2,414 research outputs found

    Scattered Pilots and Virtual Carriers Based Frequency Offset Tracking for OFDM Systems: Algorithms, Identifiability, and Performance Analysis

    Get PDF
    In this paper, we propose a novel carrier frequency offset (CFO) tracking algorithm for orthogonal frequency division multiplexing (OFDM) systems by exploiting scattered pilot carriers and virtual carriers embedded in the existing OFDM standards. Assuming that the channel remains constant during two consecutive OFDM blocks and perfect timing, a CFO tracking algorithm is proposed using the limited number of pilot carriers in each OFDM block. Identifiability of this pilot based algorithm is fully discussed under the noise free environment, and a constellation rotation strategy is proposed to eliminate the c-ambiguity for arbitrary constellations. A weighted algorithm is then proposed by considering both scattered pilots and virtual carriers. We find that, the pilots increase the performance accuracy of the algorithm, while the virtual carriers reduce the chance of CFO outlier. Therefore, the proposed tracking algorithm is able to achieve full range CFO estimation, can be used before channel estimation, and could provide improved performance compared to existing algorithms. The asymptotic mean square error (MSE) of the proposed algorithm is derived and simulation results agree with the theoretical analysis

    Channel, Phase Noise, and Frequency Offset in OFDM Systems: Joint Estimation, Data Detection, and Hybrid Cramer-Rao Lower Bound

    Full text link
    Oscillator phase noise (PHN) and carrier frequency offset (CFO) can adversely impact the performance of orthogonal frequency division multiplexing (OFDM) systems, since they can result in inter carrier interference and rotation of the signal constellation. In this paper, we propose an expectation conditional maximization (ECM) based algorithm for joint estimation of channel, PHN, and CFO in OFDM systems. We present the signal model for the estimation problem and derive the hybrid Cramer-Rao lower bound (HCRB) for the joint estimation problem. Next, we propose an iterative receiver based on an extended Kalman filter for joint data detection and PHN tracking. Numerical results show that, compared to existing algorithms, the performance of the proposed ECM-based estimator is closer to the derived HCRB and outperforms the existing estimation algorithms at moderate-to-high signal-to-noise ratio (SNR). In addition, the combined estimation algorithm and iterative receiver are more computationally efficient than existing algorithms and result in improved average uncoded and coded bit error rate (BER) performance

    Beampattern-Based Tracking for Millimeter Wave Communication Systems

    Full text link
    We present a tracking algorithm to maintain the communication link between a base station (BS) and a mobile station (MS) in a millimeter wave (mmWave) communication system, where antenna arrays are used for beamforming in both the BS and MS. Downlink transmission is considered, and the tracking is performed at the MS as it moves relative to the BS. Specifically, we consider the case that the MS rotates quickly due to hand movement. The algorithm estimates the angle of arrival (AoA) by using variations in the radiation pattern of the beam as a function of this angle. Numerical results show that the algorithm achieves accurate beam alignment when the MS rotates in a wide range of angular speeds. For example, the algorithm can support angular speeds up to 800 degrees per second when tracking updates are available every 10 ms.Comment: 6 pages, to be published in Proc. IEEE GLOBECOM 2016, Washington, D.C., US

    Maximum likelihood based estimation of frequency and phase offset in DCT OFDM systems under non-circular transmissions: algorithms, analysis and comparisons

    Get PDF
    Recently, the advantages of the discrete cosine transform (DCT) based orthogonal frequency-division multiplexing (OFDM) have come to the light. We thus consider DCT- OFDM with non-circular transmission (our results cover circular transmission as well) and present two blind joint maximum- likelihood frequency offset and phase offset estimators. Both our theoretical analysis and numerical comparisons reveal new advantages of DCT-OFDM over the traditional discrete Fourier transform (DFT) based OFDM. These advantages, as well as those already uncovered in the early works on DCT-OFDM, support the belief that DCT-OFDM is a promising multi-carrier modulation scheme

    Cognitive Radio for Emergency Networks

    Get PDF
    In the scope of the Adaptive Ad-hoc Freeband (AAF) project, an emergency network built on top of Cognitive Radio is proposed to alleviate the spectrum shortage problem which is the major limitation for emergency networks. Cognitive Radio has been proposed as a promising technology to solve todayâ?~B??~D?s spectrum scarcity problem by allowing a secondary user in the non-used parts of the spectrum that aactully are assigned to primary services. Cognitive Radio has to work in different frequency bands and various wireless channels and supports multimedia services. A heterogenous reconfigurable System-on-Chip (SoC) architecture is proposed to enable the evolution from the traditional software defined radio to Cognitive Radio
    corecore