792 research outputs found

    A comparison of duality and energy aposteriori estimates for L?(0,T;L2({\Omega})) in parabolic problems

    Get PDF
    We use the elliptic reconstruction technique in combination with a duality approach to prove aposteriori error estimates for fully discrete back- ward Euler scheme for linear parabolic equations. As an application, we com- bine our result with the residual based estimators from the aposteriori esti- mation for elliptic problems to derive space-error indicators and thus a fully practical version of the estimators bounding the error in the L \infty (0, T ; L2({\Omega})) norm. These estimators, which are of optimal order, extend those introduced by Eriksson and Johnson (1991) by taking into account the error induced by the mesh changes and allowing for a more flexible use of the elliptic estima- tors. For comparison with previous results we derive also an energy-based aposteriori estimate for the L \infty (0, T ; L2({\Omega}))-error which simplifies a previous one given in Lakkis and Makridakis (2006). We then compare both estimators (duality vs. energy) in practical situations and draw conclusions.Comment: 30 pages, including 7 color plates in 4 figure

    Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems

    Get PDF
    We derive a posteriori error estimates for fully discrete approximations to solutions of linear parabolic equations. The space discretization uses finite element spaces that are allowed to change in time. Our main tool is an appropriate adaptation of the elliptic reconstruction technique, introduced by Makridakis and Nochetto. We derive novel a posteriori estimates for the norms of Lāˆž(0, T; L2(Ī©)) and the higher order spaces, Lāˆž(0, T;H1(Ī©)) and H1(0, T; L2(Ī©)), with optimal orders of convergence

    A comparison of duality and energy aposteriori estimates for L?(0,T;L2({\Omega})) in parabolic problems

    Get PDF
    We use the elliptic reconstruction technique in combination with a duality approach to prove aposteriori error estimates for fully discrete back- ward Euler scheme for linear parabolic equations. As an application, we com- bine our result with the residual based estimators from the aposteriori esti- mation for elliptic problems to derive space-error indicators and thus a fully practical version of the estimators bounding the error in the L \infty (0, T ; L2({\Omega})) norm. These estimators, which are of optimal order, extend those introduced by Eriksson and Johnson (1991) by taking into account the error induced by the mesh changes and allowing for a more flexible use of the elliptic estima- tors. For comparison with previous results we derive also an energy-based aposteriori estimate for the L \infty (0, T ; L2({\Omega}))-error which simplifies a previous one given in Lakkis and Makridakis (2006). We then compare both estimators (duality vs. energy) in practical situations and draw conclusions.Comment: 30 pages, including 7 color plates in 4 figure

    A-posteriori error estimation and adaptivity for nonlinear parabolic equations using IMEX-Galerkin discretization of primal and dual equations

    Get PDF
    While many methods exist to discretize nonlinear time-dependent partial differential equations (PDEs), the rigorous estimation and adaptive control of their discretization errors remains challenging. In this paper, we present a methodology for duality-based a posteriori error estimation for nonlinear parabolic PDEs, where the full discretization of the PDE relies on the use of an implicit-explicit (IMEX) time-stepping scheme and the finite element method in space. The main result in our work is a decomposition of the error estimate that allows to separate the effects of spatial and temporal discretization error, and which can be used to drive adaptive mesh refinement and adaptive time-step selection. The decomposition hinges on a specially-tailored IMEX discretization of the dual problem. The performance of the error estimates and the proposed adaptive algorithm is demonstrated on two canonical applications: the elementary heat equation and the nonlinear Allen-Cahn phase-field model
    • ā€¦
    corecore