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SUMMARY

The objectives of this thesis are to investigate the challenges on video streaming, to

explore and compare different video streaming mechanisms, and to develop video streaming

algorithms that maximize visual quality. To achieve these objectives, we first investigate

scalable video multicasting schemes by comparing layered video multicasting with replicated

stream video multicasting. Even though it has been generally accepted that layered video

multicasting is superior to replicated stream multicasting, this assumption is not based on

a systematic and quantitative comparison. We argue that there are indeed scenarios where

replicated stream multicasting is the preferred approach.

We also consider the problem of providing perceptually good quality of layered VBR

video. This problem is challenging, because the dynamic behavior of the Internet’s available

bandwidth makes it difficult to provide good quality. Also a video encoded to provide a

consistent quality exhibits significant data rate variability. We are, therefore, faced with the

problem of accommodating the mismatch between the available bandwidth variability and

the data rate variability of the encoded video. We propose an optimal quality adaptation

algorithm that minimizes quality variation while at the same time increasing the utilization

of the available bandwidth.

Finally, we investigate the transmission control protocol (TCP) for a transport layer

protocol in streaming packetized media data. Our approach is to model a video stream-

ing system and derive relationships under which the system employing the TCP protocol

achieves desired performance. Both simulation results and the Internet experimental results

validate this model and demonstrate the buffering delay requirements achieve desired video

quality with high accuracy. Based on the relationships, we also develop realtime estimation

algorithms of playout buffer requirements.
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CHAPTER 1

INTRODUCTION

The growth of popular web sites serving multimedia contents has led to the increase of

video streaming applications. However, video streaming over the Internet is complicated

by a number of factors: 1) the Internet provides only the best effort service, and nothing

is guaranteed about bandwidth, delay, and packet loss rate; 2) it is difficult to predict

the bandwidth, delay, and loss rate information, since it is unknown and time-varying; 3)

the heterogeneity of receiver capabilities is a significant problem when video streams are

distributed over a multicast network; and 4) a congestion/flow control mechanism has to

be employed to avoid the congestion collapse of the Internet.

This research is devoted to investigate the challenges on video streaming, to explore

and compare different video streaming mechanisms, and to develop video streaming algo-

rithms that maximize visual quality. To achieve these objectives, we consider scalable video

streaming techniques that supports a number of receivers in a dynamic environment.

We first investigate scalable video multicasting. The heterogeneity of the Internet’s

transmission resources and end system capability makes it difficult to agree on acceptable

traffic characteristics among the multiple receivers of a multicast video stream. Three basic

approaches have been proposed to deal with this problem: 1) multicasting the replicated

video streams at different rates, 2) multicasting the video encoded in cumulative layers, and

3) multicasting the video encoded in non-cumulative layers. Even though there is a common

belief that the layering approach is better than the replicated stream approach, there have

been no studies that compare these schemes. This research is devoted to such a systematic

comparison. Our starting point is an observation (substantiated by results in the literature)

that a bandwidth penalty is incurred by encoding a video stream in layers. We argue that

a fair comparison of these schemes needs to take into account this penalty as well as the

specifics of the encoding used in each scheme, protocol complexity, and the topological
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placement of the video source and the receivers relative to each other. Our results show

that the believed superiority of layered multicast transmission relative to replicated stream

multicasting is not as clear cut as is widely believed and that there are indeed scenarios

where replicated stream multicasting is the preferred approach.

Second, we consider the problem of layered variable bit rate (VBR) video streaming.

The dynamic behavior of the Internet’s transmission resources makes it difficult to provide

perceptually good quality streaming video. Scalable video encoding techniques have been

proposed to deal with this problem. However, an encoded video generally exhibits signifi-

cant data rate variability to provide consistent visual quality. We are, therefore, faced with

the problem of accommodating the mismatch between the available bandwidth variability

and the encoded video variability. In this research, we investigate quality adaptation algo-

rithms for scalable encoded VBR video over the Internet. Our goal is to develop a quality

adaptation scheme that maximizes perceptual video quality by minimizing quality variation

while at the same time increasing the usage of available bandwidth. We propose an optimal

adaptation algorithm and a realtime adaptation algorithm based on whether the network

conditions are known a priori. Experimental results show that the realtime adaptation as

well as the optimal adaptation algorithm provide consistent video quality when used over

both TFRC and TCP.

Finally, we investigate transport layer protocol for packetized media delivery for video

streaming. TCP is one of the most popular transport protocols for video streaming, even

though the rate variability of TCP makes it difficult to provide good video quality. To

accommodate the variability, video streaming applications require receiver-side buffering. In

current practice, however, there are no guidelines for the provisioning of the receiver buffer,

and smooth playout is insured through over-provisioning. In this work, we are interested

in memory-constrained devices where it is important to determine the right size for the

playout buffer in order to insure a prescribed video quality. To that end, we characterize

video streaming over TCP in a systematic and quantitative manner. We first model video

streaming system analytically and derive expressions of buffer size requirements based on

the model. Our model takes account of three scenarios: 1) when TCP throughput matches

2



video encoding rate, 2) when TCP throughput is smaller than the encoding rate, and 3)

when TCP throughput is limited by the maximum window size. Experimental results of

both simulations and the Internet experiments validate the model and demonstrate that

the minimum buffering delay achieves desired video quality.

We also develop realtime estimation algorithms of playout buffer requirements in video

streaming over TCP. Based on the desired buffer size relationship, we first develop a realtime

estimation algorithm of receiver buffer size by estimating the packet loss rate and round-

trip time. We further develop realtime throughput adaptation algorithms that dynamically

adjust data transmission rate to prevent playback disruptions proactively. Experimental

results show that proposed algorithms coupled with an error resilient video codec reduce

the quality variability and improve overall video quality significantly.

This dissertation is organized as follows. Chapter 2 addresses the problem of scalable

video multicasting and compares the replicated stream video multicasting, the cumulatively

layered video multicasting, and the non-cumulatively layered video multicasting. In Chap-

ter 3, we develop quality adaptation algorithms for scalable encoded VBR video streaming

over the Internet. Chapter 4 considers the video streaming model over TCP and develops

the buffer size requirements at a receiver. Based on the relationships, we develop realtime

estimation algorithms of playout buffer requirements in Chapter 5. This dissertation is

concluded in Chapter 6.
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CHAPTER 2

SCALABLE VIDEO MULTICASTING

2.1 Motivation

A system for multicasting video over the Internet has to deal with the question of hetero-

geneity of the receivers capability and/or requirements. Typically, receivers and the paths

leading to them will have different reception capacity. We are, therefore, faced with the

problem of trying to accommodate this difference among the receivers: low capacity re-

ceivers are heavily loaded and suffer from network congestion, but high capacity receivers

are lightly loaded and under-utilized. This problem has been addressed by many researchers

(e.g., [8], [9], [11], [34], [49], [51]). Note that the problem of multicasting video in a het-

erogeneous data rate environment is important regardless of whether native network layer

multicast or application layer multicast [12] are used.

There are three basic approaches:

• The replicated stream approach [11], [34]

In this approach, the video source multicasts several streams with identical content

but at different data rates. Each stream is multicast over its own multicast group.

Receivers subscribe to the appropriate stream and may switch among streams as their

capacity changes. These streams can be obtained by encoding the source video with

different compression parameters.

• The cumulative layering approach [49], [51]

In this approach, the video is encoded in a base layer and one or more enhancement

layers. The base layer can be decoded independently, but the enhancement layers

can be decoded cumulatively (i.e., layer k can only be decoded along with layers 1 to

k − 1). The enhancement layers contribute to the improvement of the video quality

that leads to the progressive refinement. Each layer is multicast on its own group by a
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source. Receivers join at least the layer 1 multicast group and add/drop other layers

according to their reception capacity.

MPEG-2, MPEG-4, and H.263 support cumulatively layered encoding by defining the

scalability modes, such as data partitioning, SNR scalability, spatial scalability, and

temporal scalability [30], [31], [32]. A combination of the scalability modes can lead

to hybrid scalability consisting of multiple layers.

• The non-cumulative layering approach [9], [26]

In this approach, the video is encoded in two or more independent layers. Each

layer can be decoded independently and provide improvements to the video reception

quality. Each receiver can join any subset of the video layers.

Multiple description coding (MDC) can be used for non-cumulatively layered video

multicasting. Each description in MDC can lead to the reconstruction of the source

video, and multiple descriptions together yield a construction with the smallest dis-

tortion [17]. To provide these features, a number of MDC schemes for video encoding

have been developed recently, based on predictive MD quantizer [72], MD transform

coding [60], and multiple states [1]. Each scheme provides different characteristics of

compression efficiency, delay, and error resilience.

There is a common belief that the layering approach is better than the replicated stream

approach. The main argument is that replicated streams waste bandwidth by duplicating

the transmission of the content represented by the base layer (and possibly other lower

layers). Even though this is a widely stated conclusion, we are not aware of any studies

that actually compared these approaches in a quantitative and systematic manner [38], [39].

The goal of this research is to compare these video multicast techniques. Our starting

point is an observation (substantiated by results in the literature) that by encoding a video

stream in layers, one incurs a bandwidth overhead [19], [21], [35], [44], [62]. This overhead

can sometimes change the bandwidth efficiency in favor of replicated stream video multi-

casting. We argue that a fair comparison of these schemes needs to take into account this

overhead as well as the specifics of the encoding used in each scheme, protocol complexity,
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and the topological placement of the video source and the receivers relative to each other.

Consider an example of the scalable video multicasting shown in Figure 1. A video

server is run on S and three sets of receivers, C1, C2, and C3 are connected to the server

from different domains.

S

C

C

C

10Mbps

10Mbps

1.5Mbps

10Mbps

128kbps

Enhancement layer 2 (8.5Mbps)

Enhancement layer 1 (1.37Mbps)

Base layer (128kbps)

1

2

3

(a) Layered video multicasting

S

C

C

C

10Mbps

10Mbps

1.5Mbps

10Mbps

128kbps

High quality stream (8.5Mbps)

Medium quality stream (1.37Mbps)

Low quality stream (128kbps) 3

2

1

(b) Replicated stream video multicasting

Figure 1: Illustration of the scalable video multicasting. The received data rate of layered
video multicasting is greater than that of replicated stream video multicasting. However,
if we take account of layering overhead, layered video multicasting does not always provide
better perceived visual quality.

Figure 1 (a) shows how layered video multicasting accommodates the heterogeneity

problem. Since the receivers in C1 have high link capacity, they can subscribe to all layers.

However, if any of the receivers in C2 or C3 tries to join the second enhancement layer, the

1.5Mbps link becomes congested which leads the receiver to leave the second enhancement

layer. Also, the receivers in C3 have to join only the base layer because of the 128kbps link.

Hence, the reception rates of C1, C2, and C3 are 10Mbps, 1.5Mbps, and 128kbps.

On the other hand, Figure 1 (b) illustrates the replicated stream video multicast scheme.

Since the receivers in replicated stream multicasting subscribe to only one stream, the

receivers in C1 have to join one of the three streams and consequently they subscribe to the

high quality stream over the 10Mbps link. However, a receiver in C2 or C3 cannot receive

the high quality stream because of the 1.5Mbps bottleneck link: if the receiver tries to

subscribe to the high quality stream, the 1.5Mbps link will be congested. In the same way,
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a receiver in C3 receives the low quality stream due to the limited capacity of the 128kbps

link. Hence, the reception rates of C1, C2, and C3 are 8.5Mbps, 1.37Mbps, and 128kbps.

Unfortunately, the data reception rate does not account for the video reception quality.

Assume that layered video multicasting incurs 20% of layering overhead, the data rates

contributing to the video quality in the layering scheme are 8Mbps, 1.2Mbps, and 102.4kbps

for C1, C2, and C3. Compared with the reception rate of the replicated stream scheme, the

average data rate of the layering scheme contributing to the video quality is smaller. Hence,

we can expect in this case that the average video quality of layered video multicasting is

not better than that of replicated stream video multicasting.

The amount of overhead in these schemes will of course depend on the specifics of

the encoding of the layering and replicated stream data (i.e., the number and rates of

the streams). A fair comparison between these schemes needs to also take into account

the protocol complexity as well as the topological placement of the video source and the

receivers relative to each other.

This chapter is devoted to such a comparison. It is organized as follows. In Section 2.2,

we consider the issue of layering overhead in more detail. Section 2.3 considers the question

of optimizing the rate allocation to layers and to replicated streams. This optimization

is necessary to insure that a fair comparison of the best layering scheme with the best

replication scheme. Section 2.4 and 2.5 report on experiment results we have used to provide

a quantitative comparison. Section 2.6 provides a comparison of the protocol overheads

involved in the multicast schemes. Section 2.7 concludes this chapter.

2.2 Overhead in Layered Video

In this section, we describe how layered encoding of video incurs a bandwidth overhead.

Consider a video that is encoded as a single (non-layered) stream with a given quality and

that results in a data rate of Rnl, including all protocol/packetization overheads. Let the

same video be encoded in m cumulative layers with the data rate for layer i being Rli ,

again including all protocol/packetization overhead. We further assume that the layered

encoding of the video is such that, if a receiver receives and decodes all layers, the quality
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of the video will be the same as the non-layered video stream with rate Rnl.

The basic conclusion that we reach is that

Rnl ≤ Rl =
m∑

i=1

Rli .

Results in the literature indicate that the equality above is rarely achieved and that Rl can

be as much as 20%–30% higher than Rnl.

We substantiate this conclusion as follows:

• Information theoretic results

These results are derived in terms of the rate distortion function, R(P, ∆), which

describes the required rate to encode a memoryless source at a maximum distortion

of ∆, where the distortion is a measure of the quality degradation represented by the

encoding of the source.

The general result (described more formally in Appendix A) is that, for the same

source and the same distortion, a successively refined (i.e., layered) encoding requires

at least as much data rate as a non-layered encoding. While equality is possible,

it requires a strict Markovian condition to apply to the source and is generally not

achievable. Moreover, the result in [35] shows that the performance of the layered

encoding is not better than that of non-layered encoding for a finite length block

code, even if the Markovian condition holds.

• Packetization overhead

For certain scalability modes in the standards, enhancement layers are designed to

be syntactically independent of one another. Along with the residual information for

every enhancement layer, the data stream needs to also carry syntactic data, such

as picture header, start codes, GOP information, and macroblock header. This can

incur a large amount of overhead especially at low data rates [44].

• Experimental evidence

Figure 2 shows an experimental result of the video quality versus data rates for the

flower sequence by comparing MPEG-2 SNR scalability and non-scalability mode.

8



The video quality is measured in PSNR by varying quantization step size. A lay-

ered stream has two layers consisting of a base layer and an enhancement layer at

(Qb, Qe), where Qb is the quantization step size of the base layer and Qe is that of the

enhancement layer. Both PSNR and data rate are averaged over the entire video.

0 1 2 3 4 5 6 7 8
19
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24

25

26
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28
Video Quality for MPEG−2 SNR scalability

Data rate (Mbps)

P
S

N
R

 (
dB

)

Q=4 →

Q=8 →

Q=12 →

Q=16 →

Q=20 →

Q=24 →

← (4, 12)

← (Qb, Qe)=(12, 12)

← (Qb, Qe)=(58, 12)

← (Qb, Qe)=(48, 16)

← (Qb, Qe)=(48, 24)

← (Qb, Qe)=(48, 48) flower (non−layered)
flower (SNRS)       

Figure 2: Performance comparison of MPEG-2 SNR scalability and non-scalability mode
using a software MPEG-2 codec. The layering overhead ranges from 0.4% at 27.7dB to
117% at 23.2dB.

This result demonstrates that a layered stream requires more data rate than a non-

layered stream to provide the same quality. The difference in data rate ranges from

0.4% at 27.7dB to 117% at 23.2dB. Note that the difference is expected to grow as

the number of layers increases, since the accumulation of the redundancy leads to the

increase of the overall distortion in layered video encoding [73].

Similar and more extensive experimental results can be found in [43]. The authors

investigated the impact of the number of layers, bit rates, and packet loss on the

perceptual video quality as determined by subjects scoring the quality of the video,

when MPEG-2 data partitioning and SNR scalability are employed. The experimental

result on data partitioning shows that the difference ranges from nearly 0 for the

highest quality video (scoring close to 4.5) to almost 57% for fair quality video (scoring

close to 3). For a score of 4 (good quality video), the overhead varies from 2% (the
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flower sequence) to 49% (the basket sequence).

Recent research efforts have focused on developing an efficient scalable video encoding.

One of the most significant results is MPEG-4 fine grained scalability (FGS) [59].

Several features have been employed to achieve efficient scalability, such that 1) it

accommodates a wide range of data rate variability by distributing enhancement layers

over a wide range of bit rates, 2) it provides an efficient coding based on bit-plane

coding that is more efficient than run level coding, and 3) it separates the FGS layer

from the motion compensation stage to eliminate drift in the enhancement layer.

Extensive experimental results can be found in [59]. The authors compared the per-

formance of FGS with the traditional SNR scalability, and it was shown that FGS

provides better performance than SNR scalability. They also compared the perfor-

mance of FGS with non-scalability mode. However, it was found that FGS suffers

coding efficiency if a video sequence has a high temporal correlation, or if the data

rate of base layer is small. Experimental results show that there exists a coding over-

head in FGS, and the overhead ranges from nearly 0 at a sequence of high degree of

motion to 50% at low degree of motion.

• Protocol overhead

The nature of the subscription to multiple layers in layered video multicasting may

cause some additional overhead. Since a receiver generally subscribes to more than

one layers in layered video multicasting, the receiver needs to manage the subscription

to multiple layers. For example, in the context of receiver-driven layered multicast

(RLM) [51], the probing mechanism of available bandwidth depends on join exper-

iments. However, join experiments incur bandwidth overhead since they require to

send a join message and to multicast a message for shared learning. The amount

of bandwidth overhead is increased, as the group size of a multicast group grows.

Also the subscription of multiple layers requires more buffer size and better synchro-

nization capability than replicated stream video multicasting. More discussions and

experimental results are presented in Section 2.6.
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• Error control overhead

When video layers/streams are delivered over the Internet, some packets may be lost

due to network congestion. Since the packet loss causes a degradation of visual quality,

error control mechanisms for layered video multicasting can be employed:

1) Forward error control (FEC) based mechanisms have been developed to reconstruct

the original information by adding extra redundancy. The authors in [70] proposed a

layered FEC scheme by providing error control layers for cumulatively layered video

multicasting to achieve the desired level of protection. However, this scheme incurs

some amount of overhead to process the redundancy. Note that FEC schemes can be

employed for replicated video streaming [7].

2) Path diversity can allow different layers to be delivered over different routes. Com-

bined with path diversity, non-cumulatively layered video multicasting exhibits better

video quality as long as packet loss occurs only over disjoint channels. The authors

in [2] investigate the effect of path diversity and compare the performance of non-

cumulative layering with that of replicated video streaming. Experiment results show

that the number of disjoint links should be large enough to achieve better perfor-

mance than replicated video streaming. However, this mechanism incurs an operating

overhead: path diversity can be of benefit only if the multicast trees of different video

layers are disjoint. It therefore requires that multiple servers should be placed in

different domains with each of the servers multicasting a different video layer.

2.3 Optimizing Stream Rates

To carry out a fair comparison of the layered and replicated stream multicast schemes, we

need to insure that each scheme is optimal. We also need to insure that a similar set of rate

choice is available for all schemes. The question here is how to determine the number and

rates for the set of replicated streams and for the layers.

In this section, we shall present 1) a rate allocation algorithm to determine the data rate

of each stream and 2) a stream assignment algorithm to determine the reception rate of

each receiver by aggregating the data rates of the assigned streams in layered and replicated
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stream multicasting. The goal of these algorithms is to maximize the bandwidth utiliza-

tion by each scheme for a given network, a particular set of receivers, and given available

bandwidth on the network links.

To this end, we model the network by a graph G = (V, E), where V is a set of vertices

representing routers and hosts. E is a set of edges representing connection links which is

defined over V × V . A set of receivers is defined by C = {ci | ci ∈ V, i = 1, . . . , n}, where

n is the number of receivers.

An isolated rate for each receiver is defined by the data reception rate of the receiver if

there is no constraint from other receivers in the same session [34]. The isolated rate can

be computed by the Dijkstra’s algorithm.

A bandwidth function B : E → R+ is defined on E with bj = B(ej), where R+ is the

set of positive real numbers. The bandwidth function is considered as a measure of the

residual bandwidth available on the link ej .

2.3.1 Cumulatively Layered Multicasting

2.3.1.1 Rate Allocation

A cumulatively layered multicast session is defined by α = {αi | αi ∈ R+, i = 1, . . . , m},
where αi is the data rate of the ith layer stream and m is the number of layers.

The first rate allocation algorithm for cumulatively layered video multicasting was pro-

posed in [68] by maximizing the average signal reception quality. The authors in [76]

proposed an optimal receiver partitioning algorithm to determine the optimal stream rates

using dynamic programming. We adopt the latter algorithm to determine the optimal data

rates of αi: we define the group utility function by U({j +1, . . . , i}) = (i−j) f(rj+1), where

rj+1 is the isolated rate of the receiver j + 1 and f(rj+1) is an effective rate allocation

function. The effective rate allocation function is defined by f : R+ → R+ describing the

effective reception rate which is the data reception rate contributing to video quality. By

applying the optimal receiver partitioning algorithm with this group utility function, we

can maximize the overall effective reception rate.
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2.3.1.2 Stream Assignment

The stream assignment algorithm is presented in Figure 3, when the stream rates αi are

given. We assume that each layer is routed over the same path and that each receiver can

join as many layers as possible within the isolated rate (line 2). Hence, the reception rate

is determined by the sum of stream rates that does not exceed the isolated rate.

1: Compute the isolated rates
2: Assign ∑

i αi that does not exceed the isolated rate

Figure 3: Stream assignment algorithm for cumulatively layered multicasting. A receiver
can subscribe to as many layers as possible within its capability.

2.3.2 Replicated Stream Multicasting

2.3.2.1 Rate Allocation

A replicated stream multicast session is defined by β = {βi | βi ∈ R+, i = 1, . . . , m}, where

βi is the data rate of a replicated stream and m is the number of replicated streams.

We determine the stream rates based on αi, which is determined in Section 2.3.1.1.

Specifically, β1 corresponds to the base layer of cumulative layering and the other stream

rates are determined in a cumulative manner: if a receiver can join up to k layers in

cumulative layering, the receiver has the capability to join a replicated stream of data rate

βk =
∑k

i=1 αi.

2.3.2.2 Stream Assignment

In the stream assignment algorithm, it is required that the reception rate of every receiver

is strictly greater than zero so that there is no receiver that cannot receive any stream. This

requirement can be satisfied by multicasting β1 to all receivers, and therefore a receiver can

subscribe to either the base layer stream or a higher rate stream.

We define δi, such that

δi =


β1, i = 1

βi − β1, 1 < i ≤ m.

The stream assignment algorithm for replicated stream multicasting determines the data

reception rate of a receiver, given the set of data rates δ = {δi | δi ∈ R+, i = 1, . . . , m}.
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We define Ωi to be a set of receivers, such that Ωi = {cj | φδ(cj) = δi}, where φδ is the rate

allocation function defined by φδ : C → δ.

We set up two objectives for stream assignment.

1. The minimum reception rate of all receivers is strictly greater than zero.

2. Maximize Zδ =
∑m

i=1 |Ωi|δi subject to
∑

i∈Γej
δi ≤ bj , where Γej = {i | ej ∈ Ei},

Ti = (Vi, Ei), and Ti is a multicast tree for a replicated stream i.

We develop a greedy algorithm to achieve these requirements. The algorithm is de-

scribed in Figure 4. We first allocate δ1 to all receivers to satisfy the minimum reception

rate constraint (lines 2–7). Next, a receiver is assigned a stream that has not yet been as-

signed and has a maximum value of the product of the group size and the effective reception

rate until every receiver is assigned to at least one stream (lines 8–18). In stream selec-

tion, we assign an identity function to the effective rate allocation function for replicated

stream multicasting, since a non-layered stream is not supposed to incur layering overhead.

Therefore, every receiver subscribes to either high quality stream (line 12) or the base layer

stream (line 15).

1: Compute the isolated rates
2: if all isolated rates are greater than δ1 then
3: bj ← bj − δ1, where bj = B(ej) and ej ∈ E
4: δ ← (δ\δ1) ∪ {0}
5: else
6: There is no feasible solution
7: endif
8: while not Ω = ∅ do
9: Compute the isolated rates
10: Select a stream i with |Ωi|δi = maxj |Ωj|δj (δi, δj ∈ δ)
11: if δi > 0 then
12: Assign δi to Ωi

13: Reduce the link capacity leading to Ωi

14: else
15: Assign δ1 to Ωi

16: endif
17: Ω← Ω\Ωi

18: enddo

Figure 4: Stream assignment algorithm for replicated stream multicasting. A receiver can
subscribe to either the base layer stream or high quality stream.
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The feasibility of the stream assignment algorithm is guaranteed, if the data rate of

a replicated stream multicasting session is determined by the rate allocation algorithm in

Section 2.3.2.1. This is because the data rate of the base layer is originally determined by

the optimal partitioning algorithm. Otherwise, this algorithm may not provide a feasible

solution when any receiver has an isolated rate smaller than δ1.

Note that the rate allocation scheme and the stream assignment algorithm may re-

duce the data reception rate of a receiver compared to cumulatively layered multicasting.

However, this does not always guarantee the effective reception rate of cumulatively lay-

ered multicasting is greater than that of replicated stream multicasting, when we take the

layering overhead into account.

2.3.3 Non-cumulatively Layered Multicasting

2.3.3.1 Rate Allocation

A non-cumulatively layered multicast session is defined by γ = {γi | γi ∈ R+, i = 1, . . . , m},
where γi is the data rate of a non-cumulatively layered stream and m is the number of

streams. A set of receivers assigned to the stream i is defined by Ω′
i = {cj | γi ∈ φγ(cj)},

where φγ is the stream rate function defined by φγ : C → P (γ) and P (γ) is a power set of

γ. The set of all receivers is Ω′ = ∪m
i=1Ω

′
i.

In non-cumulatively layered multicasting, a receiver can subscribe to any subset of lay-

ers. This property provides a fine granularity for non-cumulatively layered multicasting.

For example, given a non-cumulatively layered stream γ = {1, 2, 4}, a heterogeneity result-

ing from seven different isolated rates of {1, 2, 3, 4, 5, 6, 7} can be accommodated through

selective subscription. Hence, the non-cumulatively layered session γ shows the same perfor-

mance as the cumulatively layered session α = {αi|αi = 1, i = 1, . . . , 7} (e.g., α1 + α1 + α1

can be achieved by γ1 + γ2). This example demonstrates that the heterogeneity caused

by
∑m

i=1

(m
i

)
= 2m − 1 different link capacities can be accommodated by aggregating the

reception rates of m non-cumulative layers. The work in [9] describes a fine grained layered

multicasting based on this property. The authors propose a fine grained rate adjustment

scheme through at most three join/leave operations.
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In this section, we propose a rate allocation algorithm for non-cumulatively layered

streams. The stream rates γi are allocated based on αi as follows:

γ1 = α1,

γ2 = α1 + α2,

γ1 + γ2 = α1 + α2 + α3,

γ3 = α1 + α2 + α3 + α4,

· · ·

γ2 + γ3 + · · ·+ γm = α1 + α2 + · · ·+ α2m−2,

γ1 + γ2 + γ3 + · · ·+ γm = α1 + α2 + · · ·+ α2m−2 + α2m−1,

where the optimum αi can be determined in Section 2.3.1.1.

We simplify this relationship in a matrix form: AX = BY, where A is a binary counting

matrix, B is a lower triangular matrix, X is a vector of the allocated data rates of non-

cumulative layering, and Y is a vector of the optimal data rates of cumulative layering,

such that

A =



0 · · · 0 0 1

0 · · · 0 1 0

0 · · · 0 1 1

0 · · · 1 0 0
...

1 · · · 1 1 1


, B =



0 0 · · · 0 0 0 1

0 0 · · · 0 0 1 1

0 0 · · · 0 1 1 1

0 0 · · · 1 1 1 1
...

1 1 · · · 1 1 1 1


,

X =



γm

γm−1

γm−2

...

γ2

γ1


, Y =



α2m−1

α2m−2

α2m−3

...

α2

α1


.

However, it is not generally possible to determine the data rate γi for given αi, since the

number of equations exceeds that of unknown variable γi. We develop an approximate rate
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allocation scheme by minimizing the mean square error, Z = (AX − BY)T (AX − BY).

The allocated data rates of non-cumulatively layered multicast streams are determined by

X = (ATA)−1ATBY, since

∇XZ = ∇X(AX−BY)T (AX−BY)

= 2ATAX− 2ATBY

= 0,

where ∇X is a gradient operator of X.

2.3.3.2 Stream Assignment

We have two objectives to assign the non-cumulatively layered streams.

1. The minimum reception rate of all receivers is strictly greater than zero.

2. Maximize Zγ =
∑m

i=1 |Ω′
i|f(γi) when

∑
i∈Γej

γi ≤ bj , where Γej = {i | ej ∈ Ei},
Ti = (Vi, Ei), Ti is a multicast tree for a non-cumulatively layered stream i, and f(γi)

is the effective rate allocation function.

In Figure 5, we present a greedy algorithm for non-cumulatively layered multicasting to

assign a stream with a maximum value of the product of the group size and the effective

reception rate. We first allocate the base layer stream, γ1, to all receivers (lines 2–8).

A receiver is assigned every layer which has not yet been multicast to any receiver and

maximizes the product of group size and effective reception rates until every stream is

assigned (line 11). The data reception rate of a receiver is the sum of data rates of all

assigned streams, since the aggregated data rate of non-cumulatively layered streams leads

to the minimum distortion.

It should be noted that we need an effective rate allocation function to determine the

objective function in the algorithm, since it is desirable to maximize the data reception rate

contributing to the video quality instead of the data rate itself. In Section 2.4.2, we propose

three types of effective rate allocation functions by modeling layering overhead.
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1: Compute the isolated rates
2: if all isolated rates are greater than γ1 then
3: Assign γ1 to all receivers
4: bj ← bj − γ1, where bj = B(ej) and ej ∈ E
5: γ ← (γ\γ1) ∪ {0}
6: else
7: There is no feasible solution
8: endif
9: while not γ = ∅ do
10: Compute the isolated rates
11: Select a stream i with |Ω′i|f(γi) = maxj |Ω′j|f(γj) (γi, γj ∈ γ)
12: if γi > 0 then
13: Add γi to Ω′i
14: Reduce the link capacity leading to Ω′i
15: endif
16: γ ← γ\γi

17: enddo

Figure 5: Stream assignment algorithm for non-cumulatively layered multicasting. A
receiver can subscribe to multiple streams. The data rate of the aggregated streams leads
to the minimum distortion.

2.4 Models in Experiments

We compare the performance of the video multicast schemes by experiment. The main goal

in the experiment is to evaluate the impact of the parameters, including the amount of

layering overhead, the number of layers, and the topological placement of receivers, on the

video reception quality. All schemes use the rates and stream assignment as determined in

Section 2.3.

2.4.1 Network Model

We use GT-ITM [77] to generate 100 different transit-stub graphs representing hierarchical

Internet topologies. The graphs consist of 1,640 nodes including 10 transit domains, 4

nodes per transit domain, 4 stubs per transit node, and 10 nodes in a stub domain (i.e.,

the number of nodes is 1640 = 10 · 4 · (1 + 4 · 10)). We assign 2.4Gbps to transit-to-transit

edges; 10Mbps and 1.5Mbps to stub-to-stub edges; and 155Mbps, 45Mbps, and 1.5Mbps

to transit-to-stub edges. The available link bandwidth is chosen uniformly in the range

1%-80% of the full capacity of the edge.
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2.4.2 Layering Overhead Models

Unless otherwise mentioned, the number of cumulatively layered video streams and the

number of replicated video streams are 8, and the number of non-cumulatively layered

video streams is 4 as discussed in Section 2.3.3.1. The amount of overhead incurred by

cumulative and non-cumulative layering is modeled in three ways:

• Proportional model

In the proportional model, we assume that the amount of layering overhead is affected

proportionally by the amount of the data reception rate for the sake of simplicity.

Based on the observations in Section 2.2, layering overhead is chosen to be 25% which

is an average value to deliver a good quality video in MPEG-2. Since layering overhead

tends to increase as the number of layers grows [62], 25% layering overhead is a

relatively optimistic value for MPEG-2 scalability: the experimental results of MPEG-

2 data partitioning in [43] show that, if the video quality of the flower sequence is

compared, 2-layer stream incurs 245kbps overhead, whereas 3-layer stream incurs

460kbps overhead.

• Dynamic model

The proportional overhead model assumes the same amount of layering overhead for

the same data reception rate. However, the amount of layering overhead depends on

many parameters in practice, such as the specifics of encoder, the degree of motion,

and/or the dynamic range of the bandwidth (i.e., [R1, Rl], where R1 is the data rate

of base layer and Rl is the data rate of all layers).

The dynamic overhead model captures the notion of the dynamically varying nature of

the layering overhead. The model is based on the observations of MPEG-4 FGS in [59].

The authors showed that the stefan sequence exhibiting high temporal correlation

between frames (i.e., low degree of motion) incurs bandwidth overhead, since FGS

exploits the temporal information at the base layer only.

The amount of layering overhead increases when the data rate of base layer is small

(i.e., wide dynamic range). The experiment results demonstrate that there exists
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200kbps layering overhead when the data rate of base layer is 200kbps, and 40kbps

overhead when base layer is 300kbps. Based on the observations, we model the layering

overhead by the linear interpolation:

Layering overhead = 520− 1.6 ·Rl1 (kbps),

where Rl1 is the data rate of the base layer and Rl1 ≤ 325kbps.

• Low overhead model

The low overhead model assumes that there is no layering overhead in a layered stream

and that the whole received data contributes to the improvement of video quality. The

theoretical result in Section 2.2 shows that the data rate of a layered stream can be the

same as that of a non-layered stream providing the same quality, when the Markovian

condition holds. Although it is hard to achieve, the overhead of layered encoding can

be close to zero.

Examples of this scenario can be found in several wavelet-based video codecs that

have been developed recently [37], [63], [64]. These codecs are currently considered in

the research community but are not widely adopted video coding standards yet.

Another example is the MPEG-4 FGS codec in Section 2.2 that exhibits very low lay-

ering overhead for sequences with high degree of motion. Authors in [59] demonstrate

that the flying sequence exhibiting low temporal correlation shows a high coding ef-

ficiency and the performance of FGS is similar to that of the non-scalable case. Note

that, even for a sequence of low degree of motion, the FGS codec also shows low lay-

ering overhead when the dynamic range of data rate is changed. Experimental results

from the stefan sequence shows that the layering overhead is close to zero when the

data rate of the base layer is greater than 500kbps.

It should be noted that the low overhead model not only assumes that the coding

overhead is close to zero but also assumes that other layering overheads, such as the

packetization overhead, the protocol overhead, and the error control overhead are also

close to zero.
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2.4.3 Performance Measures

In the experiment, we compare the performance by using the following measures:

• The average reception rate which is the average data rate received by a receiver

• The average effective reception rate where the effective reception rate at a receiver is

defined by the amount of data received less the layering overhead

• The total bandwidth usage calculated by adding the total traffic carried by all links in

the network for the multicast session – including all layers and all replicated streams

• The efficiency defined by

efficiency =
total effective reception rate

total bandwidth usage
.

The efficiency is a measure of delivered data rate contributing to the video quality for

each unit of bandwidth used in the network.

2.5 Experiment Results

2.5.1 Random Distribution

In the first experiment, we randomly select a server and receivers from a set of nodes in

the graph. Receivers are selected from all domains, which results in random distribution

of receivers. We investigate the performance of the video multicast schemes by varying the

number of receivers.

Figure 6 (a) shows the average data reception rate in the proportional model. The

average reception rate of cumulative layering is the largest in this scenario: the average

reception rate of cumulative layering, non-cumulative layering, and replicated stream video

multicasting are as much as 92%, 84%, and 73% of the isolated rate. Figure 6 (b) shows

the average effective reception rate of all receivers. The effective reception rate of repli-

cated stream video multicasting is the largest in the experiment. Since the video quality is

improved as the effective data rate increases, we expect that the average video quality in

replicated stream video multicasting is the best in this model. The total bandwidth usage
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(d) Efficiency

Figure 6: Experiment results in the proportional model under the random receiver distri-
bution. (a) shows that the average received data rate of cumulatively layered multicasting is
the largest. However, (b) shows that the average effective reception rate of replicated stream
multicasting is the largest because of the layering overhead. Replicated stream multicasting
also exhibits the best bandwidth usage efficiency.
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is presented in Figure 6 (c). The bandwidth consumption of cumulatively layered video

multicasting is the largest and that of replicated stream video multicasting is the smallest.

The efficiency of the video multicast schemes are demonstrated in Figure 6 (d). Although

cumulative and non-cumulative layering have good bandwidth scalability and high reception

rates, these schemes are required to pay layering overhead. This makes replicated stream

video multicasting the most efficient.

Figure 7 shows the experiment results of the video multicast schemes in the dynamic

overhead model. These results exhibit similar behavior to the proportional model in Fig-

ure 6. In Figure 7 (a), the average reception rate of cumulative layering, non-cumulative

layering, and replicated stream multicasting are given by 91%, 81%, and 73% of the isolated

rate. The effective reception rate of replicated stream video multicasting is the largest in

Figure 7 (b). Therefore, we can expect that the average video quality of replicated stream

video multicasting is the best. The efficiency of replicated stream video multicasting is also

the best in Figure 7 (d).

Figure 8 shows the experimental results for the low overhead model. Since no layering

overhead is incurred in this model, the average data reception rates in Figure 8 (a) are the

same as the average effective reception rates in Figure 8 (b). We expect that the video

quality of cumulatively/non-cumulatively layered video multicasting is better than that of

replicated stream multicasting, since the average effective reception rate of layered multicas-

ting is larger. The layered multicasting schemes also exhibit more bandwidth consumption

and better bandwidth efficiency than replicated stream multicasting.

Figure 6, 7, and 8 show that the performance of each scheme depends on the amount

of layering overhead represented by the overhead models. Therefore, to find the conditions

under which each scheme is superior, we investigate the effect of the layering overhead and

that of the number of layers.

Figure 9 demonstrates the effect of the overhead in layered video multicasting and repli-

cated stream video multicasting in the proportional model. The number of receivers is fixed

to 40% of all nodes. Figure 9 (a) shows the effective reception rate of replicated stream video

multicasting and layered video multicasting. As layering overhead increases, the effective
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(d) Efficiency

Figure 7: Experiment results in the dynamic model under the random receiver distribu-
tion. The results exhibit similar behavior to the proportional model. The average effective
reception rate of replicated stream multicasting is the largest in (b).
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(d) Efficiency

Figure 8: Experiment results for the low overhead model under the random receiver distri-
bution. Since the layering overhead is close to zero, the average data rates and the effective
reception rates of layered multicasting are larger than replicated stream multicasting. High
bandwidth efficiency of layered multicasting is presented in (d).
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reception rate of layered video multicasting is decreased. However, the effective reception

rate of replicated stream video multicasting does not change, since no layering overhead

is incurred in non-layered streams. The effective reception rate of cumulatively layered

multicasting is equal to that of replicated stream video multicasting when the overhead

is 22%, and the effective reception rate of replicated stream video multicasting is greater

than cumulatively layered video multicasting after that point. The effective reception rate

of non-cumulatively layered multicasting is greater than than of replicated stream multi-

casting when layering overhead is less than 15%. In Figure 9 (b), we investigate how the

overhead affects the efficiency. From the experiment, layering overhead of more than 7%

tends to favor the replicated stream approach.
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Figure 9: Experiment results for the effect of overhead. (a) shows that the layering
overhead of cumulative and non-cumulative layering should be less than 22% and 15%
to provide better quality than replicated stream multicasting. Layering approaches also
achieve better efficiency when layering overhead is less than 7%.

Based on these observations, it is required that the layering overhead of the cumulative

layering should be less than 22% and that of the non-cumulative layering should be less

than 15% to provide better video quality. Moreover, to provide both better video quality

and higher network efficiency, the layering overhead should be less than 7%.

Figure 10 shows the performance as the number of layers and consequently the number

of replicated streams changes in the proportional model. Figure 10 (a) demonstrates that
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the effective reception rate of replicated stream video multicasting is always greater than

that of cumulatively layered video multicasting. The difference gets smaller as the number

of layers increases. In Figure 10 (b), the efficiency of stream replication is also greater than

that of cumulative layering. From the results, it is expected that the effect of the number

of layers on efficiency is not so significant as the amount of layering overhead.
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Figure 10: Experiment results for the effect of the number of layers. When the proportional
overhead model is employed, the performance of replicated stream multicasting is always
better than cumulative layering.

2.5.2 Clustered Distribution

The layered video multicast schemes achieve better bandwidth efficiency when multiple

streams share the bottleneck link. When the receivers are placed in one domain, it is

more probable that many of the receivers share a bottleneck link. Hence, the layered video

multicasting would be more efficient than replicated stream video multicasting.

Consider the example in Figures 11 and 12, which illustrate the impact of network

topology on the performance. In Figure 11, the receivers C1, C2, and C3 are placed on

different domains and no link is shared by them. We can find that both schemes consume

the same amount of bandwidth and the reception rates of C1, C2, and C3 are 10Mbps,

1.5Mbps, and 128kbps. Hence, replicated stream video multicasting has an advantage if we

consider layering overhead.
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(a) Layered video multicasting (b) Replicated stream multicasting

Figure 11: An example of random distribution. Since the receivers do not share bottleneck
links, replicated stream multicasting exhibits better performance.

On the other hand, Figure 12 presents an example that the receivers C1, C2, and C3 are

placed on the same domain and they share the 10Mbps bottleneck link. In this topology,

the data reception rates in Figure 12 (a) are larger than that of Figure 12 (b) by 1.63Mbps

on average.
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Figure 12: An example of clustered distribution. Since the 10Mbps link is shared by all
receivers, layered multicasting exhibits better scalability.

Figure 13, 14, and 15 show the experiment results under the clustered receiver distri-

bution, where receivers are chosen within only one transit domain and a sender is selected

from another domain. Compared with Figure 6, 7, and 8, the performance of layered video

multicasting is improved but that of replicated stream video multicasting is degraded. Even
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though some amount of layering overhead is incurred, the effective reception rate of cumu-

latively layered video multicasting is always greater than that of replicated stream mul-

ticasting: 12% in Figure 13 (b), 11% in Figure 14 (b), and 38% in Figure 15 (b). The

decrease of replicated stream video multicasting accounts for the decrease of the efficiency.

Therefore, we can expect the performance characteristics are changed in favor of layered

video multicasting, when receivers are clustered in small number of domains.

29



10 20 30 40 50 60 70 80 90
0

200

400

600

800

1000

1200

1400

1600
Proportional model

Percentage of receivers in the graph

A
ve

ra
ge

 d
at

a 
ra

te
 (

kb
ps

)

isolated rate          
cumulative layering    
non−cumulative layering
stream replication     

(a) Reception rate

10 20 30 40 50 60 70 80 90
0

200

400

600

800

1000

1200

1400

1600
Proportional model

Percentage of receivers in the graph

A
ve

ra
ge

 e
ffe

ct
iv

e 
re

ce
pt

io
n 

ra
te

 (
kb

ps
)

cumulative layering    
non−cumulative layering
stream replication     

(b) Effective reception rate

10 20 30 40 50 60 70 80 90
0

50

100

150

200

250
Proportional model

Percentage of receivers in the graph

T
ot

al
 b

an
dw

id
th

 u
sa

ge
 (

M
bp

s)

cumulative layering    
non−cumulative layering
stream replication     

(c) Total bandwidth usage

10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1
Proportional model

Percentage of receivers in the graph

B
an

dw
id

th
 u

sa
ge

 e
ffi

ci
en

cy

cumulative layering    
non−cumulative layering
stream replication     

(d) Efficiency

Figure 13: Experiment results in the proportional model under the clustered receiver
distribution. Cumulatively layered video multicasting achieves both greater data reception
rate and greater effective reception rate which leads to better video quality.
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(d) Efficiency

Figure 14: Experiment results in the dynamic model under the clustered receiver distribu-
tion. Both cumulatively and non-cumulatively layered video multicasting achieves greater
data reception rate and greater effective reception rate than that of replicated stream mul-
ticasting.
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(d) Efficiency

Figure 15: Experiment results for the low overhead model under the clustered receiver
distribution. Layered video multicasting schemes exhibit better performance than replicated
stream multicasting in all measures.
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2.6 Protocol Complexity

In this section, we consider the protocol complexity of cumulatively layered multicasting and

replicated stream multicasting, since no existing protocol supports all three schemes. We

compare the protocol complexity by using RLM [51]. In RLM, a receiver has the capability

to decide whether to drop an additional layer or not. The decision is made by performing a

join experiment. Join experiments incur a bandwidth overhead, since a receiver carrying out

the experiment sends a join message and multicasts a message identifying the experimental

layer to the group. In addition, the shared learning mechanism requires each receiver to

maintain significant amount of state information even if it is not necessary.

We present below our protocol complexity analysis. The network is modeled by a graph

G = (V, E), where V is a set of vertices and E is a set of edges. A set of receivers is

defined by C = {ci|ci ∈ V, i = 1, ..., n}, where n is the number of receivers. A set of video

stream is defined by R = {ri|ri ∈ R+, i = 1, ..., m}, where ri is the data rate of a video

stream and m is the number of streams. A set of receivers assigned to stream i is defined by

Ωi = {cj | φ(cj) = ri}, where φ is the rate allocation function defined by φ : C → R. Since

we determine the data rate of replicated streams by adding the data rate of the cumulative

layering, the receivers in Ωi can subscribe to the replicated stream βi, where βi ≤ ri, or can

accommodate the cumulatively layered stream up to layer i, such as α1 + α2 + · · ·αi ≤ ri.

In cumulatively layered video multicasting, the average group size is given by 1
m

∑m
k=1 k|Ωk|,

since a receiver can join multiple groups and 1
m(

∑m
k=1 |Ωk|+

∑m
k=2 |Ωk|+ · · ·+

∑m
k=m |Ωk|) =

1
m

∑m
k=1 k|Ωk|. In a join experiment, cumulatively layered video multicasting requires a re-

ceiver send one join message and multicast a message reporting a join experiment to the

receivers in the same group. When the link capacity does not change for a long period, the

receiver will return to the previous state after a detection time and it has to send a leave

message. Hence, the average number of messages in a join experiment is 2 unicast messages

and 1 multicast message to 1
m

∑m
k=1 k|Ωk| receivers.

On the other hand, the average group size in replicated stream video multicasting is

1
m

∑m
k=1 |Ωk|, since every receiver joins only one group. In replicated stream video multi-

casting, a receiver sends one leave message, one join message, and one multicast message
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reporting each join experiment. When the link capacity is in the steady state, it has to

return to the previous group that involves another one join and one leave messages. The

average number of messages in a join experiment is 4 unicast messages and 1 multicast

message to 1
m

∑m
k=1 |Ωk| receivers.

Therefore, the bandwidth overhead in cumulatively layered multicasting and replicated

stream multicasting consists of 2 or 4 unicast messages and 1 multicast message. The cost

of a multicast message is dominant when the number of receivers is large.

Figure 16 presents the experiment result of the average group size and the average

number of groups joined by a receiver, when the receivers are randomly distributed. In

Figure 16 (a), the group size in cumulatively layered video multicasting is twice as large

as that in stream replication. Hence, layered video multicasting requires more bandwidth

to multicast a message reporting the join experiment and more memory to keep state

information. In Figure 16 (b), we can expect that a receiver in a cumulatively layered

video multicast session requires more buffer size and better synchronization capability than

replicated stream video multicasting, since a receiver in cumulative layering subscribes to

more than five layers on average whereas a receiver in stream replication subscribes to only

one video stream.
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Figure 16: Experiment results for protocol complexity. The nature of joining multiple
multicast groups in cumulative layering leads to twice larger group size than replicated
stream multicasting. (b) shows that a receiver joins at least five multicast groups.
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2.7 Conclusion

In this chapter, we undertake a comparison between the cumulative/non-cumulative layering

and replicated stream video multicast schemes. These schemes have been proposed for

multicasting to a set of receivers with heterogeneous reception capabilities. While it has

been generally accepted that layering is superior to stream replication, this does not appear

to be based on a systematic and quantitative comparison of these schemes. We undertake

such a comparison here. We first argue that a fair comparison needs to take into account 1)

the layering bandwidth overhead, 2) the specifics of the encoding of the layers or replicated

streams, 3) the complexity of the protocol required to allow receivers to join and leave the

appropriate streams, and 4) the topological placement of receivers relative to each other

and relative to the video source. Our results demonstrate the effect of these dimensions on

the relative performance of three schemes. They also show the conditions under which each

scheme is superior. We summarize several findings from our study:

• The performance of heterogeneous video multicasting schemes depend on the amount

of layering overhead. The increase of layering overhead tends to favor replicated

stream video multicasting.

• Layering overhead of a scalable video codec should be as small as possible to provide

better quality of video. Experiment results show that less than 22% layering over-

head is required for cumulatively layered multicasting, and 15% for non-cumulatively

layered multicasting to provide better quality than replicated stream multicasting.

Both better video quality and higher network efficiency can be achieved when layer-

ing overhead is less than 7%. Recall that layering overhead is more than just coding

overhead: it also includes the packetization overhead, the protocol overhead, and the

error control overhead.

• If the effective reception rate is the same, replicated stream multicasting is preferred.

This is because the protocol complexity of replicated stream multicasting is lower than

that of layered video multicasting.
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• When receivers are clustered in a few domains, layered video multicasting exhibits

better performance. One the other hand, when receivers are randomly spread out,

the performance of replicated stream video multicasting is better. The receiver dis-

tribution can be estimated by mtrace [23] when the tracing feature of mrouted is

implemented in the intermediate multicast routers. If this feature is not supported,

application level multicast can be employed [12]. Since an overlay network is gen-

erated and optimized in the application level, the topology information is obtained

easily. Alternatively, receiver locations can be determined using prior experience from

the particular streaming application.

Our work has focused on video multicasting applications. Layering and replication of

multicast transmission has also been proposed for bulk-data multicast applications. The

layering overhead does not apply in those circumstances, however, the other comparison

dimensions will still come into play.
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CHAPTER 3

QUALITY ADAPTATION FOR SCALABLE ENCODED

VIDEO

3.1 Motivation

In recent years, a number of popular web sites serving multimedia contents have led to the

growth of streaming video applications. One of the challenging aspects of carrying video

over today’s Internet is the fact, as was identified in [56], that the Internet’s transmission

resources exhibit variability at multiple time-scales, and the available bandwidth fluctuates

over a broad range because of the wide distribution of packet loss burst duration, changes in

bottleneck capacity, and multiple time-scale queuing-time variation. This dynamic behavior

of the Internet makes it difficult to provide perceptually good quality of streaming video.

Small time-scale variability can be accommodated by utilizing a receiver buffer, such

that a few video frames are prefetched before they are displayed. However, it is difficult

to accommodate large time variability using the receiver buffer because of the buffer size

limitation. Large time-scale variability is generally accommodated using scalable (or lay-

ered) video encoding [31], [59]. In this approach, a source video is encoded into a base layer

and one or more enhancement layers. The base layer can be decoded independently and

provides the minimum video quality. Enhancement layers can be decoded cumulatively and

contribute to the improvement of video quality.

However, an encoded video can exhibit significant rate variability if the encoding is

targeting consistent perceptual quality (this is a result of general compression techniques

based on discrete cosine transform (DCT), quantization, motion estimation, motion com-

pensation, and entropy coding). We are, therefore, faced with the problem of trying to

accommodate the mismatch caused by both the available bandwidth variability and the

encoded video variability.
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In this chapter, we investigate quality adaptive video streaming techniques for layered

VBR video [40], [41]. The goal is the development of an optimal algorithm that minimizes

the quality variability while at the same time maximizing the utilization of the variable

network bandwidth. Our starting point is traditional rate adaptation in layered video

delivery, such that video layers are added and dropped as the available bandwidth changes.

However, it is generally agreed that significant quality fluctuation caused by frequent adding

and dropping layers may be annoying and degrade the perceptual quality of video.

This chapter is organized as follows. We review related work in Section 3.2. In Sec-

tion 3.3, we consider quality adaptation algorithms and the question of optimizing quality

adaptation. Section 3.4 reports on experimental results we have conducted. This chapter

is concluded in Section 3.5. A companion web site provides a demonstration of the basic

results of this work [14].

3.2 Related Work

Accommodating data rate variability using the receiver buffer has been widely deployed.

Authors in [65] proposed an optimal rate smoothing algorithm based on the work-ahead

smoothing technique for non-layered VBR video to achieve minimum variability of trans-

mission rate. Combined with guaranteed service or RCBR service [27], it was shown that

network utilization can be increased significantly. However, rate smoothing is not useful

for the best effort network, since the Internet does not provide any information about the

bandwidth evolution in advance. Also, a smooth data rate does not always guarantee a

smooth quality for VBR video.

Coarse grained adaptation of layered video has been discussed to accommodate receiver

heterogeneity in the context of multicasting [38], [49], [51]. The number of layers subscribed

by a receiver is dynamically varying, since a receiver adjusts video quality based on network

condition: subscribing to as many layers as possible when the available bandwidth is large,

and dropping layers when the available bandwidth is small. However, frequent adding and

dropping of layers can incur significant quality variability which leads to the degradation of

perceptual video quality.
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Quality adaptation algorithms based on layered video for a unicast environment have

been proposed in [18], [53], [61]. The algorithm in [18] transforms the quality adaptation

problem into a shortest path problem to minimize variability. The algorithm in [53] tries

to maximize perceptual video quality by using bidirectional optimum layer selection. The

algorithm in [61] accommodates the short-term rate variability caused by a TCP friendly

congestion control mechanism. However, these algorithms assume all layers are CBR en-

coded, hence they do not maximize perceptual quality of VBR video.

The problem of layered VBR video streaming was first addressed in [66]. The authors

modeled the available bandwidth as a stochastic process and proposed an optimal bandwidth

allocation scheme between base and enhancement layers. The authors extended this idea

and proposed an adaptive heuristic algorithm in [67]. However, as the objective of the

scheme is to minimize the loss probability in the base and enhancement layers, it may incur

significant quality variation. Since the scheme has the closest (but not the same) objective

as we do, we compare the heuristic algorithm with our algorithms and investigate the impact

on perceived visual quality.

3.3 Quality Adaptation Algorithms

In this section, we consider the question of quality adaptation for scalable (or layered) en-

coded video. Quality adaptation is defined by a mechanism that adds and drops layers

based on the available network bandwidth while maximizing perceptual video quality (pri-

marily we are interested in consistent “long runs” of the same quality video which will be

formalized in Section 3.4). We assume that a sender maintains a layered VBR video and

that a receiver has some amount of buffering capacity to prefetch an unplayed video. The

available bandwidth may exhibit multiple time-scale variability.

3.3.1 Composed Algorithm

As a baseline algorithm, we consider a straightforward approach for quality adaptation by

combining existing algorithms. The quality smoothing algorithm proposed in [53] accom-

plishes the maximum reduction of quality variability for layered CBR video using bidirec-

tional layer selection. To apply this algorithm to layered VBR video, we need to insure that
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the data rate of the encoded video is sufficiently smoothed to exhibit nearly constant bit

rate. We adopt the rate smoothing algorithm presented in [65] for this purpose, since this

algorithm enables a sender to transmit a piecewise CBR sequence using the work-ahead

smoothing technique. We compose a quality adaptation algorithm from these algorithms.

We divide the receiver buffer into two portions: one used for rate smoothing and the

other for quality smoothing. We first use the FindOptimalSchedule function in [65] to

compute optimally smoothed transmission rate for each layer using rate smoothing buffer.

Next, we apply the MaxAvgRun function in [53] to the smoothed rate video for maximizing

average run length using quality smoothing buffer. The composed algorithm is given in

Figure 17, where L is the number of layers and N is the number of video object planes

(VOP) in a layer. However, as [53] assumes the size of a frame in a layer is normalized to

1, we need to modify it: replacing 1) θ = 1 by θ = xi[k] and 2) Si
k = 1 by Si

k = xi[k], where

θ is a temporary variable determining a feasible sequence, xi[k] is the size of VOP k, and

Si
k is a feasible sequence of layer i.

1: procedure ComposedAlgorithm (r[], xi[], br, bq)
2: for i = 1 to L do
3: FindOptimalSchedule (xi[], br)
4: enddo
5: Initialization: r1[k] = r[k], where k ∈ {1, . . . , N}
6: for i = 1 to L do
7: (ri+1[], si[]) = MaxAvgRun(ri[], xi[], bq)
8: enddo
9: endprocedure

Figure 17: Composed algorithm. A piecewise CBR stream is generated by the Find-
OptimalSchedule function, where br stands for the rate smoothing buffer size. Next the
MaxAvgRun function is applied to achieve consistent quality, where bq specifies the quality
smoothing buffer size.

3.3.2 Optimal Quality Adaptation

3.3.2.1 Framework

In formulating optimal quality adaptation, we consider a discrete-time model. Let xi[k] be

the VOP size of the ith layer at time k, bi be the receiver buffer size for storing unplayed ith

layer video, and ri[k] be the available bandwidth, where i = 1, . . . , L and k = 1, . . . , N . It is

assumed that the size of xi[k] is variable but known in advance which is generally true in the
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transmission of stored video. Also note that the available bandwidth ri[k] is the residual

bandwidth after accommodating layers 1, 2, . . . , i − 1. Hence the condition of ri[k] > 0

implies rj [k] > 0, where j = 1, . . . , i − 1. Conversely ri[k] = 0 implies rj′ [k] = 0, where

j′ = i + 1, . . . , L. Xi[k] represents the cumulative data requirement in the ith layer defined

by Xi[k] =
∑k

j=1 xi[j]. The cumulative capacity, Ci[k], is defined to quantify transmission

resources. The cumulative capacity of the ith layer is determined by two constraints: the

receiver buffer size and the available network bandwidth, such that

Ci[k] = min(Si[k − 1] + bi, Ci[k − 1] + ri[k]),

where Si[k] is the cumulative selected data defined by
∑k

j=1 si[j], and si[j] is the selected

data defined by

si[j] =


xi[j], if VOP j is selected for transmission

0, otherwise.

Note that a transmission scheduling algorithm may exploit si[k] to deliver the ith layer: if

si[k] is not zero, a VOP of the ith layer at time k is transmitted to a receiver. On the other

hand, if si[k] is zero, it is not transmitted to the receiver. Especially, si[k] is said to be

feasible if the amount of cumulative selected data does not exceed cumulative capacity, i.e.,

Si[k] =
∑k

j=1 si[j] ≤ Ci[k]. Note that the feasibility implies the existence of a scheduling

algorithm to transmit the selected data, but it does not provide a specific scheduling algo-

rithm. The contribution of this research is the development of quality adaptation algorithms

that determine which VOPs are to be transmitted in each layer to maximize perceived video

quality rather than the investigation of specific scheduling algorithms.

Figure 18 illustrates the framework of optimal quality adaptation. We assume that there

are enough transmission resources in the beginning stage, such that a sender can transmit

the ith layer without discontinuity until k0, and therefore Si[k] = Xi[k], k = 1, . . . , k0 − 1.

At time k0, a receiver stops displaying layer i because of the feasibility, and the sender

determines a future time k1 at which the receiver will resume displaying layer i. We choose

k1 to be the point that satisfies Ci[k1] = Si[k1] + d (we show how d can be determined

in Section 3.3.2.4). Note that after k0 there is still some available capacity for layer i.
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The sender allows the receiver to prefetch future VOPs of the ith layer starting from k1.

During (k1, k2), the receiver starts displaying buffered video using this capacity and also

keeps prefetching VOPs for layer i. At k2 where Si[k] meets Ci[k] again, the receiver stops

displaying the ith layer and begins to prefetch future layer i VOPs.
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Figure 18: Framework of quality adaptation. A receiver makes transitions between the
select and discard state based on transmission resources.

Although the quality adaptation framework in Figure 18 seems similar to the rate adap-

tation mechanism in [65], there is a significant difference: the constraint of rate adaptation

is determined by the receiver buffer size and the source video rate, whereas the main con-

straint of quality adaptation is transmission resources.

We model the quality adaptation mechanism in the ith layer by a two-state machine as

shown in Figure 19. In each layer, a VOP in the select state will be transmitted, and one

in the discard state dropped. Each state is determined by the amount of the cumulative

capacity and the VOP size. Since we cannot send more data than can be accommodated

by transmission resources, the cumulative capacity is an upper bound of the cumulative

transmission schedule of the ith layer: a sender transmits the ith layer without discontinuity

as long as the cumulative capacity is greater than the cumulative selected data.
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Figure 19: State transition diagram describing quality adaptation framework. A state
transition takes place based on the amount of capacity and threshold.

3.3.2.2 Select State

In the ith layer, a VOP in the select state will be transmitted to a receiver. To achieve

maximum perceptual quality, it is necessary to reduce quality variability, such that a sender

transmits as many consecutive VOPs as possible. Hence, if the sender enters the select

state, it does not leave the state until the amount of the cumulative capacity is not greater

than the cumulative selected data. Once the cumulative capacity is not enough to accom-

modate the cumulative selected data, the sender enters the discard state.

To accommodate multiple layers, we employ a conservative transmission policy: if there

are available transmission resources, layered video is transmitted as soon as possible from

the base layer to the highest enhancement layer. The residual cumulative capacity of lower

layers can be used to accommodate higher layers. In this scenario, lower layers are protected

better than higher layers, since lower layers are buffered before higher layers. Therefore, if

a VOP of the ith layer is selected, VOPs of layer 1, 2, . . . , i−1 are also selected. Conversely,

if a VOP of the ith layer is not selected, VOPs of layer i+1, i+2, . . . , L cannot be selected.

Sometimes a startup latency is needed to prefetch a few initial VOPs. Otherwise, it

is likely to discard the beginning part of the video unless the initial network bandwidth is

large. The startup latency is accomplished by shifting the encoded video by σ, such that

xi[k] =


0, 0 < k ≤ σ

x′
i[k − σ], k > σ,

where x′
i[k − σ] is the VOP size of original encoded video in the ith layer.
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3.3.2.3 Discard State

In the discard state, a receiver stops displaying layer i as much as possible to reduce the

quality variability. However, as dropping many VOPs leads to the network under-utilization,

a sender has to return to the select state if a certain condition is satisfied. In Figure 19, the

sender leaves the discard state when the available cumulative capacity exceeds a threshold.

The available cumulative capacity is defined by the difference of the cumulative capacity and

the cumulative selected data (e.g., the available cumulative capacity exceeds a threshold d

at k1 in Figure 18, and the sender leaves the discard state at this point). The question

here is how to determine the threshold. Theorem 1 in Section 3.3.2.4 states that a threshold

equal to the receiver buffer size achieves both consistent video quality and the necessary

condition of the maximum network utilization.

Note that the selected data si[k] is zero in the discard state, since no VOP of the ith

layer is selected for transmission. On the other hand, the available cumulative capacity is

not zero although it is smaller than the threshold. We can take advantage of the available

capacity to prefetch future VOPs of the ith layer.

The optimal quality adaptation algorithm is shown in Figure 20. This is an implemen-

tation of the state machine in Figure 19 with the threshold value of the receiver buffer size.

Note that this algorithm assumes the available network bandwidth information is known a

priori. When there is a transition from the select state to the discard state, it is necessary

to determine the next prefetch point. Line 16 implies that the point can be determined,

only when the available network bandwidth information is available.

In optimal quality adaptation, lower layers will exhibit less quality fluctuation and better

bandwidth utilization than higher layers, since quality adaptation is applied from the base

layer to the highest layer. The performance of the algorithm depends on both the receiver

buffer size bi and the available network bandwidth ri[k], since the cumulative capacity is

determined by the receiver buffer size and the available bandwidth. The UpdateBandwidth

function computes the residual available bandwidth for higher layers.
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1: procedure OptimalAdaptation (r[], xi[], bi)
2: Initialization: r1[k] = r[k], Si[k] = 0, Ci[k] = 0
3: where i ∈ {1, . . . , L} and k ∈ {1, . . . , N}
4: for i = 1 to L do
5: for k = 1 to N do
6: Ci[k] = min(Si[k − 1] + bi, Ci[k − 1] + ri[k])

7: if si[k − 1] = xi[k − 1] then
8: if Ci[k] ≥ Si[k − 1] + xi[k] then
9: si[k] = xi[k]

10: Si[k] = Si[k − 1] + xi[k]

11: else
12: si[k] = 0
13: Si[k] = Si[k − 1]

14: endif
15: else
16: if Ci[k] ≥ Si[k − 1] + bi then
17: si[k] = xi[k]

18: Si[k] = Si[k − 1] + xi[k]

19: else
20: si[k] = 0
21: Si[k] = Si[k − 1]

22: endif
23: endif
24: enddo
25: UpdateBandwidth(r[], Ci[], Si[])
26: enddo
27: endprocedure

Figure 20: Optimal quality adaptation algorithm. This is an implementation of the state
transition diagram with the threshold of receiver buffer size.
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3.3.2.4 Optimality of Algorithm

The optimality of quality adaptation is defined by the minimum quality variability while

maximizing network utilization. To achieve this goal, an optimal adaptation framework is

proposed in Section 3.3.2.1. Based on this framework, we need to maximize the sojourn time

in the select state and the discard state for minimum quality variability. Theorem 1 states

that a threshold value equal to the receiver buffer size achieves maximally consistent video

quality under the constraint of transmission resources utilization. Theorem 1 also implies

that the quality adaptation algorithm should exploit transmission resources as much as

possible to achieve both minimum quality variation and the necessary condition of maximum

network utilization.

Theorem 1 In the framework of the optimal quality adaptation, a threshold value equal to

the receiver buffer size satisfies 1) minimum video quality variability and 2) the necessary

condition of maximum network utilization.

Proof: see Appendix B.

3.3.3 Realtime Adaptation

The optimal quality adaptation algorithm in Section 3.3.2 assumes the available bandwidth

information is known in advance. Since the Internet does not provide any information about

the bandwidth evolution, we need an algorithm that minimizes quality variability without

using future bandwidth information. In this section, we develop a realtime adaptation

algorithm to satisfy this requirement.

The realtime adaptation algorithm is shown in Figure 21. The framework of the realtime

adaptation is similar to the optimal adaptation algorithm. The differences between the

realtime adaptation and the optimal adaptation are 1) the realtime adaptation makes a

decision on which layer and which VOP to be transmitted in real time (lines 4-6), and 2)

a sender makes a receiver prefetch future layer i VOPs when there is a transition from the

select state to the discard state (line 15).

The question is how to determine the prefetch point at the transition time. We consider
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1: procedure RealtimeAdaptation (r[], xi[], b)
2: Initialization: Yi[k] = 0, Ci[k] = 0, bi[k] = b,
3: where i ∈ {1, . . . , L} and k ∈ {1, . . . , N}
4: for k = 1 to N do
5: r̂[k] = SmoothBandwidth(r[k])
6: for i = 1 to L do
7: Ci[k] = min(Yi[k − 1] + bi[k], Ci[k − 1] + r[k])

8: if si[k − 1] = SELECT then
9: if Ci[k] ≥ Yi[k − 1] + xi[k] then
10: si[k] = SELECT
11: Yi[k] = Yi[k − 1] + xi[k]

12: else
13: si[k] = DISCARD
14: Yi[k] = Yi[k − 1]

15: NextSelect = EstimateNextSelect(r̂[k])
16: endif
17: else
18: if k ≥ NextSelect then
19: si[k] = SELECT
20: Yi[k] = Yi[k − 1] + xi[k]

21: else
22: si[k] = DISCARD
23: Yi[k] = Yi[k − 1]

24: endif
25: endif
26: UpdateBandwidth(r[k], Ci[k], Yi[k])
27: enddo
28: enddo
29: endprocedure

Figure 21: Realtime adaptation algorithm. This algorithm performs quality adaptation
without using the future bandwidth information.
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a moving average (MA) estimator to determine the prefetch point. The MA estimator is

simple and widely known for the TCP retransmission timeout estimation in [33]. Using the

MA estimator, the available bandwidth can be estimated by the weighted sum of smoothed

average (sr) and the mean deviation (d). The estimated available bandwidth (r̂) is given

by the following relationship and is implemented in the SmoothBandwidth function:

err ← r[k]− sr

sr ← sr + 0.125err

d ← d + 0.25(|err| − d)

r̂ ← sr + 4d

The prefetch point of layer i is determined by min([ bi
r̂ ], M) in the EstimateNextSelect

function, where M is the maximum duration to the prefetch point. This relationship is a

linear estimation of the prefetch point, such that the threshold will be equal to the receiver

buffer size. We limit the duration by M to prevent estimation errors from causing under-

utilization of transmission resources.

It should be noted that the performance of the realtime adaptation algorithm depends

on the available bandwidth estimator. Therefore, we need to ensure that the estimation

should be carried out effectively. The author in [56] investigated the characteristics of the

Internet delay variation. The measurement results show that the variation ranges primarily

on time-scales of 0.1 – 1 seconds, although frequently the time-scales can be much larger.

The authors in [78] investigated the stationarity of the Internet. One of the findings in

the research is that the stationarity of Internet path properties depends on time-scales.

Experimental results show that the stationarity of packet loss rate is well preserved on time-

scales of a few seconds to minutes. Since the throughput of a transport protocol is mainly

determined by delay and loss rate [25], [55], we can expect that the throughput stationarity

is maintained on time-scales of a few seconds to minutes. The results in [78] show that

we can expect a few minutes of stationarity to prevent available bandwidth from varying

by more than ±10%. Therefore, we can expect reasonable performance of the bandwidth

estimator by limiting the region of operating points (i.e., by setting the maximum duration

M to a few seconds or a few minutes).
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3.4 Evaluation

In this section, we show results from experiments by which we evaluate our algorithms

(the offline optimal algorithm and realtime adaptation) and compare them to the baseline

composed algorithm. The main goal is to evaluate the performance of the algorithms and the

impact of parameters, such as the receiver buffer size or transport protocols, on perceptual

video quality. The experimental results including encoded video traces, network simulation

script, and decoded video are available at the companion web site [14].

3.4.1 Rate Variability

In this section, we investigate the rate variability of scalable encoded video using the MPEG-

4 FGS codec. MPEG-4 FGS provides an efficient scalable video coding and is highly adapt-

able to the bandwidth fluctuation by distributing the enhancement layer data over a wide

range of bit rates [47], [59].

The MPEG-4 FGS structure consists of a base layer, and one or two enhancement layers.

Two types of enhancement layers are defined in hybrid temporal-SNR scalability: 1) SNR

FGS layer contributes to enhancing video quality by adding DCT coefficients with a reduced

quantization step size which leads to highly accurate DCT coefficients and high quality

video. 2) Temporal FGS layer is designed to improve temporal resolution by providing a

higher frame rate.

Figure 22 shows the data rate of an encoded 175-second scene from the A river runs

through it movie. The video sequence is generated by a software MPEG-4 FGS codec in [59].

Specific encoding parameters are as follows: CIF resolution, 24 frames/sec, GOP size being

12, and the number between anchor frames being 3. The average data rates are 160kbps

in the base layer, 582kbps in the FGS layer, and 1.27Mbps in the FGST layer, hence the

overall average data rate is approximately 2.0Mbps. It should be noted that MPEG-4 FGS

incurs bandwidth overhead as much as 672kbps compared with non-scalable coding (i.e.,

the data rate of a single layer encoded video is 1.33Mbps at the same quality). This is

because non-scalable coding is optimized at a specific data rate, whereas MPEG-4 FGS is

optimized over a data rate range [47]. Authors in [38] investigated the effect of the overhead
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in detail by comparing layering and stream replication in video multicasting.

Figure 22 shows all layers exhibit significant rate variability. The variability spans

7.4kbytes in the base layer, 16.5kbytes in the FGS layer, and 16.4kbytes in the FGST layer.

To achieve optimal layering, we need to investigate the relative importance of the two

types of enhancement layer. Figure 23 shows two possible implementations of the hybrid

temporal-SNR scalability structure. The structure in Figure 23 (a) places emphasis on the

FGS layer to improve video quality, while the structure in Figure 23 (b) increases temporal

resolution before improving video quality. Since there is a tradeoff between the picture

quality and temporal resolution, a sender has to choose an appropriate structure based on

the characteristics of a video. Typically, a video with slow motion favors the structure in

Figure 23 (a), whereas a video with high motion does the structure in Figure 23 (b). In this

research, the structure in Figure 23 (a) is employed, since the degree of the motion of the

movie is relatively low (i.e., the base layer is considered as layer 1, the FGS layer as layer 2,

and the FGST layer as layer 3).

3.4.2 Bandwidth Variability

We generate bandwidth variability resulting from each underlying transport protocol over

the single bottleneck topology: senders are arranged on one end of a link, and receivers

on the other end. All links except the bottleneck link have sufficient capacity so that any

packet drop occurs at the bottleneck link. The bottleneck link capacity is set to 3Mbps and

link delay to 20ms, whereas the access links have 100Mbps and 2ms delay. We run ns-2

[54] experiments over the network model. To model bandwidth variability, we consider

the throughput experienced between a TFRC sender and a TFRC receiver, or between a

TCP sender and a TCP receiver. TFRC throughput is measured by counting the number

of packets from the receiver-side router to the TFRC receiver, and TCP throughput is

measured between the receiver-side router to the TCP receiver. To simulate a realistic

background traffic, a 700kbps UDP flow is generated by superposing 100 ON/OFF sources

of pseudo nodes which have the Pareto distribution [75].

We consider the use of our algorithms over both TCP and TCP friendly rate control
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Figure 22: Data rate variability of a scalable encoded video. The video sequence is
generated from A river runs through it using an MPEG-4 FGS codec.
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Figure 23: MPEG-4 FGS hybrid scalability structures. Structure (a) improves video
quality first and structure (b) increases temporal resolution first.

(TFRC). Since TCP is the dominant protocol in the Internet, it is reasonable to employ

TCP for video streaming. However, TCP has been regarded as inappropriate for video

streaming, since the nature of additive increase multiplicative decrease incurs significant

data rate variability. TFRC was proposed to overcome the disadvantage of TCP and provide

a congestion control mechanism with TCP fairness and smoothly-changing data rate that

leads to reduced bandwidth variability [25].

To accommodate received packets, we need to allocate buffer space to each layer. Based

on the relative data rates, we assign 10% of the space to the base layer, 30% to the FGS layer,

and 60% to the FGST layer respectively1: (e.g., if a receiver is equipped with 100kbytes

buffer, allocated buffer sizes for base, FGS, and FGST layers are 10kbytes, 30kbytes, and

60kbytes each).

3.4.3 TFRC Performance with a Long Duration Background Traffic

We first compare the performance of quality adaptation algorithms when a TFRC flow

competes with a TCP and a Pareto flows. It is assumed that the characteristic of the

background traffic does not change during the experiment.

Figure 24 shows the bandwidth variability of TFRC, where the throughput is averaged

over 150ms intervals. Although TFRC is slowly responsive to packet loss that achieves

reduced variability of available bandwidth, the sluggishness of TFRC leads to an unnecessary

1Note that this provides slightly more buffering for base layer than would be proposed in [66]. We found
this to be necessary to protect against losses resulting from burstiness of the base layer.
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Figure 24: TFRC throughput with a long duration background traffic. TFRC exhibits
small rate variability, slow response time, slightly less throughput compared with TCP.

decrease in throughput and an increase in response time under the dynamic environment

[4]. Figure 24 demonstrates that the steady state throughput is 930kbps, slightly lower than

the fair share, and that the response time to reach the steady state is 5 seconds.

In Figure 25 and 26, we present experimental results of the composed algorithm and

the optimal adaptation algorithm in terms of the layer selection function, φ(si[k]), which is

defined by φ(si[k]) = 0 if si[k] = 0, and φ(si[k]) = 1 otherwise (i.e., 0 stands for discarded

VOPs and 1 for selected VOPs). Note that both algorithms assume a knowledge of available

bandwidth information. In the composed algorithm, we allocate half of the receiver buffer

to the rate smoothing buffer and the remaining half to the quality smoothing buffer.

Figure 25 shows that the composed algorithm can reduce the quality variability by

increasing the receiver buffer size. The quality transition in the FGST layer is 74 for

100kbytes buffer, but it is reduced to 11 for 1Mbytes buffer, where the quality transition of

the ith layer is defined by
∑N

k=1 Ii(k) and

Ii(k) =


1, if φ(si[k − 1]) 
= φ(si[k])

0, otherwise.
(1)

Figure 26 shows the results of the optimal quality adaptation algorithm. Compared with

Figure 25, the results show that the quality variability is significantly decreased and the
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Figure 25: Performance of the composed algorithm over TFRC. Quality transitions are
reduced as the receiver buffer size is increased.
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Figure 26: Performance of the optimal adaptation algorithm over TFRC. Quality tran-
sitions are reduced as the receiver buffer size is increased and smaller than that of the
composed algorithm
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length of run is increased, where a run is defined by a sequence of consecutive VOPs. The

quality transition can also be decreased when we increase the receiver buffer size: there are

39 transitions in the FGST layer for 100kbytes buffer, but transitions are reduced to 7 for

1Mbytes buffer. Note that a lot of initial VOPs in enhancement layers are dropped because

of the slow response time of TFRC. Although we set the startup latency to 3 seconds to

prefetch a few initial VOPs, it turns out to be not enough to accommodate enhancement

layers, since the average network throughput is significantly lower than the aggregated data

rate of encoded video.

We also compare the realtime adaptation with the threshold-based streaming algorithms

in [66] and [67] (note that these algorithms do not require a knowledge of future bandwidth).

The authors in [66] first proposed a static threshold policy to minimize loss probability in

the base and the enhancement layers. They extended the idea and proposed an algorithm in

[67] that adjusts threshold values dynamically. We extend the original algorithms to three

layers as shown in Appendix C.

Figure 27 and 28 show that threshold-based streaming algorithms exhibit a lot of quality

transitions and a small average run. When the buffer size is small, the static threshold algo-

rithm in Figure 27 incurs significant quality fluctuations. When the buffer size is increased,

both threshold-based algorithms show similar performance. Note that the performance im-

provement of the dynamic threshold algorithm is marginal, even though the buffer size is

increased. This is because the threshold values that determine relative resource allocation

are adjusted by the data rate of encoded video and the measured bandwidth throughput,

but not affected by the buffer size.

Figure 29 presents the performance of the realtime adaptation. Experimental results

show 83 quality transitions in the FGST layer for 100kbytes buffer, however it is reduced

to 22 for 1Mbytes buffer. Compared with Figure 27 and 28, the performance of realtime

adaptation is better than thresold-based streaming. This is because the objective of the

threshold policy was to minimize loss probability, not to maximize perceptual quality.

We investigate the performance for other video sequences as well: A river runs through

it, Jurassic park I, and Starwars: episode I. We measure the performance in terms of
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Figure 27: Performance of the static threshold streaming over TFRC. Large number of
quality transitions are observed for small buffer size.
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Figure 28: Performance of the dynamic threshold streaming over TFRC. (b) shows that
the performance improvement is marginal in spite of the buffer size increase.
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Figure 29: Performance of the realtime adaptation over TFRC. Quality transitions are
reduced as the receiver buffer size is increased. The performance is comparable to the
composed algorithm and the optimal adaptation algorithm.

the weighted average quality transition (WAQT) and the weighted average run length

(WARL) [40]:

WAQT =
∑L

i=1

∑N
k=1 wiIi(k)/

∑L
i=1 wi

WARL =
∑L

i=1

∑ki
j=1

winj

ki
/

∑L
i=1 wi,

where wi is a relative weight for each layer, Ii(k) is defined in (1), ki is the number of runs

in the ith layer, and nj is the length of the jth run. Since lower layers are more important

than higher layers, wi is defined by w1 = 0.6, w2 = 0.3, and w3 = 0.1. Note that the weights

are determined in an inversely proportional manner with respect to the allocated buffer size

in Section 3.4.2.

Table 1 shows the performance of all algorithms. In all cases, the optimal adaptation

algorithm exhibits the smallest WAQT, since the algorithm is optimized to minimize quality

variability. Moreover, the optimal adaptation algorithm shows the largest WARL. Hence,

we can expect the optimal adaptation generates the longest video with the smallest quality

transitions. The results also show that the performance of the realtime adaptation is not as

good as optimal adaptation, but it is comparable to that of the composed algorithm. This

is not surprising since both the optimal and composed algorithms operate with a knowledge

of future bandwidth variability.
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Table 1: Experiment results for 3 video sequences (THR: dynamic threshold streaming,
RT: realtime adaptation, COMP: composed algorithm, OPT: optimal adaptation algorithm)

Buffer size 100kbytes
Algorithm THR RT COMP OPT

WAQT A river runs through it 80.9 25.1 23.3 15.3
Jurassic park 47.5 7.2 7.0 2.0

Starwars: episode I 107.1 8.0 7.2 1.6
WARL A river runs through it 1451 1464 1465 1478

Jurassic park 1799 2164 2163 2179
Starwars: episode I 60 2163 2163 2183

Buffer size 1Mbytes
Algorithm THR RT COMP OPT

WAQT A river runs through it 79.0 2.5 2.6 1.0
Jurassic park 40.1 1.0 1.6 0.4

Starwars: episode I 62.5 1.0 1.6 0.6
WARL A river runs through it 1450 2122 1804 2152

Jurassic park 2160 2165 2206 2355
Starwars: episode I 107 2168 2206 2237

3.4.4 TFRC Performance with a Dynamic Background Traffic

We now investigate the performance of quality adaptation algorithms when a competing

flow exhibits significant dynamic behavior. To model dynamic network condition, we add an

ON/OFF CBR flow that starts at 50 seconds and stops at 100 seconds. When it is active,

the CBR source generates a 600kbps traffic. Figure 30 shows the experimental result of

the TFRC throughput. Observe that the responsiveness of the TFRC protocol makes the

throughput decreased during the active period. When the CBR source goes idle, the TFRC

throughput is increased again.

Performances of quality adaptation algorithms with 1Mbytes buffer are compared in

Figure 31. Figure 31 (a) and (b) show the performance of the composed algorithm and

the optimal adaptation algorithm. Compared with the long duration background scenario

in Section 3.4.3, it is observed that the performances of quality adaptation algorithms

are degraded during the congestion period (e.g., the composed algorithm and the optimal

adaptation algorithm as well as the realtime adaptation show 4 more quality transitions

in the FGS layer than Section 3.4.3 during the VOP index of [400, 800]). This is due
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Figure 30: TFRC throughput under a dynamic background traffic. A competing flow is
active during [50, 100] seconds.

to the decrease of TFRC throughput to achieve the fair-share of network bandwidth: the

throughput decrease leads to the decrease of cumulative capacity which makes a sender

leave the select state. Note that base layer still does not show any quality variability,

since lower layer is accommodated before higher layers.

Figure 31 (c) and (d) show the performance of the dynamic threshold streaming and the

realtime adaptation. Figure 31 (c) shows that the dynamic threshold streaming exhibits a

lot of quality transitions in both FGS and FGST layers. However, the realtime adaptation

in Figure 31 (d) shows significantly less quality transitions in both layers.

Note that the available bandwidth estimator in Section 3.3.3 gets benefit from the

TFRC protocol: since the slow change of the TFRC throughput will reduce the estimated

mean deviation, the estimated available bandwidth does not vary much, and therefore the

estimation error will be reduced.

3.4.5 TCP Performance with a Long Duration Background Traffic

In this section, we compare the performance of quality adaptation algorithms over TCP.

Figure 32 shows the bandwidth variability of TCP, when there is a long duration back-

ground traffic. As reported in [4], a TCP flow achieves more throughput than a TFRC flow
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(d) Realtime adaptation

Figure 31: Performance comparison over TFRC with 1Mbytes buffer. Performance of
quality adaptation algorithms are degraded during the congestion period.
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in dynamic network conditions, since the fast responsiveness of TCP leads to an aggres-

sive behavior. Experimental result shows that the average throughput of the TCP flow is

1.1Mbps, 15% greater than that of the TFRC flow in Section 3.4.3. However, high sensi-

tivity to packet losses results in significant small time-scale variability as much as 1.5Mbps

even in the steady state.
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Figure 32: TCP throughput under a long duration background traffic. TCP exhibits fast
response time, more throughput, and large rate variability.

Figure 33 (a) and (b) show the performance of the composed algorithm and the optimal

adaptation algorithm when running over TCP. Compared with Figure 25 and 26, we can

find that the performance is significantly improved especially in the transient state, such

that the composed algorithm does not exhibit any quality transitions in the FGS layer.

We can also find that quality transitions are reduced and the length of run is increased.

Note that the performance in the steady state is also better than TFRC. For example,

if we consider the steady state performance in the FGST layer in optimal adaptation, the

number of quality transitions in Figure 33 (b) is smaller than Figure 26 (b), and the average

run length of TCP is longer than TFRC. Two reasons account for the superiority of TCP:

1) TCP achieves more throughput than TFRC in dynamic conditions, 2) although TCP

exhibits significant small time-scale variability, it can be successfully accommodated by the

receiver buffer.
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(d) Realtime adaptation

Figure 33: Performance comparison over TCP with 1Mbytes buffer. Overall performance
is better than TFRC, since TCP achieves more throughput in dynamic conditions, and
small time-scale variability can be accommodated by the receiver buffer.
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Figure 33 (c) and (d) show the performance of the dynamic threshold streaming and

the realtime adaptation that do not require prior knowledge of the available bandwidth

information. The results show that the dynamic threshold streaming exhibits a lot of

quality transitions, even though 1Mbytes receiver buffer is used. However, the realtime

adaptation in Figure 33 (d) does not show any quality transitions in both the base and the

FGS layers. Compared with Figure 33 (a), we can find that the realtime adaptation shows

comparable performance to the composed algorithm.

3.4.6 TCP Performance with a Dynamic Background Traffic

We also investigate the performance over TCP when a dynamic background traffic exists.

Figure 34 shows TCP throughput from the network simulation. We use this throughput as

a model of bandwidth variability. As reported in [4], a TCP flow achieves more throughput

than a TFRC flow in dynamic network conditions. Fast responsiveness of TCP leads to

an aggressive behavior before it reaches the steady state. Even in the steady state, TCP

achieves slightly more throughput than TFRC. However, small time-scale variability is

significant as much as about 3Mbps in the steady state, since TCP is very sensitive to

packet losses.
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Figure 34: TCP throughput under a long duration background traffic. A competing flow
is active during [50, 100] seconds.
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Figures 35 (a) and (b) show the performance of the composed algorithm and the optimal

adaptation algorithm when running over TCP. Compared with Figure 31, we can find that

the performance is significantly improved, especially in the transient state. Note that the

performance in the steady state is still better than TFRC. For example, if we consider the

FGST layer after 400 VOPs in optimal adaptation, the number of quality transitions in

Figure 31 (b) is equal to Figure 35 (b) but the average run length is longer than TFRC.

Figure 35 (c) and (d) show the performance of the dynamic threshold algorithm and

the realtime adaptation which do not require prior knowledge of the available bandwidth

information. The results show that the dynamic threshold algorithm exhibits a lot of quality

transitions. On the other hand, in Figure 35 (d), the realtime adaptation shows significantly

less quality transitions in both the FGS and the FGST layers. Compared with Figure 31, we

can find that the realtime adaptation shows similar performance to the composed algorithm.

In summary, it is observed that TCP throughput exhibits both small time-scale and large

time-scale variability, and the throughput is decreased when the background traffic is active.

However, since small time-scale variability can be accommodated by the receiver buffer, all

quality adaptation algorithms reduce quality variability significantly. To accommodate large

time-scale variability caused by the active background traffic, a few FGS layer VOPs are

dropped during the VOP index of [400, 800]. However, the base layer does not show any

quality variability, and the overall performance is comparable to Figure 31.

3.5 Conclusion

In this chapter, we consider the problem of providing perceptually good quality of a scal-

able encoded VBR video. The problem is challenging because both transmission resources

and encoded video exhibit multiple time-scale variability. To accommodate the variabil-

ity, we develop an optimal adaptation algorithm that minimizes quality variability while

increasing the usage of the available bandwidth. We prove the optimality that a transition

threshold should be equal to the receiver buffer size using the concept of cumulative capac-

ity. We then propose a realtime adaptation algorithm that does not require a knowledge

of future bandwidth variability. Experimental results demonstrate that quality adaptation
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(d) Realtime adaptation

Figure 35: Performance comparison over TCP with 1Mbytes buffer. To accommodate
large time-scale variability caused by the network congestion, a few FGS layer VOPs are
dropped.
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algorithms reduce the quality variability significantly and that the optimal quality adap-

tation algorithm exhibits the best performance. We also show that our quality adaptation

provides better results when running over TCP as compared with TFRC. This is because

TCP achieves higher throughput, and small time-scale variability of TCP can be accom-

modated by receiver buffer. Because perceptual quality is hard to assess by graphs and

numbers alone, we have provided videos on a companion web site [14] which demonstrates

the perceptual differences among the different algorithms and options.
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CHAPTER 4

VIDEO STREAMING OVER TCP

4.1 Motivation

Since TCP is the dominant protocol in the Internet, it is reasonable to employ TCP for video

streaming: recent measurement study in [74] has reported that 44% of video streaming flows

are actually delivered over TCP. Especially, in many situations, video streaming servers are

located behind firewalls that permit only pre-specified port numbers. In this scenario, video

streaming over TCP is the only choice to get around the firewalls using well-known port

numbers (e.g., HTTP or RTSP). Also, the reliable packet delivery of TCP is important,

when error resilience is not implemented in a video codec.

While the use of TCP provides reliable video stream delivery, it is difficult to provide

good quality of streaming video over TCP: 1) the sawtooth behavior of additive increase and

multiplicative decrease (AIMD) incurs significant data rate variability, and 2) the use of re-

transmission timeouts may introduce unacceptable end-to-end delay, and the retransmitted

data may be delivered too late for display.

These drawbacks of TCP can be mitigated to some extent through the use of receiver-

side buffering (e.g., see [18], [45], [66]). The buffer size has to be large enough to insure

that video data is not lost. In current practice, however, there are no guidelines for the

provisioning of the receiver buffer, and smooth playout is insured through over-provisioning.

We are interested in memory-constrained devices (e.g., mobile phones or PDAs) where it

is desirable to determine the right playout buffer size. This chapter, therefore, considers the

question of how large the playout buffer should be in order to achieve desired performances

for a video streaming over TCP. To this end, we characterize video streaming over TCP in

a systematic and quantitative manner [42]. Our starting point is an analytic model of a

video streaming system. Based on this model, we quantify buffer size requirements of three

scenarios: 1) when TCP throughput matches video encoding rate, 2) when TCP throughput
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is smaller than the encoding rate, and 3) when TCP throughput is limited by the maximum

window size. Both simulation results and the Internet experiments validate our model and

demonstrate the minimum buffering delay can achieve desired quality with high accuracy.

The remainder of the chapter is organized as follows. In Section 4.2, we present a

video streaming model and derive buffer size requirements. Section 4.3 shows simulation

results to validate our model. Section 4.4 reports on the Internet experiment results we

have conducted. Related work is described in Section 4.5. This chapter is concluded in

Section 4.6.

4.2 Model and Analysis

In this section, we present a video streaming model over TCP. Based on the model, we

derive buffer size requirements for three different scenarios. 1) when TCP throughput

matches video encoding rate, 2) when TCP throughput is smaller than the encoding rate,

and 3) when TCP throughput is limited by the maximum window size.

4.2.1 Video Streaming Model over TCP

Figure 36 shows a video streaming model consisting of a sender and a receiver. We assume

that the sender transmits CBR video packets over a unicast TCP connection, and that the

receiver is equipped with a playout buffer in front of a video decoder. The decoder waits to

fill the buffer before displaying video. There are two types of buffering delay:

• Initial buffering delay : to accommodate initial throughput variability or inter-packet

jitters, it is needed to employ initial buffering delay. While a streaming application

achieves more tolerance with larger initial buffering, it increases the startup latency

and response time.

• Rebuffering delay : the decrease of TCP throughput might cause a playout buffer

to be empty. When this happens, a decoder stops displaying video until it receives

enough video packets. Note that rebufferings take place in the middle of a session,

and therefore buffering delay requirements for a long video stream are determined by

the congestion avoidance algorithm of TCP.
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Figure 36: A video streaming model over TCP. λk(p) stands for the packet arrival rate
and λ̂(p) for the playout rate at a receiver.

Let λk(p) be the arrival rate of video packets at round k and λ̂(p) be the video encoding

rate1, where p is the packet loss rate of a flow from a sender to a receiver, and a round

is defined by a duration between the transmission of packets and the reception of the first

acknowledgment (ACK) in a congestion window. It is assumed that a round is equal to the

round-trip time (RTT) and independent of the congestion window size.

Figure 37 (a) shows a typical behavior of a TCP flow. We consider the TCP Reno

model, since it is one of the most popular implementations in the current Internet [55]. In

this model, the steady state throughput is determined by the congestion window size which

is adjusted by packet losses. A packet loss can be detected by either triple-duplicate ACKs

or timeouts, where we denote the former events by TD and the latter by TO.

Consider a TD period (TDP) in Figure 37 (a). Each TDP starts immediately after

triple-duplicate ACKs and increases the congestion window size by 1/b until triple-duplicate

ACKs are encountered again. However, when multiple packets are lost and less than three

duplicated ACKs are received, a TO period (TOP) begins. In each TOP, a sender stops

transmitting data packets for a timeout interval and retransmits non-acknowledged packets.

Note that the timeout interval in a TOP increases exponentially until it reaches 64T0.

On the other hand, Figure 37 (b) shows the playout characteristic at a receiver, where

it is assumed that the video playout rate is two packets worth of data per RTT. We can

observe that, if a right size of receiver buffering is employed, a consistent CBR playout can

be achieved without any interruption. Since quality degradations are generally caused by

frequent buffer underruns that result in playout disruptions or freezings of images, we are

interested in providing consistent video quality with interruptions as small as possible.

1Note that λk(p) is a function of time specified by a round k, whereas there is no subscript on λ̂(p), since
the data rate fed into a video decoder is assumed to be CBR.
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Figure 37: An illustration of receiver buffering, where the ‘×’ marks specify lost packets.
The packet arrival rate in (a) demonstrates the variability of TCP. On the other hand, (b)
shows the consistent playout rate by exploiting right size of buffering delay.

In this research, the performance of a video streaming application is evaluated by the

buffer underrun probability and the disruption frequency:

• The buffer underrun probability is defined by n/N , where n is the number of buffer

underrun events, and N is the number of epochs in a video. An epoch is defined by

the average of ZTD + ZTO, where ZTO is the duration of a TOP, and ZTD is the

duration between two TOPs. Note that a ZTD consists of one or more TDPs.

• The disruption frequency is defined by n/T [69], where n is the number of buffer

underrun events, and T is the duration of a video streaming session. Since T consists of

N epochs, a disruption frequency can be expressed by the ratio of the buffer underrun

probability to the duration of an epoch.

Since a receiver is either in a TDP or a TOP, the buffer underrun probability at time t

is defined by the sum of conditional probabilities, such that

P{qmin ≤ 0} = P{qmin ≤ 0|t ∈ ZTD}P{t ∈ ZTD}+ P{qmin ≤ 0|t ∈ ZTO}P{t ∈ ZTO}. (2)
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Since it is assumed that λk(p) packets are received, and λ̂(p) packets are drained at

round k, the playout buffer size is given by

qk = qk−1 + λk(p)− λ̂(p), (3)

where k = 1, 2, . . . , Xi; Xi is the number of round where a TD loss is detected; and q0 is

the playout buffer size at round 0. Notations are summarized in Table 2.

Table 2: Notations

q0 playout buffer size at round 0
qk playout buffer size at round k
qmin minimum buffer size
p packet loss rate
R round-trip time
λk(p) arrival rate of video packets at round k:

λk(p) =

{
Wi−1(p)

2 + k
b − 1 packets/RTT, in TDP i

0, otherwise.
λ̂(p) video encoding rate
b number of packets that are acknowledged by an ACK
Wi congestion window size at the end of TDP i
Xi number of round where a TD loss is detected
Yi number of packets sent in TDP i
αi the first packet lost in TDP i
βi number of packets sent in the last round
T0 retransmission timeout
Pu desired buffer underrun probability
Wm maximum window size

In a TDP, since the packet arrival rate is greater than zero, and the rate is increased

linearly until it encounters triple duplicate ACKs, the playout buffer size at round k is

qk = q0 +
k∑

n=1

[λn(p)− λ̂(p)]

= q0 +
k2

2b
+

[Wi−1(p)− 2λ̂(p)− 1]k
2

. (4)

On the other hand, since all packets are lost in a TOP, and no packet is delivered to a

receiver, the playout buffer size at round k in a TOP is2

qk = qk−1 − λ̂(p)

= q0 − kλ̂(p). (5)

2We assume that a round in ZTO is equal to RTT, although no ACK packet is received during ZTO.
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4.2.2 When TCP Throughput Matches Video Encoding Rate

We first investigate the performance when TCP throughput matches video encoding rate.

This is the case when the video encoding rate is determined by the access link bandwidth,

and the available bandwidth is limited by the access link capacity. For example, many video

streaming websites provide multiple copies with identical content, generated at different data

rates. A receiver selects an appropriate stream based on the access link capacity.

Since we assume that the video encoding rate is equal to the TCP throughput and does

not change over time, the encoding rate is given by [55]

λ̂(p) =
1√

2bp
3 + T0

R min(1, 3
√

3bp
8 )p(1 + 32p2)

packets/RTT.

From conditional buffer sizes in (4) and (5), we can derive the buffer requirement under

which the probability that the unconditional minimum buffer size goes non-positive. Equa-

tion (6) states that, given a network condition characterized by the packet loss rate (p) and

RTT (R), the playout buffer size that achieves desired buffer underrun probability (Pu) is

q0 ≥ 0.16
pPu

[1 +
9.4
b

(
T0

R
)2 min(1, 3

√
3bp

8
)p(1 + 32p2)]. (6)

The proof of (6) is given in Appendix D.1.

Given playout buffer size, required buffering delay is

d0 =
q0

B(p, R)
, (7)

where B(p, R) is the steady state TCP throughput in [55]. Therefore, d0 corresponds to the

time delay for buffered packets to be drained.

The duration of an epoch is also given in [55]. An epoch for a congestion limited TCP

flow is given by

E[ZTD + ZTO] =
R(

√
2b
3p + 1)

min(1, 3
√

3bp
8 )

+ T0
f(p)
1− p

, (8)

where f(p) = 1+p+2p2+4p3+8p4+16p5+32p6. Note that a TCP connection is defined by

congestion limited if the congestion window size is greater than the sender/receiver window
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size. Otherwise, it is defined by window limited. We will investigate the effect of the window

size limitation in Section 4.2.4.

4.2.3 Impact of TCP Throughput Under-Provisioning

When a streaming flow is congested inside network, and TCP throughput is decreased

less than the video encoding rate, it is difficult to achieve desired video quality. The only

solution is to employ a large amount of buffering delay so that a playout buffer not only

accommodates TCP rate variability but also prefetches part of a video stream. In this

section, we investigate the effect of TCP throughput under-provisioning and derive the

buffer size requirement to achieve desired buffer underrun probability.

Equation (9) shows required buffer size to achieve desired buffer underrun probability.

q0 ≥ 0.16
pPu

[1 +
9.4
b

(
T0

R
)2 min(1, 3

√
3bp

8
)p(1 + 32p2)] +

√
2b
3p(λ̂(p)− E{λk(p)})
Pu min(1, 3

√
3bp
8 )

, (9)

where we assume the average TCP throughput E{λk(p)} is smaller than the video encoding

rate λ̂(p). The proof is given in Appendix D.2.

Compared with (6), (9) shows that required buffer size is increased by the second addi-

tional term. This term is proportional to the difference between the video encoding rate and

TCP throughput. Therefore, as the difference increases, required buffer size also increases.

Note that the duration of an epoch is the same as (8), since it is congestion limited.

4.2.4 Impact of Window Size Limitation

TCP throughput is sometimes limited by the receiver or sender side buffer size. The window

size advertisement from a receiver was designed for end-to-end flow control, such that a

sender should not transmit more data than can be accommodated by a receiver’s capability.

Some video streaming applications transmit packetized video at the data rate at which

it was encoded. In this scenario, a sender does not exploit the whole available bandwidth,

even the amount of available bandwidth is greater than the video encoding rate. Note that

this behavior exhibits the same effect as the sending buffer limitation, since packets are

trickled into the network at the data rate of the window size per RTT.
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Equation (10) shows required buffer size to achieve desired buffer underrun probability.

Observe that it has a simple form compared with congestion limited flows.

q0 ≥ b

8Pu
(Wm + 1)2 (10)

We present the proof in Appendix D.3.

The duration of an epoch in window limited flows is given in [55], such that

E[ZTD + ZTO] =
R( b

8Wm + 1−p
pWm

+ 2)

min(1, 3
Wm

)
+ T0

f(p)
1− p

. (11)

4.3 Evaluation

In this section, we present simulation results by which playout disruption characteristics

are evaluated. The experimental results including simulation scripts are available in the

companion website [15].

4.3.1 Experimental Setup

TCP throughput dynamics are generated over a single bottleneck topology. The number of

TCP streaming flows is set to 5 in each topology. All access links have sufficient capacity so

that any packet drop occurs at the bottleneck link: the access links have 100Mbps capacity

and 2ms delay, whereas the bottleneck link has 10Mbps capacity and 40ms delay.

We run ns-2 [54] simulations over this topology. To model the TCP throughput dy-

namics, we use the throughput experienced between streaming senders and receivers: the

throughput is measured by counting the number of packets delivered to a receiver. All data

packets are 1200 bytes long. The queue management algorithm running on intermediate

routers is RED, where min thresh, max thresh, the queue size of a router are 0.25, 1.25,

and 2.5 times of the bandwidth delay product respectively, as suggested in [4].

To construct dynamic network characteristics, competing traffic (or cross traffic) is gen-

erated by triggering persistent FTP flows 10 seconds prior to TCP streaming sessions. The

number of cross traffic flows is varying to investigate the effect of the packet loss rate on the

performance of TCP streaming. Unless otherwise specified, following sets of configurations

are examined, each of which generates 10 traces using random seeds.
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• Configuration 1 : the number of competing FTP flows is assumed to be 5 that leads to

122.5ms RTT, 0.8% packet loss rate, and 1Mbps throughput on average. The duration

of simulation time is set to 600 seconds.

• Configuration 2 : the number of competing flows is set to 10. Measured network

characteristics are 130.6ms RTT, 1.43% packet loss rate, and 666.3kbps throughput.

We employ 600 seconds simulation time.

• Configuration 3 : the number of competing flows is 15. Measurement results are

138.6ms RTT, 2.05% packet loss rate, and 499.4kbps throughput. Simulation time is

also 600 seconds.

In each configuration, TCP throughput is measured by counting the number of delivered

packets. To estimate the packet loss rate of a congestion limited flow, we employ the TCP

throughput equation in [55]. The equation provides an analytic relationship between the

packet loss rate, RTT, and TCP throughput. However, as the relationship is too complicated

to yield a closed form of a packet loss rate as a function of throughput and RTT, we construct

an iterative algorithm based on the bisection method [58]. Since the TCP throughput

equation is continuous and an estimated throughput must lie in the packet loss rate of [0, 1],

the existence of a root is guaranteed by the intermediate value theorem. Also the estimated

packet loss rate is unique, since the estimated throughput is monotonically decreasing as

the packet loss rate increases.

The performance of TCP streaming experiments is evaluated by the buffer underrun

probability and the disruption frequency, defined in Section 4.2.1. Note that, since the sim-

ulation time in each simulation trace is 600 seconds, the number of epochs is the simulation

time divided by the duration of an epoch.

4.3.2 Experiment 1: Matching TCP Throughput

In the first experiment, we assume that the average TCP throughput matches video encoding

rate. We investigate 50 TCP streaming flows, since a configuration contains 10 traces, each

of which contains 5 TCP streaming flows.
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Figure 38 (a) shows the buffer underrun characteristics of configuration 1. The solid

line specifies the minimum buffering delay requirements to achieve desired buffer underrun

probability. Each marker corresponds to a measurement result that exhibits a specific

number of buffer underrun events in a TCP streaming flow. Using (7), when RTT and the

packet loss rate are 122.5ms and 0.8%, buffering delays targeting desired buffer underrun

probabilities of 8%, 4%, and 2% are 2.87, 5.74, and 11.48 seconds respectively. Experimental

results show that most of measured buffer underrun probabilities are distributed below the

solid line, and it is observed that 96% of all flows exhibit equal or less than desired buffer

underrun probability when buffering delay is 2.87 seconds (i.e., buffer underrun probabilities

of 48 flows are at most 8%). The accuracy is improved as buffering delay is increased: 98%

flows achieve 4% buffer underrun probability for the 5.74 second delay, and all flows achieve

less than 2% buffer underrun probability for the 11.48 second delay.

Note that the buffering delay characteristic is a non-linear curve. For example, when

buffering delay is increased from 4 seconds to 10 seconds, desired buffer underrun probability

is reduced by 3.5%. However, when buffering delay is increased from 10 seconds to 16

seconds, the probability is reduced by only 0.8%. Therefore, a system designer can find a

point of marginal return using the non-linear characteristics.

Figure 38 (b) shows the buffer underrun probability of configuration 2. Required buffer-

ing delays targeting Pu = 8%, 4%, and 2% are 2.97, 5.94, and 11.88 seconds respectively.

Compared with Figure 38 (a), the accuracy of analytic performance is improved: all flows

achieve less buffer underrun probabilities than desired buffer underrun probabilities.

Figure 38 (c) shows the buffer underrun probability of configuration 3. Required buffer-

ing delays for Pu = 8%, 4%, and 2% are 3.42, 6.84, and 13.68 seconds respectively. Exper-

imental results demonstrate the same characteristics as Figure 38 (b), such that all flows

achieve desired buffer underrun probability, and measured buffer underrun probabilities are

further reduced.

Figure 39 shows disruption frequency characteristics for configuration 1, 2, and 3. Since

the disruption frequency is expressed by the ratio of the buffer underrun probability to

the duration of an epoch, it exhibits the same characteristics as Figure 38, scaled by the
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Figure 38: Measured buffer underrun probability when TCP throughput matches video
encoding rate. Solid line specifies desired buffer underrun probability. Each marker specifies
a measured buffer underrun probability of a TCP flow.
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(c) Configuration 3

Figure 39: Measured disruption frequency when TCP throughput matches video encod-
ing rate. Note that the disruption frequency shows the same characteristic as the buffer
underrun probability.
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epoch length. Note that the disruption frequency is further decreased when packet loss

rate is small, since small packet loss rate yields a long epoch. For example, Pu = 8% in

configuration 1 results in 0.01Hz disruption frequency. On the other hand, Pu = 8% in

configuration 2 and 3 leads to 0.015Hz and 0.019Hz disruption frequencies.

4.3.3 Experiment 2: TCP Throughput Under-Provisioning

In the second experiment, we assume that TCP throughput is smaller than the video en-

coding rate by 10%: the encoding rates of configuration 1, 2, and 3 are assumed to be

1.1Mbps, 732.9kbps, 549.3kbps, respectively. However, it is assumed that buffering delays

are the same as in Section 4.3.2.

Figure 40 (a) shows the buffer underrun probability of configuration 1. From (9), the

number of buffer underrun events is increased significantly, since TCP throughput is not

sufficient to accommodate the encoded video. Compared with Figure 38 (a), desired buffer

underrun probabilities are increased by 4.75 times. In Figure 40 (b), desired buffer underrun

probabilities are 3.21 times greater than Figure 38 (b). Figure 40 (c) demonstrates similar

characteristics: desired buffer underruns are increased by 2.79 times on average.

Note that slight under-provisioning of available bandwidth incurs significant increase

of buffer underrun events. Conversely, slight increase of the video encoding rate is critical

to perceived visual quality: it is expected from experimental results that, when streaming

a CBR video, 10% under-provisioning of available bandwidth will incur more than twice

of buffer underrun events, and therefore perceived quality will be degraded significantly.

Therefore, end users should try to make a video streaming application operate on a well

provisioned environment for the maximum video quality.

4.3.4 Experiment 3: Window Size Limitation

In this experiment, we investigate the effect of the window size limitation on playout disrup-

tions. We assume that TCP streaming sessions are generated from persistent and buffer-

limited TCP flows with the maximum window size of Wm = 12. For fair comparison with

the results of Section 4.3.2 and 4.3.3, we employ different experiment settings from Sec-

tion 4.3.1, since the characteristic change of TCP streaming flows leads to the change of
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(c) Configuration 3

Figure 40: Measured buffer underrun probability when TCP throughput is less than video
encoding rate by 10%. Since TCP throughput is not sufficient to accommodate the encoded
video, the buffer underrun probability is increased significantly.
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measured network characteristics. In this section, dynamic network characteristics are gen-

erated by a link error model, such that the bottleneck link uniformly randomly discards

arriving packets, while competing traffic is disabled. The loss rate is set to 0.8%, measured

RTT is 89.7ms, and measured throughput is 1Mbps. Simulation time is set to 600 seconds,

and the duration of epoch is given by (11).

Figure 41 shows that measured buffer underrun probabilities are decreased significantly.

Compared with Figure 38 (a), measured buffer underrun probabilities are reduced by at

least four times. This is not surprising, since TCP flows with the window size limitation

exhibit highly smooth throughput, and therefore the TCP throughput variability can be

easily accommodated.

To assess the throughput variability of a congestion limited TCP flow and a window

limited TCP flow, we compare the coefficient of variation (CoV), which is defined by the

ratio of standard deviation to average of TCP throughput. Our measurements show that

measured CoV of TCP flows in this section (window limited flows) is 0.31. On the other

hand, measured CoV of the flows in Section 4.3.2 (congestion limited flows) is 0.44 which

accounts for 1.4 times larger throughput variability.
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Figure 41: Measured buffer underrun probability when TCP throughput is limited by the
maximum window size. Experiments are carried out over a link error model of the NS-2
simulator.
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4.3.5 Summary of Results

In our simulation study, we investigate buffer underrun characteristics to achieve desired

buffer underrun probability. Experimental results show that, when TCP throughput matches

video encoding rate, measured buffer underrun probabilities of more than 96% of streaming

flows are smaller than desired buffer underrun probabilities. In the case of TCP throughput

under-provisioning, measured buffer underrun probabilities are increased significantly: 10%

of bandwidth under-provisioning results in at least 2.8 times more buffer underruns. When

TCP throughput is limited by the maximum window size, it is observed that measured

buffer underrun probabilities are decreased, since TCP throughput variability is reduced.

Still, measured buffer underrun probabilities are smaller than desired buffer underrun prob-

abilities in both scenarios.

4.4 Internet Experiments

In this section, we present the Internet experiment results to validate our analysis and

simulation study in Sections 4.2 and 4.3.

4.4.1 Experiment Methodology

We first describe the Internet experiment methodology to evaluate the performance of video

streaming over TCP. We investigate playback disruption characteristics using Windows

Media Player [52], since it is one of the most popular video streaming players [74]. Windows

Media Player employs the real-time streaming protocol (RTSP) and the multimedia server

(MMS) protocol to communicate with a video streaming server. The application level

information, such as the data reception rate, the video encoding rate, or streaming protocol,

are measured using the MediaTracker tool [48]. Packet level information, such as IP address

or port number, can be measured by the Ethereal network protocol analyzer [22]. We

examine following video streams:

1. Windows XP launch webcast3 which is encoded at 305.2kbps and delivered over

RTSP/TCP.

3http://www.microsoft.com/windowsxp/wmx/launch300k.asx
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2. Comdex keynote speech4 in which the clip is encoded at 290.9kbps and delivered over

RTSP/TCP.

3. Public lecture series – “Israel: peace and war”5 which is encoded at 297.9kbps and

delivered over MMS/TCP.

In all experiments, buffering delay is set to 5 seconds.

4.4.2 Experimental Results

Table 3 summarizes the Internet experiment results of the three video clips. Each row in the

table corresponds to a TCP streaming connection, measured on a day in January 2004. The

second column indicates a date when a measurement was carried out. The third column

shows the duration of a TCP streaming session. The fourth column is the data rate at

which a video is encoded. The next three columns describe network characteristics, such

as network throughput, RTT, and the packet loss rate. The eighth column specifies desired

buffer underrun probabilities determined by (6), (9), or (10). Finally, the last column

reports measured buffer underrun probabilities defined in Section 4.3.1.

Table 3: Internet experiment results

stream date duration encoding rate throughput RTT
(sec) (kbps) (kbps) (ms)

1 1/4/2004 5898 305.2 655.8 80.6
1/15/2004 2199 305.2 276.1 124.1

2 1/4/2004 3994 290.9 1517.4 63.3
1/10/2004 1201 290.9 289.2 100.3

3 1/4/2004 4697 297.9 303.1 24.4
1/16/2004 4702 297.9 303.4 24.5

stream packet loss Pu measured underrun
rate (%) (%) probability (%)

1 3.02 – 0.0
5.18 8.1 4.4

2 1.22 – 0.0
6.20 8.3 2.6

3 – – 0.0
– – 0.0

4http://metahost.cwusa.tv/microsoft/20031116/comdex_keynote_300.asx
5http://www.princeton.edu/WebMedia/lectures/20031110ozVN300K.asx
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We first investigate the behavior of the RTSP and MMS protocols over TCP. Figure 42

shows the video playout rate and network throughput measured on January 4, 2004. Since

the date was a weekend, we expected large amount of network throughput. Figure 42 (a)

shows that RTSP exploits available bandwidth aggressively: a receiver receives video packets

at a faster rate than the video encoding rate whenever possible, stores them in disk cache,

and displays them later. Measurement result shows that the receiver downloaded and

displayed the video clip until 3080 seconds. After finishing downloading, it played out the

cached video. On the other hand, Figure 42 (b) shows the measurement result of the MMS

protocol over TCP. Although there was plenty of available bandwidth, MMS exploited it

conservatively: packets were delivered at almost the same rate as the video encoding rate.
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Figure 42: Comparison of the RTSP and MMS protocols over TCP. RTSP exploits avail-
able bandwidth aggressively, whereas MMS exploits it conservatively.

The third and fifth rows in Table 3 show the playout disruption characteristics over

congestion limited connections. Measurement results show that the buffering delay re-

quirements in Section 4.2 hold well in the Internet experiments: measured buffer underrun

probabilities are bounded by desired buffer underrun probabilities.
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Note that the video stream 3 did not show any buffer underrun. We reckon this is due

to the Internet 2 connection between the authors’ institute and the Princeton university.

Also note that we cannot estimate the packet loss rate of it using the estimation algorithm

in Section 4.3.1, since it is not congestion limited.

Figure 43 shows measured TCP throughput and buffer occupancy on January 10. Each

glitch in Figure 43 (a) corresponds to a buffer underrun event. Figure 43 (b) shows that

TCP throughput was consistently fluctuating around the video encoding rate. However, it

exhibits the existence of a large time-scale variability: the average TCP throughput was

268.4kbps in [0, 600] seconds, as opposed to 309.9kbps in [600, 1200] seconds. Since the

TCP throughput during the [0, 600] second interval was 8% smaller than the video encoding

rate, it is observed that measured buffer underrun probability was 4.1%. On the other hand,

only three buffer underrun events were observed during [600, 1200] seconds.
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Figure 43: Internet experiment results on January 10. Measured buffer underrun proba-
bility in (a) is strictly smaller than desired buffer underrun probability.
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4.4.2.1 Summary of Results

We investigate the buffer underrun characteristics of video streaming over TCP through the

Internet experiments. Experimental results show that, when available network bandwidth

is significantly greater than video encoding rate, no buffer underrun event is observed. On

the other hand, when network throughput is smaller than video encoding rate, measured

buffer underrun probability is greater than zero. Still, the probability is bounded by the

desired buffer underrun probability in all cases. These results validate our analysis in

Sections 4.2 and 4.3.

4.5 Related Work

Challenges and efforts in streaming video over TCP have been addressed in the litera-

ture. Authors in [79] proposed a TCP variant in which a receiver measures data reception

rate, and a sender adjusts window size according to the data rate reported by the receiver.

However, it requires kernel modification which is inconvenient and may cause bugs in an op-

erating system. Authors in [29] proposed another TCP variant in which a receiver controls

throughput by delaying ACK packets. However, this scheme requires both kernel modifica-

tion and network support (i.e., congestion notification signal, such as ECN). The author in

[6] proposed a stochastic model of TCP and derived a condition under which no playback

disruption is observed. However, it requires to solve complicated differential equations and

to estimate stochastic model parameters.

To overcome the burstiness of TCP, TCP friendly rate control protocols have been pro-

posed. The authors in [25] developed a TFRC protocol in which a flow estimates throughput

by measuring average RTT and average packet loss rate. Since the flow adapts the data

rate based on average throughput, it is slowly responsive to packet losses, and therefore

throughput variability can be reduced. The authors in [3] proposed binomial congestion con-

trol algorithms which are TCP friendly and exhibit smooth throughput variability. Video

streaming experiments over TCP and a TCP friendly transport protocol were conducted

in [71]. The authors demonstrated the superiority of the TCP friendly protocol when com-

bined with an error-resilient scalable codec. However, they did not investigate the effect of
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receiver buffering on video quality.

Receiver buffering is a well-known technique to accommodate data rate variability. The

authors in [7] established a theoretic foundation of performance bounds. They derived the

backlog bound (or the maximum buffer size) of a guaranteed service in general communi-

cation networks. However, it is difficult to use for video streaming over TCP, since they

considered a highly abstract model. The authors in [65] developed a work-ahead smoothing

algorithm for optimal rate smoothing. When used with guaranteed service or RCBR ser-

vice [27], it was demonstrated that the algorithm increases network utilization significantly.

However, the algorithm requires the bandwidth evolution information in advance which is

not available in best effort networks.

4.6 Conclusion

In this chapter, we consider video streaming over TCP. While the use of TCP provides

reliable video stream delivery, the bursty nature of TCP requires buffering at a receiver for

smooth video playout. Since it is desirable to determine the right size of playout buffer in

memory-constrained devices, we quantify buffering requirements to achieve desired buffer

underrun probability by analytically modeling a video streaming system. Our model takes

account of three scenarios: 1) when TCP throughput matches video encoding rate, 2) when

TCP throughput is smaller than the encoding rate, and 3) when throughput is limited by

the maximum window size. Experimental results of both simulations and Internet measure-

ments validate our model.

We believe that the results presented in this chapter can be employed by a number

of applications. For example, buffering delays can be adjusted under dynamic network

conditions. By dynamically equalizing buffering delays, a receiver will reduce the number

of buffer underruns. Also it will avoid unnecessarily long buffering delay, when network

condition is improved.
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CHAPTER 5

REALTIME ESTIMATION OF PLAYOUT BUFFER

REQUIREMENTS IN VIDEO STREAMING OVER TCP

5.1 Motivation

A video streaming application has to employ a transport layer protocol to transmit packe-

tized video data. Typically the protocol provides a mechanism for flow/congestion control

and plays a role in avoiding the congestion collapse of the Internet [24]. Since TCP is

the dominant protocol in the Internet, it is reasonable to employ TCP for video stream-

ing. Especially, when video streaming servers are placed behind firewalls that permit only

pre-specified port numbers, video streaming over TCP is the only choice to get around the

firewalls using well-known port numbers.

However, TCP has been regarded inappropriate for video streaming. The main argu-

ments are: 1) the sawtooth behavior of additive increase and multiplicative decrease (AIMD)

of TCP incurs significant data rate variability and degrades perceptual video quality, and

2) the use of retransmission timeouts may introduce unacceptable end-to-end delay, and

the retransmitted data may be delivered too late for display.

The rate variability of TCP caused by the burstiness and retransmission timeouts can

be mitigated through receiver-side buffering. The buffer size has to be large enough to

insure that no video data is lost. However, in memory-constrained devices, it is important

to determine the right size of playout buffer to provide a prescribed video quality.

In this research, we consider how to realize the provisioning of playout buffer require-

ments in realtime. Our starting point is the analytic model of a video streaming system

over TCP in Chapter 4. Using the model, the buffer size requirements can be quantified as

follows: when TCP throughput matches video encoding rate, desired playout buffer size is

q0 ≥ 0.16
pPu

[1 +
9.4
b

(
T0

R
)2 min(1, 3

√
3bp

8
)p(1 + 32p2)], (12)
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where q0 stands for desired playout buffer size, p for the packet loss rate, R for the round-

trip time (RTT), T0 for the retransmission timeout, and Pu for desired buffer underrun

probability. The buffer underrun probability is defined by n/N , where n is the number of

buffer underrun events, and N is the number of epochs in a video. An epoch is defined by

the average duration of a triple duplicate ACK period and a timeout period in Chapter 4.

Note that we assume the operating point of TCP throughput matches the video encod-

ing rate. This is the case when the video encoding rate is determined by the access link

bandwidth, and the available bandwidth is limited by the access link capacity.

Based on the relationship in (12), we propose realtime estimation algorithms of playout

buffer requirements in video streaming over TCP. Since the Internet does not provide any

information about network conditions in advance, we first develop a realtime estimation

algorithm of receiver buffer size by estimating packet loss rate and RTT. We further develop

realtime throughput adaptation algorithms that dynamically adjust data transmission rate

to prevent playback disruptions proactively.

This research is organized as follows. In Section 5.2, we present an estimation algorithm

of the playout buffer size without network characteristics information in advance. Section 5.3

present throughput adaptation algorithms to adjust data transmission rate in realtime.

Section 5.4 reports on experimental results of video streaming over TCP that we have

conducted. The research is concluded in Section 5.5.

5.2 Realtime Estimation of Playout Buffer Size

In this section, we present a realtime estimation algorithm to determine the playout buffer

size based on the video streaming model in Chapter 4. This task is challenging, since there

is no guideline for the provisioning of buffering size in realtime, even though most video

streaming players allow a user to change buffering delay. Most conventional approaches

are based on simple trial-and-error (e.g., [52]): to increase the amount of buffering delay

until no playback disruption is observed. Although this approach is simple and eventually

converges to a desired value, it is inefficient and takes long time to find an optimum.

To realize realtime estimation, we develop an algorithm based on the playout buffer
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requirements in (12). Our approach is the passive estimation: to keep buffering received

packetized video during an estimation period while at the same time required buffer size is

estimated.

Figure 44 shows the realtime buffering delay estimation algorithm, where τ stands for

the estimation period, t for current time, p̂ for estimated packet loss rate, R̂ for estimated

RTT, B̂ for estimated throughput, and q̂(p̂, R̂) for estimated buffer size defined by

q̂(p̂, R̂) =
0.16
p̂Pu

[1 +
9.4
b

(
T̂0

R̂
)2 min(1, 3

√
3bp̂

8
)p̂(1 + 32p̂2)].

1: procedure ComputeBufferingDelay
2: gettimeofday(&t0)

3: t = t0
4: while t− t0 < τ or t− t0 < d̂0 do
5: gettimeofday(&t)

6: p̂ = EstimatePacketLossRate()
7: R̂ = EstimateRTT()
8: d̂0 = q̂(p̂, R̂)/B̂

9: enddo
10: endprocedure

Figure 44: Realtime estimation algorithm of playout buffering delay. A receiver keeps
buffering during the estimation period.

The algorithm estimates the buffering delay, d0, during the estimation period, τ . If

the estimated buffering delay is smaller than τ , it ends immediately (line 4). Otherwise, a

receiver keeps buffering received packets and estimating the buffering delay until it reaches

the estimated delay. Since the buffer size is determined by p̂ and R̂, we need to estimate

the packet loss rate and RTT.

The packet loss rate estimation algorithm was proposed in the context of the TFRC

protocol in [25], where packet loss rate is estimated by the average loss interval. A loss

interval is defined by the number of packets between two loss events, where a loss event is

defined by an event of packet loss within a single RTT. TCP senders and receivers measure

the loss interval by examining sequence numbers and ACK numbers in the TCP header.

Specifically, a sender can detect a loss event if triple-duplicate ACKs are received or timeout

occurs in an RTT. The average loss interval is defined by

ŝ =
∑n

i=1 wisi∑n
i=1 wi

,
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where si’s are measured loss intervals, n = 8, w1 = w2 = w3 = w4 = 1, w5 = 0.8, w6 = 0.6,

w7 = 0.4, and w8 = 0.2. The estimated packet loss rate is determine by the inverse of the

average loss interval, i.e., p̂ = 1/ŝ.

The estimated RTT can be measured by the algorithm in [72]. The algorithm estimates

RTT and retransmission timeouts using a moving average (MA) estimator, such that

Err ← M − R̂

R̂ ← R̂ + gErr

D ← D + h(|Err| −D)

T̂0 ← R̂ + 4D,

where M stands for sampled RTT, R̂ for smoothed RTT, D for mean deviation, T̂0 for

estimated retransmission timeout, g = 0.125, and h = 0.25. Because of its simplicity and

good performance, this algorithm was employed by the TCP protocol specification in [57].

5.2.1 Performance Evaluation

We evaluate the accuracy of the realtime estimation algorithm by ns-2 [54] simulations. We

generate throughput variability resulting from transport protocols over the single bottleneck

topology: senders are arranged on one end of a link, and receivers on the other end. All links

except the bottleneck link have sufficient capacity so that any packet drop occurs at the

bottleneck link. The bottleneck link capacity is set to 10Mbps with 20ms link delay, whereas

access links have 100Mbps capacity with 2ms link delay. Background traffic is generated by

superposing 100 ON/OFF UDP sources of pseudo nodes that have the Pareto distribution

[75]. We generate 20 different traces by changing the duration of ON/OFF period of the

UDP traffic. Since each trace contains three TCP streaming flows, we examine 60 flows as

a whole. The packet size is set to 1200 bytes in all flows, and the duration of simulation

time is set to 180 seconds. TCP throughput is measured by counting the number of packets

delivered to TCP receivers.

In Figure 45, we investigate the impact of the estimation period on the accuracy by

varying τ into multiples of smoothed RTT (i.e., τ = 30, 40, 50, and 60R̂). The error bar
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specifies the 95% confidence interval. We observe that buffering delay is significantly over-

estimated when the estimation period is small (≤ 40R̂). This is because the exponential

increase in TCP slow start incurs significant packet losses that lead to throughput under-

estimation. However, for large τ (≥ 60R̂), it is observed that more than 80% of estimated

buffering delays lie within the desired 5.5± 1.1 second range.
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Figure 45: The impact of the estimation period on the accuracy of estimated buffering
delay. A large estimation period (≥ 60R̂) yields high accuracy.

It should be noted that a similar observation was reported in [28]. The authors exploited

the TCP throughput equation in [55] and estimated packet loss rate and RTT to speedup

discrete event simulation. However, they employed tens of triple-duplicate ACK periods for

an estimation period because of the high accuracy requirement.

5.3 Realtime Throughput Adaptation

In Section 5.2, it is assumed that an estimated buffering delay does not change in a session,

and therefore the estimated packet loss rate and the estimated RTT are assumed to be static.

However, since the Internet exhibits dynamic behavior of multiple time-scale variability, we

need a mechanism that dynamically adjust data transmission rate to proactively protect

receiver buffer from buffer underruns.
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In this section, we present realtime throughput adaptation algorithms. Realtime through-

put adaptation is especially important when used with rate adaptive video codecs that can

dynamically adjust data transmission rate based on network conditions [47], [59], [71]. The

basic idea of realtime throughput adaptation is that a sender transmits all data packets

when network throughput is greater than video encoding rate. However, when the through-

put is decreased, the sender proactively reduces the data transmission rate by discarding

part of data packets randomly. This discarded information can be reconstructed in the

receiver using an error-resilience module.

5.3.1 Equation-Based Adaptation

We first consider equation-based rate adaptation. In equation-based adaptation, TCP

throughput is determined indirectly by estimating RTT and packet loss rate. Data trans-

mission rate is adjusted based on the TCP throughput equation in [55], such that

B̂(p̂, R̂) =
1

R̂
√

2bp̂
3 + T̂0 min(1, 3

√
3bp̂
8 )p̂(1 + 32p̂2)

,

where p̂ and R̂ are estimated packet loss rate and smoothed RTT in Section 5.2.

To evaluate the performance of equation-based adaptation, Figure 46 shows the data

transmission rate of three TCP flows in Section 5.2, where buffering delay is set to 5.5

seconds. Unfortunately, experimental results show that the data transmission rate exhibits

significant variability.

We carry out the sensitivity analysis to investigate the performance of the equation-

based adaptation algorithm. Since B̂ can be approximated by B̂ =
√

3/2b

R
√

p for small p, we

define a sensitivity to the RTT change (SR) and a sensitivity to the packet loss rate change

(Sp) by

SR =
∆B̂/B̂

∆R/R
, (13)

Sp =
∆B̂/B̂

∆p/p
, (14)

where ∆R stands for the RTT change, ∆p for the packet loss rate change, and ∆B̂ for the
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Figure 46: Performance of the equation-based adaptation algorithm. Data transmission
rate exhibits significant variability.
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data transmission rate change. Therefore, we can model the data rate variation as

B̂ + ∆B̂ =
√

3/2b

(R + ∆R)
√

p + ∆p

≈
√

3/2b

R
√

p
(1− ∆R

R
− ∆p

2p
). (15)

From (13), (14), and (15), it follows that

SR ≈ −1, (16)

Sp ≈ −0.5. (17)

Equations (16) and (17) imply that the amount of RTT change leads to the same amount

of the data transmission rate change, and that the packet loss rate change to half of the data

transmission rate change. Therefore, even small inaccuracies as much as a few milliseconds

of RTT or a few tenth of a percent of packet loss rate are critical to the data transmission

rate estimation. Hence, the RTT estimation algorithm and the packet loss rate estimation

algorithm should provide high accuracy. Also the estimated RTT and packet loss rate

should be highly smooth and do not change over short periods of time, since the variability

in estimations leads to data rate variability.

However, these requirements are generally not feasible, since each packet likely expe-

riences different network characteristics. Figure 47 shows the performance of RTT and

packet loss rate estimation algorithms in TCP flow 1. Figure 47 (a) shows measured RTT

and smoothed RTT. Although the RTT estimation algorithm significantly reduces the vari-

ability of measured RTT, smoothed RTT still exhibits variability ranging from 51ms to

84ms. Figure 47 (b) shows measured and estimated packet loss rate. This result demon-

strates that estimated packet loss rate exhibits variability ranging from 0.6% to 4.3%.

From this observation, we can find that video streaming based on the equation-based

adaptation algorithm hardly provides good video quality, since the smoothed RTT and the

estimated packet loss rate exhibit significant variability.

5.3.2 Direct Estimation Algorithm

Since the dependency on RTT and packet loss rate estimation leads to significant data rate

variability in equation-based adaptation, we develop a straightforward approach to adjust
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Figure 47: Performance of RTT and packet loss rate estimation algorithms. Even though
the algorithms yield smoothed RTT and packet loss rate, they still exhibit variability.

data transmission rate. In this section, we directly estimate TCP throughput without

considering RTT and packet loss rate estimations.

In direct estimation, we define the measurement period T by a time period over which

the ith throughput sample B̂i is averaged with the amount of received data, i.e., B̂i =

1
T

∑
k∈Ii

λk(p), where λk(p) is the packet arrival rate in round k, Ii is the ith measurement

event, and |Ii| = T . Based on throughput samples, TCP throughput is determined by a

linear estimator, such that

B̂ =
∑n

i=1 wiB̂i∑n
i=1 wi

,

where the coefficients, n and wi, are the same as those of Section 5.2. Since B̂i is sampled

at the end of a measurement period, the estimated throughput B̂ is updated less frequently

than equation-based adaptation when a measurement period is large. Therefore, the accu-

racy of direct estimation depends on whether the measurement period is large enough to

exhibit small sampling error. Note that the measurement period should not be larger than

the buffering delay. Otherwise the data transmission rate between the buffering delay and

the first measurement period cannot be determined.

Figure 48 shows the performance of the direct estimation algorithm. The algorithm is

applied to TCP flow 1 in Section 5.2. The amount of the buffering delay is set to 5.5 seconds.

This result shows that the direct estimation algorithm reduces the data transmission rate
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variability significantly, and the variability keeps decreasing as the measurement period

increases. This is because larger measurement period exploits more throughput samples

which lead to reduced statistical sampling error.

We evaluate the variability by the coefficient of variation (CoV) performance which is

defined by the ratio of standard deviation to average. Note that a smaller CoV implies

a smoother flow. In Figure 48, CoVs of the data transmission rate for T = 1, 2, 3, and

4 seconds are 0.18, 0.13, 0.12, and 0.11 respectively, whereas the average CoV of three

data transmission rates of equation-based adaptation in Figure 46 is 0.25. Therefore, CoV

performance of direct estimation is much better than equation-based adaptation: the CoV

of direct estimation is less than half of equation-based adaptation, when the measurement

period is larger than 1 second.

Note that there is a trade-off between the smoothness and the response time, such that

the estimated TCP throughput is getting smoother as the measurement period increases.

However, long measurement period leads to large response time to converge to a steady

state throughput.

We can also find that the buffer occupancy in Figure 48 exhibits more predictable

behavior. The variability of buffer occupancy is limited within 1Mbytes around the steady

state buffer size, hence we can manage a playout buffer more easily.

5.4 Video Streaming Experiments

In this section, we show experimental results of video streaming over TCP to investigate

the impact of the buffer size estimation algorithm and the throughput adaptation algorithm

on video quality.

5.4.1 Error Resilient Codec

In the experiments, we generate a video sequence by digitizing an analog video followed by

an error-resilient scalable codec proposed in [71]. The codec provides good error resilience

and high compression scalability by generating independently decodable packets of the same

priority. The codec is developed based on 3-D subband coding, which is an extension of the

conventional 2-D subband decomposition to spatio-temporal subbands. High scalability can
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Figure 48: Performance of the direct estimation algorithm. The larger is the measurement
period, the smaller is the data transmission rate variability.
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be achieved by novel data partitioning in the subband coefficient domain. Specifically, each

subband is partitioned into equal number of coefficient blocks, and packets are generated

by grouping coefficient blocks from different subbands. Therefore, each packet has equal

priority and can be decoded independently. Note that, since the codec has a constant

number of bits per GOP, a CBR video stream can be generated easily (e.g., by allocating

the same number of bits to each coefficient block).

Figure 49 shows the characteristic of error resilience. By varying random packet loss rate

from 0 to 20%, the performance is measured in mean square error (MSE) which measures the

pixel-by-pixel differences between an original video and a decoded video. Observe that MSE

is exponentially decreased as packet loss rate is decreased. This property is corresponding

to the convexity characteristic of general rate distortion functions [5]. However, traditional

video codecs are optimized at a given data rate: if the channel data rate drops and is

lower that the video coding rate, the received video quality decreases abruptly and the

rate distortion function is a staircase curve. On the other hand, the error resilient codec is

optimized over a wide range of data rates and robust to packet losses.
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Figure 49: MSE characteristics of an error resilient codec. The codec exhibits the convexity
characteristic to packet loss rate.
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5.4.2 Performance Evaluation

In this section, we compare the quality of streaming video by measuring MSE. The video

source is a 180-second scene of the Harry Potter and the Sorcerer’s Stone movie encoded at

1.1Mbps. Specific encoding parameters are as follows: CIF resolution (352× 288), 4 levels

of spatial subband decomposition, and 3 levels of temporal subband decomposition (i.e., 8

frames/GOP). The encoded video is transmitted over the network model in Section 5.2.

We first show the performance of TCP streaming without receiver buffering in Figure 50.

In this scenario, a receiver tries to display video as soon as media packets are received. Since

the nature of AIMD and retransmission timeouts of TCP incurs a lot of variability, MSE

of decoded video also fluctuates significantly and video quality is degraded.
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Figure 50: MSE of TCP without buffering. TCP streaming without receiver buffering
incurs significant quality variability.

The impacts of receiver buffering on video quality are compared in Figure 51 and Fig-

ure 52. Figure 51 shows the performance of TCP streaming without any throughput adapta-

tion algorithm, but the buffer size estimation algorithm is used with 60R̂ estimation period.

In the figures, abrupt MSE increases are corresponding to playout disruptions: a receiver

stops displaying video and starts buffering received packets. Experimental results show

that, as the buffering delay is increased, the number of playout disruptions is decreased,

such that there are 2 disruptions in Figure 51 (a) and 1 in Figure 51 (b).

Note that this characteristic implies a trade-off between the video quality and waiting

time: a user has to wait longer to achieve better quality. However, since a long waiting

time is annoying and degrades user-perceived video quality, it is not desirable to set the

buffer underrun probability too small (i.e., too large buffering delay). Therefore, we need

the buffer size estimation algorithm to find an optimal waiting time.
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Figure 51: MSE performance of the buffer size estimation algorithm without throughput
adaptation. As desired buffer underrun probability is decreased, measured buffer underrun
probability is also decreased.

Figure 52 shows the performance of TCP buffering using the direct estimation algorithm

as well as the buffer size estimation algorithm. In Figure 52 (a) and (b), the measurement

periods of the direct estimation algorithm are set to 1.0 and 2.0 seconds, respectively. The

estimation period of the playout buffer size estimation algorithm is set to 60R̂. Experimental

results demonstrate that realtime throughput adaptation used with an error resilient video

codec can further improve the quality of received video: the decoded video does not show any

playout disruption, although a few frames in decoded video exhibit noticeable distortions.

It is also observed that the average MSE is decreased, as the buffer underrun probability

is decreased. Compared with Figure 51, the direct estimation algorithm provides better

perceived video quality, since decoded video is displayed without any disruption. This

is not surprising, since the throughput adaptation algorithm exploits the error resilient

characteristic of a player.

Similar observation was reported in [71]. The authors proposed a TCP friendly transport

101



0 30 60 90 120 150 180
0

1000

2000

M
S

E

time (sec)

(a) Buffer size estimation with Pu = 4%

0 30 60 90 120 150 180
0

1000

2000

M
S

E

time (sec)

(b) Buffer size estimation with Pu = 2%

Figure 52: MSE performance with the direct estimation algorithm. As desired buffer
underrun probability is decreased, the average MSE is decreased.

protocol and streamed an encoded video over the protocol. Experimental results demon-

strated the superiority of the protocol over TCP. However, their goal was to achieve low

latency, such that overall delay is the sum of propagation delay and decoding time (i.e.,

there is no buffering delay). Hence, they did not investigate the effect of receiver buffering.

5.5 Conclusion

In this research, we propose realtime estimation algorithms to accommodate the rate vari-

ability of TCP in video streaming applications. We first develop a realtime estimation

algorithm of playout buffer size based on the desired buffer size relationship. Since the

Internet does not provide any information on network characteristic evolution, we estimate

the RTT and the packet loss rate information, and compute the required buffer size and

buffering delay. We also develop realtime throughput adaptation algorithms to prevent

playback disruptions proactively. Experimental results show that the realtime buffer size

estimation algorithm improves video quality of streaming video significantly, when used

with a realtime throughput adaptation algorithm.
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CHAPTER 6

CONCLUSION

Recent advances in video coding and the significant increase in network bandwidth have

led to a number of video streaming applications. However, several technical challenges still

remain. These include the heterogeneity of receivers, the fluctuation of available bandwidth,

and the choice of transport protocols. In this thesis, we have investigated these challenges

and developed techniques that maximize received video quality. The primary contributions

of the research are summarized as follows:

• A comparison of heterogeneous video multicast schemes in which we have

investigated three approaches that have been proposed to accommodate receiver het-

erogeneity in video multicast: 1) multicasting replicated video streams at different

data rates, 2) multicasting cumulatively layered video in multiple layers, and 3) mul-

ticasting non-cumulatively layered video. While these protocols have been studied

extensively before, there has been little in the way of fundamental understandings of

how they can be compared from the point of view of network utilization and received

video quality. We have developed a framework that can be used to evaluate these

techniques and then showed results from applying this framework to various video

multicasting scenarios. Experimental results showed that a fair comparison needs to

take into account 1) the layering bandwidth overhead, 2) the specifics of encoding, 3)

the protocol complexity to join and leave the appropriate multicast groups, and 4)

the topological placement of receivers.

• Optimal quality adaptation for scalable encoded video in which we have con-

sidered the quality adaptation problem for scalable encoded VBR video. Since both

the encoded video and the available bandwidth exhibit multiple time-scale variabil-

ity, we have developed an optimal quality adaptation algorithm to minimize quality
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variability while increasing the usage of the available bandwidth. We also developed

a realtime adaptation algorithm that does not require any information on the avail-

able bandwidth evolution. Experimental results showed that the quality adaptation

algorithms reduce the quality variability significantly.

• Dimensioning playout buffer requirements in video streaming over TCP in

which we have considered the use of TCP for video streaming applications. While

the use of TCP provides reliable video stream delivery, the sawtooth behavior of

TCP requires buffering at the receiver for smooth video playout. In current practice,

however, there are no guidelines for the provisioning of this playout buffer, and smooth

playout is insured through over-provisioning. The focus of this research is on memory-

constrained clients where it is desirable to provide a buffer of just the right size to

insure smooth playout while maintaining a prescribed video playout quality. We have

derived analytic expressions for the minimum buffering requirements and then used

this result to build workable realtime algorithms for the management of client-side

buffering. Experimental results validated the buffering requirement relationships and

showed that realtime adaptation algorithms improves video quality significantly.
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APPENDIX A

MORE ON THE INFORMATION THEORETIC LIMITS

Consider a lossy data compression code consisting of one base layer and one enhancement

layer. Let {Xi}∞i=1 be a X valued discrete memoryless source with probability mass function,

P , and Y1 be a finite reproduction alphabet. d1 is defined by a non-negative valued mapping

indicating a distortion measure, such that d1 : X × Y1 → R+.

Given a positive real value ∆1 specifying the expected distortion, a rate distortion

function R(P, ∆1) that characterize the minimum achievable rate for a non-layered code is

given by

R(P, ∆1) = inf

PX=P,

Ed1(X,Y1)≤∆1

I(X; Y1),

where I(X; Y1) is the mutual information.

In the same way, the rate distortion function can be extended to the layered coding.

Let Y2 be a finite reproduction alphabet and d2 : X × Y2 → R+ be a non-negative valued

mapping representing a distortion measure. Suppose that a coding is done in the base layer

with the rate R1 ≥ R(P, ∆1) and the distortion ∆2 is given, the minimum achievable rate

in the enhancement layer is given by

R(P, R1, ∆1, ∆2) = inf

PX=P,

Ed1(X,Y1)≤∆1,

Ed2(X,Y2)≤∆2,

I(X;Y1)≤R1

I(X; Y1Y2),

where 0 < ∆2 < ∆1.
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By definition, the rate distortion for a layered code is no smaller than that of a non-

layered code. Hence, the following relationship generally holds [62].

R(P, ∆2) ≤ R(P, R1, ∆1, ∆2). (18)

The condition under which equality holds requires that X, Y1, and Y2 satisfy a Markov

condition [21]:

PXY1Y2(x, y1, y2) = PX(x)PY2|X(y2|x)PY1|Y2
(y1|y2),

where x ∈ X , y1 ∈ Y1, and y2 ∈ Y2.

From (18), the minimum data rate of non-layered stream is equal or smaller than that of

layered stream. However, it is difficult to design a layered code satisfying Markov condition

in general.

Moreover, it was shown that, even if the Markov condition holds, the performance of

layered coding is inferior to that of non-layered coding in terms of the error exponent mea-

sure. Specifically, for n length block code, the error function is defined by the probability

that the source, Xn, cannot be reproduced within distortion ∆1 in the base layer or within

distortion ∆2 in the enhancement layer. It was shown in [35] that the error function con-

verges to zero exponentially with the rate of the error exponent and that the error exponent

for layered coding does not exceed that for non-layered coding.
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APPENDIX B

PROOF OF THEOREM 1

We employ a continuous-time model to prove Theorem 1. Our notations for the continuous

version of the variables are given in Figure 53.

xi(t) VOP size of the ith layer at time t

Xi(t) cumulative data requirement: Xi(t) =
∫ t
0 xi(s)ds

si(t) selected data of the ith layer at time t:

si(t) =

{
xi(t), for the select state
0, otherwise

Si(t) cumulative selected data: Si(t) =
∫ t
0 si(u)du

bi receiver buffer size to store unplayed ith layer video
ri(t) available bandwidth
Ri(t) cumulative bandwidth constraint: Ri(t) =

∫ t
0 ri(s)ds

Ci(t) cumulative capacity of the ith layer:
Ci(t) = min{Si(t) + bi, Ri(t)}

Ti(t) size of transmitted data

Ui(t) network bandwidth utilization: Ui(t) = Ti(t)
Ri(t)

Figure 53: Notations for the continuous-time model

We first present a condition that achieves minimum quality variability. It is evident

that the variability increases, as the number of transitions between the select state and

the discard state increases during a fixed interval. Hence, long average sojourn time reduces

average number of state transitions which leads to less variability. Our task is to determine

a threshold in the quality adaptation framework to maximize average sojourn time.

Assume that we begin with enough network bandwidth, but state transition occurs at

t0, since Si(t0) = Ci(t0) as shown in Figure 54 (recall that the feasibility requires Ci(t) to

exceed Si(t)). Let u be the sojourn time in the discard state. Then, a sender remains in

the discard state until t0 + u, such that si(η) = 0 for t0 ≤ η < t0 + u. Given a threshold
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d, the sender returns to the select state at time t0 + u, since

Ci(t0 + u)− Si(t0 + u) = d (19)

t u'

u

v'

v
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Ci(t)

Si(t)

time
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Figure 54: Illustration of quality adaptation

Let v be the sojourn time in the select state. With the threshold value d, we need to

find the average sojourn time in the select state E{v}. The sender is assumed to enter the

select state at t0 +u and to leave the state at t0 +u+v since Si(t0 +u+v) = Ci(t0 +u+v).

Using (19),

∫ t0+u+v
t0+u xi(η)dη =

∫ t0+u+v
t0+u si(η)dη

=
∫ t0+u+v
t0+u si(η)dη + Ci(t0 + u + v)− Si(t0 + u + v)

= Ci(t0 + u)− Si(t0 + u) +
∫ t0+u+v
t0+u ci(η)dη

= d +
∫ t0+u+v
t0+u ci(η)dη.

If we assume xi(t), ci(t), and v are independent, conditional average yields E{v}E{xi(t)} =

d + E{v}E{ci(t)}. Hence,

E{v} =
d

E{xi(t)} − E{ci(t)} . (20)

Consider a different scheme with a threshold of d′, such that d′ < d. Let u′ be the

sojourn time in the discard state, and v′ be the sojourn time in the select state. From

108



(19) and (20),

Ci(t0 + u′) = Si(t0 + u′) + d′

E{v′} = d′
E{xi(t)}−E{ci(t)}

Since Si(t0 + u) = Si(t0 + u′) and Ci(t) is non-decreasing,

u ≥ u′

E{v} > E{v′}.
(21)

From (21), as we increase the threshold value, average sojourn time spent in each state gets

longer and we can achieve less variability. Therefore, the optimal threshold that achieves

minimum quality variability is given by

τ = max
τi
{τi | τi ∈ T, T is a set of feasible thresholds}. (22)

Now we consider a threshold value that maximizes the network bandwidth utilization.

Since the maximum sending rate is bounded by both the network bandwidth and the re-

ceiver buffer size, Ti(t) ≤ Ci(t) = min{Si(t) + bi, Ri(t)}. Therefore, utilization at time t is

bounded by

Ui(t) = Ti(t)
Ri(t)

≤ Ci(t)
Ri(t)

= min{Si(t)+bi,Ri(t)}
Ri(t)

=


Si(t)+bi

Ri(t)
, if Si(t) + bi < Ri(t)

1, otherwise.

The necessary condition of Ui(t) = 1 is given by Si(t) + bi ≥ Ri(t) for all t. Since Ci(t) =

min{Si(t) + bi, Ri(t)},
bi ≥ Ri(t)− Si(t)

≥ Ci(t)− Si(t).
(23)

From (19), equation (23) implies

bi ≥ τ. (24)

Equation (24) shows that the threshold value τ should be equal or less than the receiver

buffer size to achieve maximum bandwidth utilization.

From (22) and (24), the optimal threshold value is given by the receiver buffer size, i.e.,

τ = bi.
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APPENDIX C

THREE-LAYER EXTENSION OF DYNAMIC

THRESHOLD STREAMING



πb[k] = 1, πFGS [k] = 0, if Yb[k] < qb(s),

πb[k] = αb, πFGS [k] = 1− αb, if Yb[k] ≥ qb(s), YFGS [k] < qFGS(s),

πb[k] = αb, πFGS [k] = αFGS , if Yb[k] ≥ qb(s), YFGS [k] ≥ qFGS(s),

πb[k] = αb, πFGS [k] = 0, if Yb[k] ≥ qb(s), YFGS [k] >
∑N

j=k xFGS [j],

πb[k] = 0, πFGS = 1, if Yb[k] >
∑N

j=k xb[j], YFGS [k] < qFGS(s),

πb[k] = 0, πFGS [k] = αFGS , if Yb[k] >
∑N

j=k xb[j], YFGS [k] ≥ qFGS(s),

πb[k] = 0, πFGS [k] = 0, if Yb[k] >
∑N

j=k xb[j], YFGS [k] >
∑N

j=k xFGS [j],

where πb[k], πFGS [k], and πFGST [k] are fraction of transmission resources; xb[k] and xFGS [k]

are encoded data rate; Yb[k] and YFGS [k] are buffer occupancy. The threshold value at time

s is determined by qi(s) = C(ri − αiXavg(s)), where Xavg(s) is the estimated available

bandwidth. ri is the data rate of each layer, αi is defined by αi = ri∑
ri

, C is set to 1 second,

and i = b, FGS, FGST . Note that πb[k] + πFGS [k] + πFGST [k] = 1.
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APPENDIX D

PROOFS OF BUFFER SIZE REQUIREMENTS

D.1 Proof of (6)

To prove (6), we use the following relationships1 [10]:

Wi(p) =
Wi−1(p)

2
+

Xi

b
− 1 (25)

Yi = αi + Wi(p)− 1 (26)

Yi =
Xi

2
[
Wi−1(p)

2
+ Wi(p)] + βi. (27)

Note that the expressions in (25) and (27) are different from the original equations in [55]

by a constant term2. However, for small values of p, TCP throughput in a TDP can still

be expressed by

BTDP (p, R) =
1
R

√
3

2bp
+ o(

1√
p
). (28)

To achieve a desired buffer underrun probability, we need to consider the expression of

the minimum buffer size in (4) and (5) in Section 4.2.1. Using the Markovian inequality,

the buffer underrun probability at time t in a TDP is given by

P{qmin ≤ 0|t ∈ ZTD}

= P{q0 ≤ b

8
[Wi−1(p)− 2λ̂(p)− 1]2}

≤ E{ b
8 [Wi−1(p)− 2λ̂(p)− 1]2}

q0

=
b

8q0
[E{W 2} − 4λ̂(p)E{W}+ 4λ̂2(p) + 4λ̂(p)− 2E{W}+ 1], (29)

where E{W 2} stands for the average of W 2
i−1(p) and E{W} for the average of Wi−1(p).

1Although three duplicated packets are lost and not delivered to a receiver in a TDP, the data reception
rate can be approximated by the data transmission rate for small p.

2The relationships can be verified from the ith TDP in Fig. 37 (a): the parameters given by Wi−1(p) =
Wi(p) = 6, Xi = 8, Yi = 39, αi = 34, βi = 3, and b = 2 satisfy (25), (26), and (27).
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Equation (29) can be solved using (25), (26), and (27). From (25), it follows that

E{X} =
b

2
E{W}+ b. (30)

Observe that squaring (25) leads to W 2
i (p) = Wi−1(p)2

4 + Wi−1(p)Xi

b + X2
i

b2
− 2Xi

b −Wi−1(p)+1.

Hence, the average of X2
i is given by

E{X2} =
3b2

4
E{W 2} − b2

2
E2{W}+ b2E{W}+ b2. (31)

Note that squaring (25) after manipulating the Wi−1(p)
2 term yields

W 2
i (p)−Wi(p)Wi−1(p) +

Wi−1(p)2

4
=

X2
i

b2
− 2Xi

b
+ 1. (32)

From (30), (31), and (32), the correlation of congestion window sizes between adjacent

TDPs is given by

E{Wi(p)Wi−1(p)} =
1
2
[E{W 2}+ E2{W}]. (33)

We consider (26) and (27) to derive E{W 2}. Since αi is the first packet lost in a TDP,

αi can be assumed to have a geometric distribution with the probability p. Hence, it follows

that E{αi} = 1
p and E{α2

i } = 2−p
p2 . With this assumption, squaring (26) leads to

E{Y 2} =
2− p

p2
+ E{W 2}+ 1 +

2
p
E{W} − 2

p
− 2E{W}. (34)

In the same way, E{Y 2} can also be obtained by (27) and (33). Since βi is the number

of packets in the last round, it can be assumed to have a uniform distribution in [1, Wi].

Therefore, squaring (27) yields

E{Y 2} =
E{X2}

4
[
5E{W 2}

4
+ E{Wi(p)Wi−1(p)}] + E{β}E{X}3E{W}

2
+ E{β2}

=
b2

4
[
3
4
E{W 2} − 1

2
E2{W}+ E{W}+ 1]

× [
7
4
E{W 2}+

1
2
E2{W}] +

3b

4
E2{W}[1

2
E{W}+ 1]

+
2E{W 2}+ 3E{W}+ 1

6
. (35)

Since the average window size is given by E{W} =
√

8
3bp + o( 1√

p) in [55], we assume

E{W 2} = O(1
p). By equating the relationships in (34) and (35), we can derive a relationship,

such that
21b2

64
E2{W 2} − b

3p
E{W 2} − 22

9p2
= o(

1
p2

).

112



Hence,

E{W 2} =
32 + 8

√
478

63bp
+ o(

1
p
). (36)

Note that the long-term average of λk(p) is equal to λ̂(p). Therefore, TCP throughput

in (28) can also be applied to λ̂(p), such that λ̂(p) =
√

3
2bp + o( 1√

p). From (36), the buffer

underrun probability in a TDP in (29) is bounded by

P{qmin ≤ 0|t ∈ ZTD} ≤ b

8q0
[
32 + 8

√
478

63bp
− 4

√
3

2bp

√
8

3bp
+ 4(

√
3

2bp
)2] + o(

1
p
)

=
0.16
q0p

+ o(
1
p
). (37)

To derive an expression of the buffer underrun probability in a TOP, we consider (5)

and the Markovian inequality. Consequently, we have

P{qmin ≤ 0|t ∈ ZTO} = P{q0 ≤ ZTO

R
λ̂(p)}

≤ E{ZTO}
q0R

λ̂(p), (38)

Since the average duration of a TOP is described by E{ZTO} = T0
f(p)
1−p , where f(p) =

1 + p + 2p2 + 4p3 + 8p4 + 16p5 + 32p6, (38) leads to

P{qmin ≤ 0|t ∈ ZTO} ≤ T0

q0R

√
3

2bp
+ o(

1√
p
). (39)

Now we derive the unconditional probability of buffer underrun using the conditional

probabilities. Since Wi(p) is a regenerative process over the period of ZTD + ZTO, we have

P{t ∈ ZTD} =
E{ZTD}

E{ZTD}+ E{ZTO} ,

P{t ∈ ZTO} =
E{ZTO}

E{ZTD}+ E{ZTO} ,

where E{ZTD} = E{n}(E{X} + 1)R, and E{n} is the average number of TDPs in

ZTD. Consider the probability of TO loss indication Q, which is given by Q = 1
E{n} ≈

min(1, 3
√

3bp
8 ) in [55]. From (37), (39), the buffer underrun probability is thus

P{qmin ≤ 0} =
P{qmin ≤ 0|t ∈ ZTD}(E{X}+ 1)

(E{X}+ 1) + QE{ZTO} +
QP{qmin ≤ 0|t ∈ ZTO}E{ZTO}

(E{X}+ 1) + QE{ZTO}

≤
0.16
q0p R

√
2b
3p + T0

q0R

√
3

2bp min(1, 3
√

3bp
8 )T0

f(p)
1−p

R
√

2b
3p + min(1, 3

√
3bp
8 ) T0

q0R

+ o(
1
p
)

≤ 0.16
q0p

[1 +
9.4
b

(
T0

R
)2 min(1, 3

√
3bp

8
)p(1 + 32p2)] + o(

1
p
).
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Therefore, given desired buffer underrun probability, such that P{qmin ≤ 0} ≤ Pu, required

buffer size is given by

q0 ≥ 0.16
pPu

[1 +
9.4
b

(
T0

R
)2 min(1, 3

√
3bp

8
)p(1 + 32p2)].

D.2 Proof of (9)

Since it is assumed that packets are drained faster than the arrival rate, required buffer size

in the ith TDP is

qi
0 = q0 −

i−1∑
j=1

Xj [λ̂(p)− λk(p)],

where q0 is the required buffer size in TDP 0 (i.e., q0 = q0
0). The buffer underrun probability

in TDP i is thus

P{qmin ≤ 0|t ∈ TDPi} = P{q0 −
i−1∑
j=1

Xj [λ̂(p)− λk(p)]− b

8
[Wi−1(p)− 2λ̂(p)− 1)2 ≤ 0}

≤ b

8q0
E{[Wi−1(p)− 2λ̂(p)− 1]2}+

i− 1
q0

E{Xj(λ̂(p)− λk(p))}

(40)

Since the sum of the buffer underrun probability in all TDPs leads to the buffer underrun

probability in a ZTD,

P{qmin ≤ 0|t ∈ ZTD} =
∑

i

P{qmin ≤ 0|t ∈ TDPi}P{t ∈ TDPi}

≤ b

8q0
E{[Wi−1(p)− 2λ̂(p)− 1]2} (41)

+
E{n} − 1

q0
E{Xj}[λ̂(p)− E{λk(p)}],

where E{n} is the average number of TDPs in a ZTD. Using the relationships E{n} =

1/ min(1, 3
√

3bp
8 ) and E{Xj} =

√
2b
3p , it follows that

E{n} − 1
q0

E{Xj}[λ̂(p)− E{λk(p)}] ≈
√

2b
3p(λ̂(p)− E{λk(p)})
q0 min(1, 3

√
3bp
8 )

. (42)

Therefore the buffer underrun probability is given by

P{qmin ≤ 0} =
P{qmin ≤ 0|t ∈ ZTD}E{ZTD}

E{ZTD}+ E{ZTO} +
P{qmin ≤ 0|t ∈ ZTO}E{ZTO}

E{ZTD}+ E{ZTO}
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≤
0.16
q0p R

√
2b
3p + min(1, 3

√
3bp
8 ) T0

q0R

√
3

2bpT0
f(p)
1−p

R
√

2b
3p + min(1, 3

√
3bp
8 )T0

f(p)
1−p

+ o(
1
p
)

+

√
2b
3p

(λ̂(p)−E{λk(p)})

q0 min(1,3
√

3bp
8

)
R

√
2b
3p + min(1, 3

√
3bp
8 ) T0

q0R

√
3

2bpT0
f(p)
1−p

R
√

2b
3p + min(1, 3

√
3bp
8 )T0

f(p)
1−p

≤ 0.16
q0p

[1 +
9.4
b

(
T0

R
)2 min(1, 3

√
3bp

8
)p(1 + 32p2)]

+

√
2b
3p(λ̂(p)− E{λk(p)})
q0 min(1, 3

√
3bp
8 )

+ o(
1
p
). (43)

To achieve P{qmin ≤ 0} ≤ Pu, required buffer size is

q0 ≥ 0.16
pPu

[1 +
9.4
b

(
T0

R
)2 min(1, 3

√
3bp

8
)p(1 + 32p2)] +

√
2b
3p(λ̂(p)− E{λk(p)})
Pu min(1, 3

√
3bp
8 )

. (44)

D.3 Proof of (10)

Since the window size in a TDP is limited by Wm, the receiver buffer size at round k is

qk = q0 +
k∑

n=1

[λn(p)− λ̂(p)]

=


k2

2b + [Wm−2λ̂(p)−1]k
2 + q0, if 0 < k ≤ bWm

Wmk − bWm+2λ̂(p)
2 + q0, otherwise,

(45)

Assuming λ̂(p) is equal to Wm, the Markovian inequality and the differentiation of (45)

yield the buffer underrun probability in a TDP, such that

P{qmin ≤ 0|t ∈ ZTD} = P{q0 ≤ b

8
[Wm − 2λ̂(p)− 1]2}

= P{q0 ≤ b

8
(Wm + 1)2}

≤ b

8q0
(Wm + 1)2. (46)

In the same way, the buffer underrun probability in a TOP is given by

P{qmin ≤ 0|t ∈ ZTO} = P{q0 ≤ ZTO

R
Wm}

≤ Wm

q0R
E{ZTO}. (47)
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Since E{X} = b
8Wm + 1−p

pWm
+ 1 and E{ZTO} = T0

f(p)
1−p , the unconditional buffer underrun

probability for small p is approximated by

P{qmin ≤ 0} ≤
b

8q0
(Wm + 1)2( b

8Wm + 1−p
pWm

+ 2)R + Q̂(Wm)Wm
q0R [T0

f(p)
1−p ]2

( b
8Wm + 1−p

pWm
+ 2)R + Q̂(Wm)T0

f(p)
1−p

≈ b

8q0
(Wm + 1)2. (48)

Given buffer underrun constraint P{qmin ≤ 0} ≤ Pu, required buffer size is thus

q0 ≥ b

8Pu
(Wm + 1)2
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