5,380 research outputs found

    Computationally efficient solutions for tracking people with a mobile robot: an experimental evaluation of Bayesian filters

    Get PDF
    Modern service robots will soon become an essential part of modern society. As they have to move and act in human environments, it is essential for them to be provided with a fast and reliable tracking system that localizes people in the neighbourhood. It is therefore important to select the most appropriate filter to estimate the position of these persons. This paper presents three efficient implementations of multisensor-human tracking based on different Bayesian estimators: Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Sampling Importance Resampling (SIR) particle filter. The system implemented on a mobile robot is explained, introducing the methods used to detect and estimate the position of multiple people. Then, the solutions based on the three filters are discussed in detail. Several real experiments are conducted to evaluate their performance, which is compared in terms of accuracy, robustness and execution time of the estimation. The results show that a solution based on the UKF can perform as good as particle filters and can be often a better choice when computational efficiency is a key issue

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    A bank of unscented Kalman filters for multimodal human perception with mobile service robots

    Get PDF
    A new generation of mobile service robots could be ready soon to operate in human environments if they can robustly estimate position and identity of surrounding people. Researchers in this field face a number of challenging problems, among which sensor uncertainties and real-time constraints. In this paper, we propose a novel and efficient solution for simultaneous tracking and recognition of people within the observation range of a mobile robot. Multisensor techniques for legs and face detection are fused in a robust probabilistic framework to height, clothes and face recognition algorithms. The system is based on an efficient bank of Unscented Kalman Filters that keeps a multi-hypothesis estimate of the person being tracked, including the case where the latter is unknown to the robot. Several experiments with real mobile robots are presented to validate the proposed approach. They show that our solutions can improve the robot's perception and recognition of humans, providing a useful contribution for the future application of service robotics

    Localization from semantic observations via the matrix permanent

    Get PDF
    Most approaches to robot localization rely on low-level geometric features such as points, lines, and planes. In this paper, we use object recognition to obtain semantic information from the robotā€™s sensors and consider the task of localizing the robot within a prior map of landmarks, which are annotated with semantic labels. As object recognition algorithms miss detections and produce false alarms, correct data association between the detections and the landmarks on the map is central to the semantic localization problem. Instead of the traditional vector-based representation, we propose a sensor model, which encodes the semantic observations via random finite sets and enables a unified treatment of missed detections, false alarms, and data association. Our second contribution is to reduce the problem of computing the likelihood of a set-valued observation to the problem of computing a matrix permanent. It is this crucial transformation that allows us to solve the semantic localization problem with a polynomial-time approximation to the set-based Bayes filter. Finally, we address the active semantic localization problem, in which the observerā€™s trajectory is planned in order to improve the accuracy and efficiency of the localization process. The performance of our approach is demonstrated in simulation and in real environments using deformable-part-model-based object detectors. Robust global localization from semantic observations is demonstrated for a mobile robot, for the Project Tango phone, and on the KITTI visual odometry dataset. Comparisons are made with the traditional lidar-based geometric Monte Carlo localization
    • ā€¦
    corecore