69,648 research outputs found

    Learning sound representations using trainable COPE feature extractors

    Get PDF
    Sound analysis research has mainly been focused on speech and music processing. The deployed methodologies are not suitable for analysis of sounds with varying background noise, in many cases with very low signal-to-noise ratio (SNR). In this paper, we present a method for the detection of patterns of interest in audio signals. We propose novel trainable feature extractors, which we call COPE (Combination of Peaks of Energy). The structure of a COPE feature extractor is determined using a single prototype sound pattern in an automatic configuration process, which is a type of representation learning. We construct a set of COPE feature extractors, configured on a number of training patterns. Then we take their responses to build feature vectors that we use in combination with a classifier to detect and classify patterns of interest in audio signals. We carried out experiments on four public data sets: MIVIA audio events, MIVIA road events, ESC-10 and TU Dortmund data sets. The results that we achieved (recognition rate equal to 91.71% on the MIVIA audio events, 94% on the MIVIA road events, 81.25% on the ESC-10 and 94.27% on the TU Dortmund) demonstrate the effectiveness of the proposed method and are higher than the ones obtained by other existing approaches. The COPE feature extractors have high robustness to variations of SNR. Real-time performance is achieved even when the value of a large number of features is computed.Comment: Accepted for publication in Pattern Recognitio

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    Knowledge Transfer from Weakly Labeled Audio using Convolutional Neural Network for Sound Events and Scenes

    Full text link
    In this work we propose approaches to effectively transfer knowledge from weakly labeled web audio data. We first describe a convolutional neural network (CNN) based framework for sound event detection and classification using weakly labeled audio data. Our model trains efficiently from audios of variable lengths; hence, it is well suited for transfer learning. We then propose methods to learn representations using this model which can be effectively used for solving the target task. We study both transductive and inductive transfer learning tasks, showing the effectiveness of our methods for both domain and task adaptation. We show that the learned representations using the proposed CNN model generalizes well enough to reach human level accuracy on ESC-50 sound events dataset and set state of art results on this dataset. We further use them for acoustic scene classification task and once again show that our proposed approaches suit well for this task as well. We also show that our methods are helpful in capturing semantic meanings and relations as well. Moreover, in this process we also set state-of-art results on Audioset dataset, relying on balanced training set.Comment: ICASSP 201

    Robust sound event detection in bioacoustic sensor networks

    Full text link
    Bioacoustic sensors, sometimes known as autonomous recording units (ARUs), can record sounds of wildlife over long periods of time in scalable and minimally invasive ways. Deriving per-species abundance estimates from these sensors requires detection, classification, and quantification of animal vocalizations as individual acoustic events. Yet, variability in ambient noise, both over time and across sensors, hinders the reliability of current automated systems for sound event detection (SED), such as convolutional neural networks (CNN) in the time-frequency domain. In this article, we develop, benchmark, and combine several machine listening techniques to improve the generalizability of SED models across heterogeneous acoustic environments. As a case study, we consider the problem of detecting avian flight calls from a ten-hour recording of nocturnal bird migration, recorded by a network of six ARUs in the presence of heterogeneous background noise. Starting from a CNN yielding state-of-the-art accuracy on this task, we introduce two noise adaptation techniques, respectively integrating short-term (60 milliseconds) and long-term (30 minutes) context. First, we apply per-channel energy normalization (PCEN) in the time-frequency domain, which applies short-term automatic gain control to every subband in the mel-frequency spectrogram. Secondly, we replace the last dense layer in the network by a context-adaptive neural network (CA-NN) layer. Combining them yields state-of-the-art results that are unmatched by artificial data augmentation alone. We release a pre-trained version of our best performing system under the name of BirdVoxDetect, a ready-to-use detector of avian flight calls in field recordings.Comment: 32 pages, in English. Submitted to PLOS ONE journal in February 2019; revised August 2019; published October 201

    Environmental Sound Classification with Parallel Temporal-spectral Attention

    Full text link
    Convolutional neural networks (CNN) are one of the best-performing neural network architectures for environmental sound classification (ESC). Recently, temporal attention mechanisms have been used in CNN to capture the useful information from the relevant time frames for audio classification, especially for weakly labelled data where the onset and offset times of the sound events are not applied. In these methods, however, the inherent spectral characteristics and variations are not explicitly exploited when obtaining the deep features. In this paper, we propose a novel parallel temporal-spectral attention mechanism for CNN to learn discriminative sound representations, which enhances the temporal and spectral features by capturing the importance of different time frames and frequency bands. Parallel branches are constructed to allow temporal attention and spectral attention to be applied respectively in order to mitigate interference from the segments without the presence of sound events. The experiments on three environmental sound classification (ESC) datasets and two acoustic scene classification (ASC) datasets show that our method improves the classification performance and also exhibits robustness to noise.Comment: submitted to INTERSPEECH202
    corecore