630 research outputs found

    Application of Channel Modeling for Indoor Localization Using TOA and RSS

    Get PDF
    Recently considerable attention has been paid to indoor geolocation using wireless local area networks (WLAN) and wireless personal area networks (WPAN) devices. As more applications using these technologies are emerging in the market, the need for accurate and reliable localization increases. In response to this need, a number of technologies and associated algorithms have been introduced in the literature. These algorithms resolve the location either by using estimated distances between a mobile station (MS) and at least three reference points (via triangulation) or pattern recognition through radio frequency (RF) fingerprinting. Since RF fingerprinting, which requires on site measurements is a time consuming process, it is ideal to replace this procedure with the results obtained from radio channel modeling techniques. Localization algorithms either use the received signal strength (RSS) or time of arrival (TOA) of the received signal as their localization metric. TOA based systems are sensitive to the available bandwidth, and also to the occurrence of undetected direct path (UDP) channel conditions, while RSS based systems are less sensitive to the bandwidth and more resilient to UDP conditions. Therefore, the comparative performance evaluation of different positioning systems is a multifaceted and challenging problem. This dissertation demonstrates the viability of radio channel modeling techniques to eliminate the costly fingerprinting process in pattern recognition algorithms by introducing novel ray tracing (RT) assisted RSS and TOA based algorithms. Two sets of empirical data obtained by radio channel measurements are used to create a baseline for comparative performance evaluation of localization algorithms. The first database is obtained by WiFi RSS measurements in the first floor of the Atwater Kent laboratory; an academic building on the campus of WPI; and the other by ultra wideband (UWB) channel measurements in the third floor of the same building. Using the results of measurement campaign, we specifically analyze the comparative behavior of TOA- and RSS-based indoor localization algorithms employing triangulation or pattern recognition with different bandwidths adopted in WLAN and WPAN systems. Finally, we introduce a new RT assisted hybrid RSS-TOA based algorithm which employs neural networks. The resulting algorithm demonstrates a superior performance compared to the conventional RSS and TOA based algorithms in wideband systems

    Multi-technology RF fingerprinting with leaky-feeder in underground tunnels

    Get PDF
    Techniques using RSS fingerprinting for localization have been studied over a number of ifferent technologies in many different scenarios. In the case of underground tunnels localization can be quite challenging, yet it is extremely important for safety reasons. In the specific case of the CERN tunnels, accurate and automatized localization methods would additionally allow the orkflow of some activities to become substantially faster. In a radiation area this would also have the added benefit of reducing the exposure time of personnel conducting so called radiation surveys which have to be carried out before access can be granted. In this paper Fingerprinting techniques for GSM and Wireless LAN are studied and enhanced to ake advantage of both network technologies simultaneously as well as the channels RSS differential and an observed effect in the radiated power in the leaky-feeder cables. Besides the higher accuracy achieved for a single technology, this methodology looks promising for scenarios where several types of wireless networks are available or expected to be installed at a later stage

    A Real-Time Laboratory Testbed For Evaluating Localization Performance Of WIFI RFID Technologies

    Get PDF
    A realistic comparative performance evaluation of indoor Geolocation systems is a complex and challenging problem facing the research community. This is due to the fact that performance of these systems depends on the statistical variations of the fading multipath characteristics of the wireless channel, the density and distribution of the access points in the area, and the number of the training points used by the positioning algorithm. This problem, in particular, becomes more challenging when we address RFID devices, because the RFID tags and the positioning algorithm are implemented in two separate devices. In this thesis, we have designed and implemented a testbed for comparative performance evaluation of RFID localization systems in a controlled and repeatable laboratory environment. The testbed consists of a real-time RF channel simulator, several WiFi 802.11 access points, commercial RFID tags, and a laptop loaded with the positioning algorithm and its associated user interface. In the real-time channel simulator the fading multipath characteristics of the wireless channel between the access points and the RFID tags is modeled by a modified site-specific IEEE 802.11 channel model which combines this model with the correlation model of shadow fading existing in the literature. The testbed is first used to compare the performance of the modified IEEE 802.11 channel model and the Ray Tracing channel model previously reported in the literature. Then, the testbed with the new channel model is used for comparative performance evaluation of two different WiFi RFID devices

    Experimental study on RSS based indoor positioning algorithms

    Get PDF
    This work compares the performance of indoor positioning systems suitable for low power wireless sensor networks. The research goal is to study positioning techniques that are compatible with real-time positioning in wireless sensor networks, having low-power and low complexity as requirements. Map matching, approximate positioning (weighted centroid) and exact positioning algorithms (least squares) were tested and compared in a small predefined indoor environment. We found that, for our test scenario, weighted centroid algorithms provide better results than map matching. Least squares proved to be completely unreliable when using distances obtained by the one-slope propagation model. Major improvements in the positioning error were found when body influence was removed from the test scenario. The results show that the positioning error can be improved if the body effect in received signal strength is accounted for in the algorithms.Helder D. Silva is supported by the Portuguese Foundation for Science and Technology under the grant SFRBD/78018/2011.info:eu-repo/semantics/publishedVersio

    Space-partitioning with cascade-connected ANN structures for positioning in mobile communication systems

    Get PDF
    The world around us is getting more connected with each day passing by – new portable devices employing wireless connections to various networks wherever one might be. Locationaware computing has become an important bit of telecommunication services and industry. For this reason, the research efforts on new and improved localisation algorithms are constantly being performed. Thus far, the satellite positioning systems have achieved highest popularity and penetration regarding the global position estimation. In spite the numerous investigations aimed at enabling these systems to equally procure the position in both indoor and outdoor environments, this is still a task to be completed. This research work presented herein aimed at improving the state-of-the-art positioning techniques through the use of two highly popular mobile communication systems: WLAN and public land mobile networks. These systems already have widely deployed network structures (coverage) and a vast number of (inexpensive) mobile clients, so using them for additional, positioning purposes is rational and logical. First, the positioning in WLAN systems was analysed and elaborated. The indoor test-bed, used for verifying the models’ performances, covered almost 10,000m2 area. It has been chosen carefully so that the positioning could be thoroughly explored. The measurement campaigns performed therein covered the whole of test-bed environment and gave insight into location dependent parameters available in WLAN networks. Further analysis of the data lead to developing of positioning models based on ANNs. The best single ANN model obtained 9.26m average distance error and 7.75m median distance error. The novel positioning model structure, consisting of cascade-connected ANNs, improved those results to 8.14m and 4.57m, respectively. To adequately compare the proposed techniques with other, well-known research techniques, the environment positioning error parameter was introduced. This parameter enables to take the size of the test environment into account when comparing the accuracy of the indoor positioning techniques. Concerning the PLMN positioning, in-depth analysis of available system parameters and signalling protocols produced a positioning algorithm, capable of fusing the system received signal strength parameters received from multiple systems and multiple operators. Knowing that most of the areas are covered by signals from more than one network operator and even more than one system from one operator, it becomes easy to note the great practical value of this novel algorithm. On the other hand, an extensive drive-test measurement campaign, covering more than 600km in the central areas of Belgrade, was performed. Using this algorithm and applying the single ANN models to the recorded measurements, a 59m average distance error and 50m median distance error were obtained. Moreover, the positioning in indoor environment was verified and the degradation of performances, due to the crossenvironment model use, was reported: 105m average distance error and 101m median distance error. When applying the new, cascade-connected ANN structure model, distance errors were reduced to 26m and 2m, for the average and median distance errors, respectively. The obtained positioning accuracy was shown to be good enough for the implementation of a broad scope of location based services by using the existing and deployed, commonly available, infrastructure

    Information Fusion for 5G IoT: An Improved 3D Localisation Approach Using K-DNN and Multi-Layered Hybrid Radiomap

    Get PDF
    Indoor positioning is a core enabler for various 5G identity and context-aware applications requiring precise and real-time simultaneous localisation and mapping (SLAM). In this work, we propose a K-nearest neighbours and deep neural network (K-DNN) algorithm to improve 3D indoor positioning. Our implementation uses a novel data-augmentation concept for the received signal strength (RSS)-based fingerprint technique to produce a 3D fused hybrid. In the offline phase, a machine learning (ML) approach is used to train a model on a radiomap dataset that is collected during the offline phase. The proposed algorithm is implemented on the constructed hybrid multi-layered radiomap to improve the 3D localisation accuracy. In our implementation, the proposed approach is based on the fusion of the prominent 5G IoT signals of Bluetooth Low Energy (BLE) and the ubiquitous WLAN. As a result, we achieved a 91% classification accuracy in 1D and a submeter accuracy in 2D

    Map-Aware Models for Indoor Wireless Localization Systems: An Experimental Study

    Full text link
    The accuracy of indoor wireless localization systems can be substantially enhanced by map-awareness, i.e., by the knowledge of the map of the environment in which localization signals are acquired. In fact, this knowledge can be exploited to cancel out, at least to some extent, the signal degradation due to propagation through physical obstructions, i.e., to the so called non-line-of-sight bias. This result can be achieved by developing novel localization techniques that rely on proper map-aware statistical modelling of the measurements they process. In this manuscript a unified statistical model for the measurements acquired in map-aware localization systems based on time-of-arrival and received signal strength techniques is developed and its experimental validation is illustrated. Finally, the accuracy of the proposed map-aware model is assessed and compared with that offered by its map-unaware counterparts. Our numerical results show that, when the quality of acquired measurements is poor, map-aware modelling can enhance localization accuracy by up to 110% in certain scenarios.Comment: 13 pages, 11 figures, 1 table. IEEE Transactions on Wireless Communications, 201
    • …
    corecore