3 research outputs found

    Design, construction and control of a spherical rolling robot with internal two-wheel cart

    Get PDF
    This elaboration presents a spherical rolling robot with a 2-wheel cart. The custom design of the hardware and control software is presented to demonstrate the solution. The robot was started to realize an autonomous task. The embedded robot control system is based on a 32-bit microcontroller and uses a Bluetooth module for wireless communication. The simplified model has been proposed and its parameters identified. The results obtained at the simulation and experimental stages are shown and compared. Finally, the robot鈥檚 motion was recorded and analyzed with the support of image signal processing techniques.W artykule przedstawiony zosta艂 opis sferycznego robota mobilnego z nap臋dem w postaci dwuko艂owego w贸zka. Praca prezentuje dedykowany uk艂ad mechaniczny, elektroniczny oraz oprogramowanie steruj膮ce. System wbudowany robota jest oparty na 32-bitowym mikrokontrolerze oraz wykorzystuje bezprzewodow膮 komunikacj臋 Bluetooth. Parametry uproszczonego modelu matematycznego robota sferycznego zosta艂y zidentyfikowane, a wyniki symulacji por贸wnano do rezultat贸w rzeczywistych eksperyment贸w. Analiza obrazu zarejestrowanego za pomoc膮 zewn臋trznej kamery pozwoli艂a na obserwacje trajektorii ruchu robota

    Design and Evaluation of a Propulsion System for Small, Compact, Low-Speed Maneuvering Underwater Vehicles

    Get PDF
    Underwater vehicles used to perform precision inspection and non-destructive evaluation in tightly constrained or delicate underwater environments must be small, have low-speed maneuverability and a smooth streamlined outer shape with no appendages. In this thesis, the design and analysis of a new propulsion system for such underwater vehicles is presented. It consists primarily of a syringe and a plunger driven by a linear actuator and uses different inflow and outflow nozzles to provide continuous propulsive force. A prototype of the proposed propulsion mechanism is built and tested. The practical utility and potential efficacy of the system is demonstrated and assessed via direct thrust measurement experiments and by use of an initial proof-of-concept test vehicle. Experiments are performed to enable the evaluation and modelling of the thrust output of the mechanism as well as the speed capability of a vehicle employing the propulsion system

    A Comprehensive Methodology for Design of a Circulation Control Small-Scale Unmanned Aircraft

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have become increasingly prevalent and important for a wide spectrum of civilian and military operations. When focusing on small-scale fixed-wing UAVs, payload, power and energy requirements limit considerably their utilization and flexibility allowing them to complete only those specific missions they are designed for. Circulation Control (CC) is an active flow control method used to produce increased lift over the traditional systems (flaps, slats, etc...) currently in use. This dissertation focuses on the foundations of a comprehensive methodology from design to implementation and experimental testing of Coanda-based Circulation Control Wings (CCW) for unmanned aircraft. The research goes beyond the current state of the art by demonstrating the feasibility of CC as applied to small-scale UAVs. 2-D and 3-D wind tunnel tests at Mach numbers of 0.03, with momentum coefficients of blowing (Cmu)ranging from 0.0 to 0.3 are conducted. It is found that CC blowing is effective at all cases enabling the wing to achieve high lift-to-drag ratios and high lift augmentation during takeoff. The wind tunnel results indicate that upper slot blowing using CC can be effective for lift enhancement even at low blowing rates. Through flight testing it is confirmed that CC can be applied to small-scale UAVs resulting in significant runway reduction up to 53%. The technology described herein can be made suitable for use on commercial airliners, cargo planes and personal aerial vehicles because equipping these aircraft with cruise-efficient high-lift devices can give the user more valid runway choices at existing airports and help alleviate environmental noise problems near airports by allowing steeper climb-outs
    corecore