192 research outputs found

    Scalable Video Streaming over the Internet

    Get PDF
    The objectives of this thesis are to investigate the challenges on video streaming, to explore and compare different video streaming mechanisms, and to develop video streaming algorithms that maximize visual quality. To achieve these objectives, we first investigate scalable video multicasting schemes by comparing layered video multicasting with replicated stream video multicasting. Even though it has been generally accepted that layered video multicasting is superior to replicated stream multicasting, this assumption is not based on a systematic and quantitative comparison. We argue that there are indeed scenarios where replicated stream multicasting is the preferred approach. We also consider the problem of providing perceptually good quality of layered VBR video. This problem is challenging, because the dynamic behavior of the Internet's available bandwidth makes it difficult to provide good quality. Also a video encoded to provide a consistent quality exhibits significant data rate variability. We are, therefore, faced with the problem of accommodating the mismatch between the available bandwidth variability and the data rate variability of the encoded video. We propose an optimal quality adaptation algorithm that minimizes quality variation while at the same time increasing the utilization of the available bandwidth. Finally, we investigate the transmission control protocol (TCP) for a transport layer protocol in streaming packetized media data. Our approach is to model a video streaming system and derive relationships under which the system employing the TCP protocol achieves desired performance. Both simulation results and the Internet experimental results validate this model and demonstrate the buffering delay requirements achieve desired video quality with high accuracy. Based on the relationships, we also develop realtime estimation algorithms of playout buffer requirements.Ph.D.Committee Chair: Mostafa H. Ammar; Committee Co-Chair: Yucel Altunbasak; Committee Member: Chuanyi Ji; Committee Member: George Riley; Committee Member: Henry Owen; Committee Member: Jack Brassi

    Research of Proxy Cache Algorithm in Multi-media Education System

    Get PDF
    Multi-media education system is more and more widely used in all levels of education. In order to decrease cost of multi-media system and keep efficiency with increasing multi-media materials, proxy cache algorithm has been widely studied. Based on analysis of existing research of proxy cache results, an improved proxy coaching strategy of prefix cache and postfix merging is proposed. The strategy can dynamically adjust prefix cache size with the object access change. A more effective method of steaming merging has been proposed with multicast used in postfix portion. The results show that the improved strategy can effectively utilize proxy cache resource, shorten time delay and save band width

    Dynamic adaptation of streamed real-time E-learning videos over the internet

    Get PDF
    Even though the e-learning is becoming increasingly popular in the academic environment, the quality of synchronous e-learning video is still substandard and significant work needs to be done to improve it. The improvements have to be brought about taking into considerations both: the network requirements and the psycho- physical aspects of the human visual system. One of the problems of the synchronous e-learning video is that the head-and-shoulder video of the instructor is mostly transmitted. This video presentation can be made more interesting by transmitting shots from different angles and zooms. Unfortunately, the transmission of such multi-shot videos will increase packet delay, jitter and other artifacts caused by frequent changes of the scenes. To some extent these problems may be reduced by controlled reduction of the quality of video so as to minimise uncontrolled corruption of the stream. Hence, there is a need for controlled streaming of a multi-shot e-learning video in response to the changing availability of the bandwidth, while utilising the available bandwidth to the maximum. The quality of transmitted video can be improved by removing the redundant background data and utilising the available bandwidth for sending high-resolution foreground information. While a number of schemes exist to identify and remove the background from the foreground, very few studies exist on the identification and separation of the two based on the understanding of the human visual system. Research has been carried out to define foreground and background in the context of e-learning video on the basis of human psychology. The results have been utilised to propose methods for improving the transmission of e-learning videos. In order to transmit the video sequence efficiently this research proposes the use of Feed- Forward Controllers that dynamically characterise the ongoing scene and adjust the streaming of video based on the availability of the bandwidth. In order to satisfy a number of receivers connected by varied bandwidth links in a heterogeneous environment, the use of Multi-Layer Feed-Forward Controller has been researched. This controller dynamically characterises the complexity (number of Macroblocks per frame) of the ongoing video sequence and combines it with the knowledge of availability of the bandwidth to various receivers to divide the video sequence into layers in an optimal way before transmitting it into network. The Single-layer Feed-Forward Controller inputs the complexity (Spatial Information and Temporal Information) of the on-going video sequence along with the availability of bandwidth to a receiver and adjusts the resolution and frame rate of individual scenes to transmit the sequence optimised to give the most acceptable perceptual quality within the bandwidth constraints. The performance of the Feed-Forward Controllers have been evaluated under simulated conditions and have been found to effectively regulate the streaming of real-time e-learning videos in order to provide perceptually improved video quality within the constraints of the available bandwidth

    An evolutionary video assignment optimization technique for VOD system in heterogeneous environment

    Get PDF
    2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Securing Media for Adaptive Streaming

    Get PDF
    This paper describes the ARMS system which enables secure and adaptive rich media streaming to a large-scale, heterogeneous client population. The secure streaming algorithms ensure end-to-end security while the content is adapted and streamed via intermediate, potentially untrusted servers. ARMS streaming is completely standards compliant and to our knowledge is the first such end-to-end MPEG-4-based system

    Smart PIN: performance and cost-oriented context-aware personal information network

    Get PDF
    The next generation of networks will involve interconnection of heterogeneous individual networks such as WPAN, WLAN, WMAN and Cellular network, adopting the IP as common infrastructural protocol and providing virtually always-connected network. Furthermore, there are many devices which enable easy acquisition and storage of information as pictures, movies, emails, etc. Therefore, the information overload and divergent content’s characteristics make it difficult for users to handle their data in manual way. Consequently, there is a need for personalised automatic services which would enable data exchange across heterogeneous network and devices. To support these personalised services, user centric approaches for data delivery across the heterogeneous network are also required. In this context, this thesis proposes Smart PIN - a novel performance and cost-oriented context-aware Personal Information Network. Smart PIN's architecture is detailed including its network, service and management components. Within the service component, two novel schemes for efficient delivery of context and content data are proposed: Multimedia Data Replication Scheme (MDRS) and Quality-oriented Algorithm for Multiple-source Multimedia Delivery (QAMMD). MDRS supports efficient data accessibility among distributed devices using data replication which is based on a utility function and a minimum data set. QAMMD employs a buffer underflow avoidance scheme for streaming, which achieves high multimedia quality without content adaptation to network conditions. Simulation models for MDRS and QAMMD were built which are based on various heterogeneous network scenarios. Additionally a multiple-source streaming based on QAMMS was implemented as a prototype and tested in an emulated network environment. Comparative tests show that MDRS and QAMMD perform significantly better than other approaches

    Multi-stream partitioning and parity rate allocation of scalable video content for efficient IPTV delivery

    Get PDF
    We address the joint problem of clustering heterogenous clients and allocating scalable video source rate and FEC redundancy in IPTV systems. We propose a streaming solution that delivers varying portions of the scalably encoded content to different client subsets, together with suitably selected parity data. We formulate an optimization problem where the receivers are clustered depending on the quality of their connection so that the average video quality in the IPTV system is maximized. Then we propose a novel algorithm for determining optimally the client clusters, the source and parity rate allocation to each cluster, and the set of serving rates at which the source+parity data is delivered to the clients. We implement our system through a novel design based on scalable video coding that allows for much more efficient network utilization relative to the case of source versioning. Through simulations we demonstrate that the proposed solution substantially outperforms baseline IPTV schemes that multicast the same source and FEC streams to the whole client population, as is commonly done in practice today
    • 

    corecore