7,409 research outputs found

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    The State of the Art in Deep Learning Applications, Challenges, and Future Prospects::A Comprehensive Review of Flood Forecasting and Management

    Get PDF
    Floods are a devastating natural calamity that may seriously harm both infrastructure and people. Accurate flood forecasts and control are essential to lessen these effects and safeguard populations. By utilizing its capacity to handle massive amounts of data and provide accurate forecasts, deep learning has emerged as a potent tool for improving flood prediction and control. The current state of deep learning applications in flood forecasting and management is thoroughly reviewed in this work. The review discusses a variety of subjects, such as the data sources utilized, the deep learning models used, and the assessment measures adopted to judge their efficacy. It assesses current approaches critically and points out their advantages and disadvantages. The article also examines challenges with data accessibility, the interpretability of deep learning models, and ethical considerations in flood prediction. The report also describes potential directions for deep-learning research to enhance flood predictions and control. Incorporating uncertainty estimates into forecasts, integrating many data sources, developing hybrid models that mix deep learning with other methodologies, and enhancing the interpretability of deep learning models are a few of these. These research goals can help deep learning models become more precise and effective, which will result in better flood control plans and forecasts. Overall, this review is a useful resource for academics and professionals working on the topic of flood forecasting and management. By reviewing the current state of the art, emphasizing difficulties, and outlining potential areas for future study, it lays a solid basis. Communities may better prepare for and lessen the destructive effects of floods by implementing cutting-edge deep learning algorithms, thereby protecting people and infrastructure

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Using machine learning to predict pathogenicity of genomic variants throughout the human genome

    Get PDF
    Geschätzt mehr als 6.000 Erkrankungen werden durch Veränderungen im Genom verursacht. Ursachen gibt es viele: Eine genomische Variante kann die Translation eines Proteins stoppen, die Genregulation stören oder das Spleißen der mRNA in eine andere Isoform begünstigen. All diese Prozesse müssen überprüft werden, um die zum beschriebenen Phänotyp passende Variante zu ermitteln. Eine Automatisierung dieses Prozesses sind Varianteneffektmodelle. Mittels maschinellem Lernen und Annotationen aus verschiedenen Quellen bewerten diese Modelle genomische Varianten hinsichtlich ihrer Pathogenität. Die Entwicklung eines Varianteneffektmodells erfordert eine Reihe von Schritten: Annotation der Trainingsdaten, Auswahl von Features, Training verschiedener Modelle und Selektion eines Modells. Hier präsentiere ich ein allgemeines Workflow dieses Prozesses. Dieses ermöglicht es den Prozess zu konfigurieren, Modellmerkmale zu bearbeiten, und verschiedene Annotationen zu testen. Der Workflow umfasst außerdem die Optimierung von Hyperparametern, Validierung und letztlich die Anwendung des Modells durch genomweites Berechnen von Varianten-Scores. Der Workflow wird in der Entwicklung von Combined Annotation Dependent Depletion (CADD), einem Varianteneffektmodell zur genomweiten Bewertung von SNVs und InDels, verwendet. Durch Etablierung des ersten Varianteneffektmodells für das humane Referenzgenome GRCh38 demonstriere ich die gewonnenen Möglichkeiten Annotationen aufzugreifen und neue Modelle zu trainieren. Außerdem zeige ich, wie Deep-Learning-Scores als Feature in einem CADD-Modell die Vorhersage von RNA-Spleißing verbessern. Außerdem werden Varianteneffektmodelle aufgrund eines neuen, auf Allelhäufigkeit basierten, Trainingsdatensatz entwickelt. Diese Ergebnisse zeigen, dass der entwickelte Workflow eine skalierbare und flexible Möglichkeit ist, um Varianteneffektmodelle zu entwickeln. Alle entstandenen Scores sind unter cadd.gs.washington.edu und cadd.bihealth.org frei verfügbar.More than 6,000 diseases are estimated to be caused by genomic variants. This can happen in many possible ways: a variant may stop the translation of a protein, interfere with gene regulation, or alter splicing of the transcribed mRNA into an unwanted isoform. It is necessary to investigate all of these processes in order to evaluate which variant may be causal for the deleterious phenotype. A great help in this regard are variant effect scores. Implemented as machine learning classifiers, they integrate annotations from different resources to rank genomic variants in terms of pathogenicity. Developing a variant effect score requires multiple steps: annotation of the training data, feature selection, model training, benchmarking, and finally deployment for the model's application. Here, I present a generalized workflow of this process. It makes it simple to configure how information is converted into model features, enabling the rapid exploration of different annotations. The workflow further implements hyperparameter optimization, model validation and ultimately deployment of a selected model via genome-wide scoring of genomic variants. The workflow is applied to train Combined Annotation Dependent Depletion (CADD), a variant effect model that is scoring SNVs and InDels genome-wide. I show that the workflow can be quickly adapted to novel annotations by porting CADD to the genome reference GRCh38. Further, I demonstrate the integration of deep-neural network scores as features into a new CADD model, improving the annotation of RNA splicing events. Finally, I apply the workflow to train multiple variant effect models from training data that is based on variants selected by allele frequency. In conclusion, the developed workflow presents a flexible and scalable method to train variant effect scores. All software and developed scores are freely available from cadd.gs.washington.edu and cadd.bihealth.org

    FedTracker: Furnishing Ownership Verification and Traceability for Federated Learning Model

    Full text link
    Federated learning (FL) is a distributed machine learning paradigm allowing multiple clients to collaboratively train a global model without sharing their local data. However, FL entails exposing the model to various participants. This poses a risk of unauthorized model distribution or resale by the malicious client, compromising the intellectual property rights of the FL group. To deter such misbehavior, it is essential to establish a mechanism for verifying the ownership of the model and as well tracing its origin to the leaker among the FL participants. In this paper, we present FedTracker, the first FL model protection framework that provides both ownership verification and traceability. FedTracker adopts a bi-level protection scheme consisting of global watermark mechanism and local fingerprint mechanism. The former authenticates the ownership of the global model, while the latter identifies which client the model is derived from. FedTracker leverages Continual Learning (CL) principles to embedding the watermark in a way that preserves the utility of the FL model on both primitive task and watermark task. FedTracker also devises a novel metric to better discriminate different fingerprints. Experimental results show FedTracker is effective in ownership verification, traceability, and maintains good fidelity and robustness against various watermark removal attacks

    A stratified decision-making model for long-term planning: application in flood risk management in Scotland

    Get PDF
    In a standard decision-making model for a game of chance, the best strategy is chosen based on the current state of the system under various conditions. There is however a shortcoming of this standard model, in that it can be applicable only for short-term decision-making periods. This is primarily due to not evaluating the dynamic characteristics and changes in status of the system and the outcomes of nature towards an a priori target or ideal state, which can occur in longer periods. Thus, in this study, a decision-making model based on the concept of stratification (CST), game theory and shared socio-economic pathway (SSP) is developed and its applicability to disaster management is shown. The game of chance and CST have been integrated to incorporate the dynamic nature of the decision environment for long-term disaster risk planning, while accounting for various states of the system and an ideal state. Furthermore, an interactive web application with dynamic user interface is built based on the proposed model to enable decision makers to identify the best choices in their model by a predictive approach. The Monte Carlo simulation is applied to experimentally validate the proposed model. Then, it is demonstrated how this methodology can suitably be applied to obtain ad hoc models, solutions, and analysis in the strategic decision-making process of flooding risk strategy evaluation. The model's applicability is shown in an uncertain real-world decision-making context, considering dynamic nature of socio-economic situations and flooding hazards in the Highland and Argyll Local Plan District in Scotland. The empirical results show that flood forecasting and awareness raising are the two most beneficial mitigation strategies in the region followed by emergency plans/response, planning policies, maintenance, and self help

    Co-Tuning of Cloud Infrastructure and Distributed Data Processing Platforms

    Full text link
    Distributed Data Processing Platforms (e.g., Hadoop, Spark, and Flink) are widely used to store and process data in a cloud environment. These platforms distribute the storage and processing of data among the computing nodes of a cloud. The efficient use of these platforms requires users to (i) configure the cloud i.e., determine the number and type of computing nodes, and (ii) tune the configuration parameters (e.g., data replication factor) of the platform. However, both these tasks require in-depth knowledge of the cloud infrastructure and distributed data processing platforms. Therefore, in this paper, we first study the relationship between the configuration of the cloud and the configuration of distributed data processing platforms to determine how cloud configuration impacts platform configuration. After understanding the impacts, we propose a co-tuning approach for recommending optimal co-configuration of cloud and distributed data processing platforms. The proposed approach utilizes machine learning and optimization techniques to maximize the performance of the distributed data processing system deployed on the cloud. We evaluated our approach for Hadoop, Spark, and Flink in a cluster deployed on the OpenStack cloud. We used three benchmarking workloads (WordCount, Sort, and K-means) in our evaluation. Our results reveal that, in comparison to default settings, our co-tuning approach reduces execution time by 17.5% and $ cost by 14.9% solely via configuration tuning

    k-Means

    Get PDF

    Data Tiling for Sparse Computation

    Get PDF
    Many real-world data contain internal relationships. Efficient analysis of these relationship data is crucial for important problems including genome alignment, network vulnerability analysis, ranking web pages, among others. Such relationship data is frequently sparse and analysis on it is called sparse computation. We demonstrate that the important technique of data tiling is more powerful than previously known by broadening its application space. We focus on three important sparse computation areas: graph analysis, linear algebra, and bioinformatics. We demonstrate data tiling's power by addressing key issues and providing significant improvements---to both runtime and solution quality---in each area. For graph analysis, we focus on fast data tiling techniques that can produce well-structured tiles and demonstrate theoretical hardness results. These tiles are suitable for graph problems as they reduce data movement and ultimately improve end-to-end runtime performance. For linear algebra, we introduce a new cache-aware tiling technique and apply it to the key kernel of sparse matrix by sparse matrix multiplication. This technique tiles the second input matrix and then uses a small, summary matrix to guide access to the tiles during computation. Our approach results in the fastest known implementation across three distinct CPU architectures. In bioinformatics, we develop a tiling based de novo genome assembly pipeline. We start with reads and develop either a graph or hypergraph that captures internal relationships between reads. This is then tiled to minimize connections while maintaining balance. We then treat each resulting tile independently as the input to an existing, shared-memory assembler. Our pipeline improves existing state-of-the-art de novo genome assemblers and brings both runtime and quality improvements to them on both real-world and simulated datasets.Ph.D

    Real-Time Hybrid Visual Servoing of a Redundant Manipulator via Deep Reinforcement Learning

    Get PDF
    Fixtureless assembly may be necessary in some manufacturing tasks and environ-ments due to various constraints but poses challenges for automation due to non-deterministic characteristics not favoured by traditional approaches to industrial au-tomation. Visual servoing methods of robotic control could be effective for sensitive manipulation tasks where the desired end-effector pose can be ascertained via visual cues. Visual data is complex and computationally expensive to process but deep reinforcement learning has shown promise for robotic control in vision-based manipu-lation tasks. However, these methods are rarely used in industry due to the resources and expertise required to develop application-specific systems and prohibitive train-ing costs. Training reinforcement learning models in simulated environments offers a number of benefits for the development of robust robotic control algorithms by reducing training time and costs, and providing repeatable benchmarks for which algorithms can be tested, developed and eventually deployed on real robotic control environments. In this work, we present a new simulated reinforcement learning envi-ronment for developing accurate robotic manipulation control systems in fixtureless environments. Our environment incorporates a contemporary collaborative industrial robot, the KUKA LBR iiwa, with the goal of positioning its end effector in a generic fixtureless environment based on a visual cue. Observational inputs are comprised of the robotic joint positions and velocities, as well as two cameras, whose positioning reflect hybrid visual servoing with one camera attached to the robotic end-effector, and another observing the workspace respectively. We propose a state-of-the-art deep reinforcement learning approach to solving the task environment and make prelimi-nary assessments of the efficacy of this approach to hybrid visual servoing methods for the defined problem environment. We also conduct a series of experiments ex-ploring the hyperparameter space in the proposed reinforcement learning method. Although we could not prove the efficacy of a deep reinforcement approach to solving the task environment with our initial results, we remain confident that such an ap-proach could be feasible to solving this industrial manufacturing challenge and that our contributions in this work in terms of the novel software provide a good basis for the exploration of reinforcement learning approaches to hybrid visual servoing in accurate manufacturing contexts
    corecore