1,823 research outputs found

    Parameterized (in)approximability of subset problems

    Full text link
    We discuss approximability and inapproximability in FPT-time for a large class of subset problems where a feasible solution SS is a subset of the input data and the value of SS is S|S|. The class handled encompasses many well-known graph, set, or satisfiability problems such as Dominating Set, Vertex Cover, Set Cover, Independent Set, Feedback Vertex Set, etc. In a first time, we introduce the notion of intersective approximability that generalizes the one of safe approximability and show strong parameterized inapproximability results for many of the subset problems handled. Then, we study approximability of these problems with respect to the dual parameter nkn-k where nn is the size of the instance and kk the standard parameter. More precisely, we show that under such a parameterization, many of these problems, while W[\cdot]-hard, admit parameterized approximation schemata.Comment: 7 page

    On the fixed-parameter tractability of the maximum connectivity improvement problem

    Full text link
    In the Maximum Connectivity Improvement (MCI) problem, we are given a directed graph G=(V,E)G=(V,E) and an integer BB and we are asked to find BB new edges to be added to GG in order to maximize the number of connected pairs of vertices in the resulting graph. The MCI problem has been studied from the approximation point of view. In this paper, we approach it from the parameterized complexity perspective in the case of directed acyclic graphs. We show several hardness and algorithmic results with respect to different natural parameters. Our main result is that the problem is W[2]W[2]-hard for parameter BB and it is FPT for parameters VB|V| - B and ν\nu, the matching number of GG. We further characterize the MCI problem with respect to other complementary parameters.Comment: 15 pages, 1 figur

    From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz

    Full text link
    The next few years will be exciting as prototype universal quantum processors emerge, enabling implementation of a wider variety of algorithms. Of particular interest are quantum heuristics, which require experimentation on quantum hardware for their evaluation, and which have the potential to significantly expand the breadth of quantum computing applications. A leading candidate is Farhi et al.'s Quantum Approximate Optimization Algorithm, which alternates between applying a cost-function-based Hamiltonian and a mixing Hamiltonian. Here, we extend this framework to allow alternation between more general families of operators. The essence of this extension, the Quantum Alternating Operator Ansatz, is the consideration of general parametrized families of unitaries rather than only those corresponding to the time-evolution under a fixed local Hamiltonian for a time specified by the parameter. This ansatz supports the representation of a larger, and potentially more useful, set of states than the original formulation, with potential long-term impact on a broad array of application areas. For cases that call for mixing only within a desired subspace, refocusing on unitaries rather than Hamiltonians enables more efficiently implementable mixers than was possible in the original framework. Such mixers are particularly useful for optimization problems with hard constraints that must always be satisfied, defining a feasible subspace, and soft constraints whose violation we wish to minimize. More efficient implementation enables earlier experimental exploration of an alternating operator approach to a wide variety of approximate optimization, exact optimization, and sampling problems. Here, we introduce the Quantum Alternating Operator Ansatz, lay out design criteria for mixing operators, detail mappings for eight problems, and provide brief descriptions of mappings for diverse problems.Comment: 51 pages, 2 figures. Revised to match journal pape

    Annotated bibliography of Software Engineering Laboratory literature

    Get PDF
    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. All materials have been grouped into eight general subject areas for easy reference: The Software Engineering Laboratory; The Software Engineering Laboratory: Software Development Documents; Software Tools; Software Models; Software Measurement; Technology Evaluations; Ada Technology; and Data Collection. Subject and author indexes further classify these documents by specific topic and individual author

    Interoperability and Standards: The Way for Innovative Design in Networked Working Environments

    Get PDF
    Organised by: Cranfield UniversityIn today’s networked economy, strategic business partnerships and outsourcing has become the dominant paradigm where companies focus on core competencies and skills, as creative design, manufacturing, or selling. However, achieving seamless interoperability is an ongoing challenge these networks are facing, due to their distributed and heterogeneous nature. Part of the solution relies on adoption of standards for design and product data representation, but for sectors predominantly characterized by SMEs, such as the furniture sector, implementations need to be tailored to reduce costs. This paper recommends a set of best practices for the fast adoption of the ISO funStep standard modules and presents a framework that enables the usage of visualization data as a way to reduce costs in manufacturing and electronic catalogue design.Mori Seiki – The Machine Tool Compan
    corecore