vector lattices,

function space embeddings, and others.

We advocate for the use of geometric representations as an alternative to standard vec-

tor embeddings, in applications involving implicit hierarchies and order structures among

domain objects, or where uncertainty over representations, multimodality, or breadth are

important. Additionally, we encourage and develop the use of geometric representations

based on structures in a latent event space, such as the box embeddings, as a novel approach

to probabilistic modeling tasks over binary variables.

In addition to presenting the Gaussian and box embedding models, we develop a smooth

learning approach for box embeddings inspired by a relaxation of the optimization problem

using Gaussian convolutions, and finally an extension of the box probability model to an

additive model with provable guarantees of representational fidelity even in cases where

the original box embedding model would fail.

We focus our experiments on tasks in word-level entailment, weighted textual entail-

ment, graph completion in transitive graphs, discrete density estimation, market basket

problems, and common-sense modeling over language fragments. We choose these to
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demonstrate the performance of geometric representations, and box embeddings in partic-

ular, on tasks that implicitly have latent hierarchical or graph structure, as well as complex

density estimation tasks with latent dependencies, especially in the regime of pseudosparse

data when the inductive bias is most important.

We provide a formalism for box embeddings in terms of sample spaces, σ-algebras of

events, and probability measures. We provide several theoretical results about the proba-

bilistic box embedding model and its extensions, including proofs of its ability to represent

positive and negative correlation structures unrepresentable by competing methods, its abil-

ity to predict consistent graphs, identification of provably difficult counterexamples for box

modeling, and their solutions.

8.2 Future Work

Geometric representation learning, and in particular probabilistic models based on rep-

resentations such as box embeddings, present an exciting avenue for future work. In this

vein, we have identified six directions as particularly interesting for future research.

8.2.1 Training Methods for Box Embeddings

The difficulty with training box embeddings comes from two sources. The first dif-

ficulty is that disjoint boxes create a situation where the overlap of two boxes has zero

derivative with respect to the parameters. This makes it difficult to force two boxes which

overlap in the ground truth together, if they do not already overlap in the model. The second

difficulty is that boxes which are entirely contained within one another create a conditional

probability P (A = 1|B = 1) with zero derivative, and more generally, even the joint prob-

ability has a derivative which directs gradients towards simply shrinking or increasing the

size of one box. This makes it difficult to force two boxes which do not overlap in the

ground truth apart if they are not already somewhat disjoint.
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This thesis presents two methods for training box embeddings. We introduce a method

using a surrogate function to solve the first difficulty, and the second uses a smoothed

approximation of the box overlap calculation which vanishes nowhere. Both methods rely

on the general stochasticity during training to mitigate the second difficulty. Future work

should focus on methods to removes those large subspaces of zero derivatives in the training

landscape. These methods could use further smoothing of the optimization landscape,

latent variable methods, or explicitly adding constraints through e.g. Lagrangian relaxation.

8.2.2 Deep Boxes

We advocate box embeddings as a replacement for vector embeddings in certain types

of models and applications, where the embeddings themselves have a concrete association

with variables which we want to perform inference over. However, embeddings are com-

monly used as features for downstream models, often processed through layers of nonlinear

transformations, such as deep neural networks. Deep networks transform input embeddings

into intermediate embedding vectors of hidden activations in the process of performing in-

ference.

An analog of deep neural networks for box embeddings would transform boxes at each

layer into other boxes, in a way that respects the geometry of the underlying represen-

tations. Developing deep architectures for box embeddings, and other geometric embed-

dings, is an exciting topic of future research.

8.2.3 Flexible Representations

In this work we introduce extensions of box embeddings to handle multiple box struc-

tured prototypes per variable, both in the intractable case of the union of boxes model, and

its tractable restriction in the additive box model. Future work should investigate other

types of latent geometric representations which allow for reasonable parameterizations, as

well as tractable computation of quantities of interest such as overlap volumes. Products of

convex (and nonconvex) polyhedra are one possible avenue for future work.
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8.2.4 Inference in Large Joint Distributions

Box embeddings, when considered as a probabilistic model of binary vectors, present

some interesting tradeoffs when compared to other models such as factor graphs and re-

current neural networks. Box probability models do not symmetrically represent outcomes

with true assignments to random variables as opposed to false. That is, the difficulty in

computing the probability of any configuration of random variables represented by box

embeddings scales exponentially in the number of negated variables. Further, computing

marginal probabilities over small subsets of random variables is tractable in a box model,

while in a graphical model it may require the computation of normalization constants over

the entire graph.

Evaluating any assignment of the random variables in a box model is equivalent to com-

puting the volume of a union of hyperrectangles, which is an NP-hard problem. However,

fully polynomial time approximation schemes do exist to solve this problem, up to additive

error. Developing learning and inference methods, both MAP and marginal, in box prob-

ability models representing large sets of random variables, is a challenging and interesting

avenue for future research.

8.2.5 Categorical Data

In this work, box embeddings are applied to modeling joint distributions over binary

random variables. Much data of interest is modeled as categorical variables, taking on more

than two values. Sometimes this data can be easily encoded in terms of binary vectors, as

in multi-label prediction tasks, where a given input can be associated with any number of

output labels. Other times, the encoding in terms of bit vectors is less straightforward,

as in language modeling, where only one of a large set of vocabulary words should be

predicted at any given time. Naively applying a box model to this, assigning one box to

each word, would create a huge number of constraints among the boxes to avoid overlap.

Even more importantly, naive encodings of categorical variables in terms of disjoint boxes
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fail to harness the geometric properties of the box model to improve inference. We would

like to be able to exploit similarities between different values of a categorical variable (e.g.

similar words in a language model) to aid inference. However, it is unclear how to do this in

a simple encoding of categorical data as a large set of box embeddings and binary variables

with constraints.

8.2.6 Multirelational Data

Many real-world knowledge bases contain not just one relation- or edge-type, such

as the hypernymy subgraph of WordNet, but many such relations. For example, Word-

Net itself is a hypergraph containing hypernymy as well as meronymy (part-of) relations.

Furthermore, many KB relations are not transitive, and in fact may not even have the same

entity type in all slots of a relation, such as (WORKS-AT,Bill Gates,Microsoft). It is not im-

mediately clear how to represent all of these types of data using box embeddings or similar

geometric representations. Multirelational and non-transitive extensions to the box model

will be important to see geometric representations become more ubiquitous in knowledge

representation.
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APPENDIX A

EXPERIMENTAL DETAILS

A.1 Gaussian Experiments
All experiments with Gaussian embeddings were conducted using embeddings trained

on a single iteration over the concatenated ukWaC and WaCkypedia corpora [5]. Hyper-
parameters were selected based on qualitative manual inspection of neighborhoods of re-
trieved similar embeddings, and covariance matrices. The parameters we used were:

dimension: 50 or 100
lambda_min: 0.1
lambda_max: 1000.0
learning_rate: 1.0
optimizer: Adagrad

A.2 Box Experiments

A.2.1 WordNet Parameters
Since the WordNet data has binary 0, 1 links instead of calibrated probabilities, and the

negative links are found from random negative sampling, we constrain the delta embedding
to not update for negative samples during optimization. We found this was effective in
preventing random negative samples from decreasing the volume of the boxes and creating
artificially disjoint pairs.

The WordNet parameters that achieved best performance on the development set (whose
train set performance we reported) are:

batch size: 800
dimension: 50
edge loss weight: 1.0
unary loss weight: 9.0
learning rate: 0.001
minimum dimension delta size: 1e-6
dimension-max regularization weight: 0.005
optimizer: Adam

For WordNet training with additional soft CPD edges, we use the same parameters.
We also perform pruning on the generated CPD file. We only include 〈t1, t2〉 pairs with
probability ≥ 0.6 and the reverse pair 〈t2, t1〉 ≤ 0.4 probability.
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We tune the batch size of the model between 800 and 40000 because bigger batch size
facilitates faster training. We also sweep over 1.0 to 9.0 for edge loss weight and 9.0 to
1.0 for the unary loss weight. The learning rate we tune in λ ∈ {0.001, 0.0001}. The
minimum dimension delta size we tune in ∈ {0.01, 0.001, 0.0001, 0.00001, 0.000001}.
The dimension-max regularization encourages the upper bound of box to be close 1.0 with
an L1 penalty to prevent collapse. We perform parameter search in {0.0, 0.001, 0.005, 0.01,
0.05, 0.1, 0.5}.

A.2.2 Flickr Parameters
The Flickr parameters that achieved best performance on the development set (whose

train set performance we reported) are:

batch size: 512
dropout: 0.5
unary loss weight: 8.0
edge loss weight: 2.0
learning rate: 0.0001
minimum dimension delta size: 1e-6
optimizer: Adam

The LSTM parameters are initialized with Glorot initialization [35], as are the weight and
bias parameters for the feedforward networks to produce the box minimums. The network
to produce the ∆ embedding is initialized from a uniform distribution from [15.0, 15.50].
We clip to zero for min embeddings (apply a ReLU), and apply a softplus to enforce the
positivity and minimum dimension size constraints on the ∆ embeddings.

We also sweep over 1.0 to 9.0 for edge loss weight and 9.0 to 1.0 for the unary loss
weight. The learning rate λ ∈ {0.001, 0.0001}. We tried Glorot initialization with the ∆
network as well, but since we wanted a high degree of overlap at the beginning of training,
we simply swept over different uniform initialization ranges in [5.0, 5.5], [10.0, 10.5] and
[15.0, 15.5].

A.3 Smoothed Learning Experiments

A.3.1 WordNet Parameters
For the WordNet experiments, the model is evaluated every epoch on the development

set for a large fixed number of epochs, and the best development model is used to score
the test set. Baseline models are trained using the parameters of Vilnis et al. [86], with the
smoothed model using hyperparameters determined on the development set.

batch size: 8000
dimension: 50
edge loss weight: 3.0
unary loss weight: 7.0
learning rate: 0.001
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minimum dimension delta size: 1e-6
optimizer: Adam
sigma for softplus: 1.0
box min initialization: uniformly from 1e-4 to 1e-2
box delta initialization: uniformly from 0.9 to 0.99
global regularization method: l1
global regularization strength: 0.1
max training steps: 100,000

global regularization method and regularization parameter are applied to the join of all
box embeddings.

A.3.2 Imbalanced WordNet Parameters
We follow the same routine as the WordNet experiments section to select best parame-

ters. For the 12 experiments we conducted in this section, negative examples are generated
randomly based on the ratio for each batch of positive examples. We do a parameter sweep
for all models then choose the best result for each model as our final result.

batch size: 8000
dimension: 50
edge loss weight: 3.0
unary loss weight: 7.0
learning rate: 0.001
minimum dimension delta size: 1e-6
optimizer: Adam
sigma for softplus: 1.0
box min initialization: uniformly from 1e-4 to 1e-2
box delta initialization: uniformly from 0.9 to 0.99
global regularization method: l1
global regularization strength: 0.1
max training steps: 100,000

A.3.3 Flickr Parameters
The experimental setup uses the same architecture as Vilnis et al. [86] and [52], a single-

layer LSTM that reads captions and produces a box embedding parameterized by min and
delta. Embeddings are produced by feedforward networks on the output of the LSTM. The
model is trained for a large fixed number of epochs, and tested on the development data at
each epoch. The best development model is used to report test set score. Hyperparameters
were determined on the development set.

batch size: 512
dropout: 0.5
dimension: 300
hidden layer size: 512
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unary loss weight: 1.0
edge loss weight: 9.0
learning rate: 0.0001
optimizer: Adam
min feed forward network weight initialization: xavier_W
min feed forward network bias initialization: xavier_b
delta feed forward network weight initialization: xavier_w
delta feed forward network bias initialization:
uniform from -15 to -14.5
min parameterization: relu
delta parameterization: softplus
epoch: 10

A.3.4 MovieLens Parameters
For all MovieLens experiments, the model is evaluated every 50 steps on the develop-

ment set, and optimization is stopped if the best development set score fails to improve
after 200 steps. The best development model is used to score the test set.

batch size: 128
dimension: 50
learning rate: 0.001
unary loss weight: 0.001
edge loss weight: 0.999
optimizer: Adam
sigma for softplus: 1.0
box min initialization: uniformly from 1e-4 to 0.5
box delta initialization: uniformly from 0.9 to 0.999

A.4 Additive Box Experiments

A.4.1 Google Syntactic N-Gram Parameters
For the syntactic n-grams experiments, both the single- and additive-box models are

tuned on F1 score on the development set with random negatives, each allotted 5 hours of
compute time for Bayesian hyperparameter tuning using the Weights and Biases framework
[9]. The following hyperparameters were used for the best performing single-box model:

batch size: 2ˆ16
dimension: 62
learning rate: 0.04801
softplus_temp: 0.4099
epochs: 50
optimizer: Adam

For the additive box model, the following hyperparameters were selected:
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batch size: 2ˆ16
dimension: 38
learning rate: 0.1396
components: 8
softplus_temp: 1.249
epochs: 50
optimizer: Adam
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