1,554 research outputs found

    Beyond Node Degree: Evaluating AS Topology Models

    Get PDF
    This is the accepted version of 'Beyond Node Degree: Evaluating AS Topology Models', archived originally at arXiv:0807.2023v1 [cs.NI] 13 July 2008.Many models have been proposed to generate Internet Autonomous System (AS) topologies, most of which make structural assumptions about the AS graph. In this paper we compare AS topology generation models with several observed AS topologies. In contrast to most previous works, we avoid making assumptions about which topological properties are important to characterize the AS topology. Our analysis shows that, although matching degree-based properties, the existing AS topology generation models fail to capture the complexity of the local interconnection structure between ASs. Furthermore, we use BGP data from multiple vantage points to show that additional measurement locations significantly affect local structure properties, such as clustering and node centrality. Degree-based properties, however, are not notably affected by additional measurements locations. These observations are particularly valid in the core. The shortcomings of AS topology generation models stems from an underestimation of the complexity of the connectivity in the core caused by inappropriate use of BGP data

    Bias reduction in traceroute sampling: towards a more accurate map of the Internet

    Full text link
    Traceroute sampling is an important technique in exploring the internet router graph and the autonomous system graph. Although it is one of the primary techniques used in calculating statistics about the internet, it can introduce bias that corrupts these estimates. This paper reports on a theoretical and experimental investigation of a new technique to reduce the bias of traceroute sampling when estimating the degree distribution. We develop a new estimator for the degree of a node in a traceroute-sampled graph; validate the estimator theoretically in Erdos-Renyi graphs and, through computer experiments, for a wider range of graphs; and apply it to produce a new picture of the degree distribution of the autonomous system graph.Comment: 12 pages, 3 figure

    The Dynamics of Internet Traffic: Self-Similarity, Self-Organization, and Complex Phenomena

    Full text link
    The Internet is the most complex system ever created in human history. Therefore, its dynamics and traffic unsurprisingly take on a rich variety of complex dynamics, self-organization, and other phenomena that have been researched for years. This paper is a review of the complex dynamics of Internet traffic. Departing from normal treatises, we will take a view from both the network engineering and physics perspectives showing the strengths and weaknesses as well as insights of both. In addition, many less covered phenomena such as traffic oscillations, large-scale effects of worm traffic, and comparisons of the Internet and biological models will be covered.Comment: 63 pages, 7 figures, 7 tables, submitted to Advances in Complex System

    A critical look at power law modelling of the Internet

    Get PDF
    This paper takes a critical look at the usefulness of power law models of the Internet. The twin focuses of the paper are Internet traffic and topology generation. The aim of the paper is twofold. Firstly it summarises the state of the art in power law modelling particularly giving attention to existing open research questions. Secondly it provides insight into the failings of such models and where progress needs to be made for power law research to feed through to actual improvements in network performance.Comment: To appear Computer Communication

    On the Geographic Location of Internet Resources

    Full text link
    One relatively unexplored question about the Internet's physical structure concerns the geographical location of its components: routers, links and autonomous systems (ASes). We study this question using two large inventories of Internet routers and links, collected by different methods and about two years apart. We first map each router to its geographical location using two different state-of-the-art tools. We then study the relationship between router location and population density; between geographic distance and link density; and between the size and geographic extent of ASes. Our findings are consistent across the two datasets and both mapping methods. First, as expected, router density per person varies widely over different economic regions; however, in economically homogeneous regions, router density shows a strong superlinear relationship to population density. Second, the probability that two routers are directly connected is strongly dependent on distance; our data is consistent with a model in which a majority (up to 75-95%) of link formation is based on geographical distance (as in the Waxman topology generation method). Finally, we find that ASes show high variability in geographic size, which is correlated with other measures of AS size (degree and number of interfaces). Among small to medium ASes, ASes show wide variability in their geographic dispersal; however, all ASes exceeding a certain threshold in size are maximally dispersed geographically. These findings have many implications for the next generation of topology generators, which we envisage as producing router-level graphs annotated with attributes such as link latencies, AS identifiers and geographical locations.National Science Foundation (CCR-9706685, ANI-9986397, ANI-0095988, CAREER ANI-0093296); DARPA; CAID
    • …
    corecore