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Abstract 
 

Underwater vehicles used to perform precision inspection and non-destructive 

evaluation in tightly constrained or delicate underwater environments must be small, have 

low-speed maneuverability and a smooth streamlined outer shape with no appendages. In 

this thesis, the design and analysis of a new propulsion system for such underwater 

vehicles is presented. It consists primarily of a syringe and a plunger driven by a linear 

actuator and uses different inflow and outflow nozzles to provide continuous propulsive 

force. A prototype of the proposed propulsion mechanism is built and tested. The 

practical utility and potential efficacy of the system is demonstrated and assessed via 

direct thrust measurement experiments and by use of an initial proof-of-concept test 

vehicle. Experiments are performed to enable the evaluation and modelling of the thrust 

output of the mechanism as well as the speed capability of a vehicle employing the 

propulsion system.  
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CHAPTER 1: INTRODUCTION 

The focus of this thesis is the design and evaluation of a novel propulsion system 

suitable for small, compact, low-speed maneuvering underwater vehicles. Interest in 

underwater robotic vehicles has grown drastically over the past couple of decades and 

autonomous underwater vehicles have proven to be extremely useful in marine science, 

ecology and other fields [1]–[4]. Underwater robots have been used for a range of 

important tasks such as deep sea exploration of natural resources and ship wreckage, 

inspection of offshore oil and gas platforms, evaluation of disaster sites and inspection of 

infrastructure [5]–[7]. This chapter discusses the motivation and background behind this 

research in propulsion systems for small underwater robotic vehicles. 

1.1 MOTIVATION 

While there has been successful research into the conventional torpedo shaped 

underwater vehicles that have control surfaces such as fins, wings or rudders and use 

propeller-type thrusters, these vehicles are typically designed for high operating speeds 

and long-distance travel [2], [8]–[10]. Precision maneuvering, inspection and non-

destructive evaluation of complex underwater environments is an increasingly important 

area of underwater robotics research and is complicated by the need for low speeds and 

small forces to correct minor deviations [1], [2], [9].  

For this type of application, small, low-speed, highly maneuverable, compact 

AUVs that have smooth streamlined body shapes and no appendages are required. It 
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follows therefore that the propulsion systems employed for this specific class of 

underwater vehicles must be capable of providing low thrust, enable low-speed (1 – 

10cm/s) precise maneuverability in multiple degrees of freedom and allow for embedding 

in the body of the vehicle and a smooth streamlined outer shape with no appendages [1], 

[2], [5]. 

1.2 BACKGROUND 

The conventional torpedo shaped underwater vehicles are typically powered by 

rotating propellers. Propeller-type thrusters have nonlinear effects which become more 

pronounced at low operating speeds [8], [9]. Control surfaces such as rudders or fins rely 

on forward velocity to provide forces and moments and do not function well if the 

vehicle is at low speed or stationary because the hydrodynamic forces they impose scale 

with the vehicle velocity squared [1].  

Also, some propeller thrusters are asymmetric, meaning that they operate 

differently when reversed, which can complicate control when the propeller is 

commanded to provide a force that is changing direction frequently [9]. A common 

approach is to use multiple propellers to achieve better low-speed maneuvering and 

control. However, these designs sacrifice the low body volume and drag design and 

complicate control by not responding to short signals sent to the thrusters for accurate 

positioning [1], [2]. 

Additionally, there exist biologically-inspired underwater vehicles, Biomimetic 

Autonomous Underwater Vehicles (BAUVs), designed to mimic the propulsive 

capabilities and swimming mechanisms of fish and other underwater creatures. The 

biological study of underwater creatures offers inspiration for BAUV designs achieving 
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energy efficiency, stealth and maneuverability [3]. In this regard, the functionality of the 

biological source of inspiration is imitated by robot/vehicle designs relying on standard 

mechanical principles assembled in an unconventional manner.  

Although maneuverability is an important requirement for many types of 

underwater inspection vehicles, it is particularly crucial for precision inspection tasks in 

tightly constrained environments [1], [2]. Control surfaces, thrusters, fins and other 

appendages protruding from the vehicle body can get tangled or damaged when 

attempting to access and traverse confined spaces. Hence propulsion mechanisms that 

allow for compact, tangle-free vehicle body shapes with minimal appendages are a 

desirable design approach for this class of applications. Finally, tethering of these 

underwater vehicles interferes with the dynamics of the vehicles and limits their 

accessibility and control fidelity.  

1.3 APPLICATIONS 

The applications of AUVs using propulsion systems/mechanisms designed for 

low-speed maneuvering underwater vehicles include: external and internal Non-

Destructive Evaluation (NDE) and inspection of water/fluid-filled piping systems of 

nuclear reactors, water treatment plants, chemical plants and offshore oil and gas 

platforms; and detailed small scale surveying, monitoring and tracking of slow moving 

underwater creatures [1], [2], [5]. Also, in the micro and nano-scale, for medical and 

biological use for internal screening procedures and treatment delivery [3], [6], [9]. 

1.4 PROBLEM STATEMENT 

Existing propulsion mechanisms for precision maneuvering and inspection AUVs 

are mechanically complex and costly in their design and construction and often cannot 
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produce continuous thrust. Consequently, there is need for a suitable propulsion system 

that can provide continuous thrust and is simpler and more cost effective to build. 

1.5 CONTRIBUTIONS  

Aside from the several fluid dynamics principles that this work is based upon and 

the cited works of other researchers, all the design, fabrication, testing and evaluation of 

experimental data involved in this thesis is done by the author. This research focuses on 

the design and evaluation of a new, simple and low cost propulsion system prototype 

suitable for low-speed maneuvering underwater vehicles. The propulsion system 

proposed here consists primarily of a syringe and a plunger driven by a linear actuator 

and uses different intake and outflow nozzles to provide continuous propulsive force.  

Additionally, in comparison to other functionally similar propulsion mechanisms 

(e.g. synthetic vortex-ring jet thrusters [2], [6], [11]), the proposed propulsion system 

deals with the issues relating to the loss in forward thrust caused by the inflow of fluid 

through the orifice of these thrusters. Also, this work provides some insight into the areas 

of consideration and the challenges involved with research on underwater vehicles and 

systems that is useful for further work on AUVs at the University of Denver Unmanned 

Systems Research Institute (DU2SRI). 

1.6 THESIS ORGANIZATION 

The organization of this thesis is as follows. Chapter 2 provides a literature review 

where background information on research related to various underwater vehicles, 

applications and propulsion schemes are discussed. Chapter 3 describes the proposed 

syringe-plunger propulsion mechanism, the initial direct thrust measurement experiments 

performed and the results obtained.  Chapter 4 discusses the kinematics and dynamics 
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theory of the test vehicle used to further evaluate the propulsion system and Chapter 5 

details the test vehicle apparatus as a Mechatronic system. Chapter 6 presents the 

experimental and simulation results obtained with the test vehicle. Finally, Chapter 7 

provides conclusions and recommendations for future work. 
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CHAPTER 2: LITERATURE REVIEW 

In the following a summary of research on various underwater vehicles and their 

propulsion mechanisms including: conventional propeller-driven AUVs, biomimetic 

AUVs and precision maneuvering and inspection AUVs is presented. 

2.1 CONVENTIONAL PROPELLER-DRIVEN AUVs 

2.1.1 PHOENIX AUV - NPS 

The Naval Postgraduate School (NPS) Phoenix autonomous underwater vehicle 

(Figure. 2.1), retired, is an AUV for student research in shallow-water sensing and 

control, its main driving application being shallow-water minefield mapping. The 

Phoenix is made of aluminum, water tight to 8m depth, neutrally buoyant at about 176-

198 kg and has a hull length of 2.2m (Table 2.1). Physical control of the Phoenix is done 

by means of multiple propellers, thrusters, plane surfaces and sonars [12], [13]. Among 

its various applications are artificial intelligence (AI) implementations for multisensory 

underwater navigation and a three-layer software architecture for autonomous dynamic 

control [14], [15].  

The three-layer control architecture used is the Rational Behavior Model (RBM) 

that consists of the strategic level (top layer) responsible for determining long-term 

mission goals and logic sequencing, the tactical level (middle layer) in charge of system 

monitoring and sensor analysis to determine vehicle behavior and issuing of control 

commands to the execution level (lower layer).  The execution level is responsible for 
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hardware interfacing and reactive real-time physical control [13], [14], [16]. In addition, 

there is a helper robot software layer whose role is to assist human operators with mission 

details specification and autonomous high-level source code generation [16].  Virtual 

world simulations and in-water testing of an auto-generated mission are used to validate 

the results for synchronized operation of the RBM onboard the Phoenix [13], [15], [17]. 

 
Figure. 2.1: NPS Phoenix AUV [12] 
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Weight: 176 -198kg (387-436 lbs) 
Hull length: 2.2 m (7.2 ft) 
Design depth: 6.1 m (20 ft) 
Endurance: 90 – 120 mins at 1m/s (2 knots) 

Propulsion: 
Twin bidirectional propellers, 2 cross-body in-
line bidirectional propeller thrusters 

Thrust force: 22.5N (5 lbs) and 8.9N (2lbs) respectively 
Control surfaces: 4 paired plane surfaces (8 fins total) 

Standard sensors: 

2 forward-looking sonar transducers 
1 downward-looking sonar altimeter 
Water speed flow meter 
Depth pressure cell 
5 rotational gyros 

 
Table 2.1: Phoenix AUV specifications [12], [13] 

 
The underwater water environment is quite inaccessible and precarious and so 

makes monitoring, communication and testing of underwater vehicles and systems 

extremely complicated. The physical dynamics of rigid bodies underwater and modes of 

sensor operation are contradictory. Therefore simulation of underwater vehicles in an 

underwater virtual world is an important advantage that enables rapid design 

development and real-time real-world comprehensive modelling of all required features 

and functions. This 3D simulation environment allows for realistic laboratory assessment 

and experimentation with AUVs as well as repeated testing of all aspects of their control, 

stability, sensing, autonomy and reliability [12], [15], [17]. 

2.1.2 THE REMUS 100 AUV 

The Remote Environmental Monitoring Units (REMUS) class of AUVs is the 

product of over 15 years of innovative research and development by Woods Hole 

Oceanographic Institute and currently the spin-off company, Hydroid LLC. The REMUS 

100 (Figure. 2.2) is one of the latest and most widely used REMUS AUV systems. It is 
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light in weight and designed for operation underwater for up to 100m deep. The REMUS 

100 AUV is 160cm long, 19cm in diameter and weighs about 38.5kg in air [18], [19].  

 

 

Figure. 2.2: REMUS 100 AUV [19] 
 

Its various applications include: hydrographic surveys, mine countermeasure 

operations, harbor security operations, environmental monitoring, debris field mapping, 

search and salvage operations and scientific sampling and mapping. The REMUS can be 

easily transported and stationed by a two-man team. REMUS 100 is the instrument of 

choice for shallow-water mine counter measure operations for the United States Navy 

due to its compact size and weight, ease of operations, proven reliability, power and 

versatility [18], [19]. 

 

Figure. 2.3: REMUS 100 AUV standard configuration and sensors [18] 
 

Although a stock REMUS 100 is equipped with a broad range of standard sensors 

(Table. 2.2, Figure. 2.3), it can be configured to include a vast array of customer specified 
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sensors and payloads to meet unique mission requirements.   Over the years, various 

research scientists, engineers and students have developed numerous additional sensor 

packages and payloads that can be interfaced to the REMUS 100 AUV.  

Vehicle diameter: 19 cm (7.5 in) 
Vehicle length: 160 cm (63 in) 
Weight in air: 38.5 kg (85 lbs) 
Trim weight: 1 kg (2.2 lbs) 
Maximum operating depth: 100 m (328 ft) 

Endurance: 22 hrs at 1.5 m/s (3 knots)  
>8 hrs at 2.6 m/s (5 knots) 

Propulsion: Direct drive DC brushless motor to open 3-
bladed propeller. 

Control surfaces:  2 coupled yaw and pitch fins 

Navigation: 

Long baseline 
Ultra short baseline (USBL) 
Doppler-assisted dead reckoning 
Inertial navigation system 
GPS 

Transponders: 4 transponders: 20 – 30 kHz operating frequency 
range. 

Tracking: 
Emergency transponder 
Mission abort 
In-mission tracking 

Software: 
VIP-based laptop interface for programming, 
training, post-mission analysis, documentation, 
maintenance, and troubleshooting. 

Data exporting and reporting: HTML report generator and ASCII text export 
 

Table 2.2: REMUS 100 AUV specifications [18], [19] 
 

Research conducted at the NPS Center for Autonomous Vehicle Research 

(CAVR) relating to the obstacle avoidance autonomy issues of the REMUS 100 AUV 

shows that the REMUS’ normal altitude control “auto-pilot” is unable to sustain a safe 

elevation over sharp rises in the ocean floor of 45 degrees or greater using only the RDI 
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Doppler Velocity Log [19], [20]. To solve this problem a new primary obstacle 

avoidance sensor, the ProViewer 450-15 multi-beam sonar, is installed to enable easy 

target detection and tracking and optimal obstacle path planning in dynamic conditions.  

It is mounted vertically and forward facing on the REMUS [21]. 

Further research proves the spline addition method to be an optimal path planner 

as it provides robust and reactive obstacle avoidance while optimizing the vehicle’s 

information gathering sensors and allowing for a look-ahead pitch controller. These make 

up a responsive “back-seat driver” for the REMUS’ normal altitude control “auto-pilot” 

that improve its endurance in unknown environments [19]. 

The REMUS 100 AUV is also in use by the Heriot-Watt University’s Ocean 

Systems Laboratory (OSL), Scotland, as a simulation platform for a variety of research 

work regarding autonomous underwater vehicles.  For example in [22], based on 

observed simulation and experimental data from the REMUS 100 AUV, experiments 

show how an adaptive planner system for autonomous mission diagnosis and repair is 

able do maintenance and keep an AUV running during missions. This planner enables the 

AUV to appropriately and efficiently adapt mission plans to gaps in an operation. Also in 

[23], the REMUS 100 is used to demonstrate the use of a logic-based scheme for 

hierarchical distributed representation of knowledge in autonomous underwater systems. 

Knowledge exchange is initiated between the status monitoring and the adaptive mission 

planner embedded agents and it is shown that both sub-systems can interchange 

information and remain domain independent during their communication with the AUV 

platform while performing a mission.  
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2.2 BIOMIMETIC AUVs 

Biomimetic Autonomous Underwater Vehicles (BAUVs) are biologically-

inspired autonomous underwater vehicles typically designed to mimic the propulsive 

capabilities and swimming mechanisms of fish and other underwater creatures. The 

biological study of underwater creatures offers inspiration for BAUV designs achieving 

energy efficiency, stealth and maneuverability [3]. In this regard, the functionality of the 

biological source of inspiration is imitated by way of robot/vehicle designs relying on 

standard mechanical principles assembled in a somewhat unconventional manner. In 

recent years, research interest in “artificial fish” is growing significantly due to the 

attractive promise of being able to take advantage of optimizations attained over millions 

of years [4], [24]. 

In [6], a BAUV is presented which imitates the ability of cephalopods to travel 

underwater by means of pulsed jet propulsion. It has been proven that more propulsive 

force is produced due to ejection of a discontinuous stream of fluid and the resulting 

creation of vortex rings at the nozzle exit plane compared to that generated by just a 

continuous jet [10], [25]. Serchi et al. [6] design a biomimetic model prototype of the 

structural and functional features of the Octopus Vulgaris. The form of this BAUV is 

obtained by moulding a silicone cast of an actual octopus thereby resulting in a realistic 

model of both the exterior and interior of an octopus mantle chamber. The prototype 

robot is 160 mm long, 95 mm wide, 80 mm tall at the largest cross section and has a total 

weight of 333.5 g, 212.0 g of which are silicone. The activation cycle (Figure. 2.4) is 
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based on a cable-driven contraction/release of the elastic mantle chamber. Ejection of 

fluid through a siphon-like nozzle provides suitable propulsive force for the robot.  

 

Figure. 2.4: An illustration of actuator components and activation sequence [6] 
Top: Cross-sectional view of the mantle chamber at the initial stage of the actuation 

sequence: the external silicone walls are undeformed and the rod is angled -90◦. Bottom: 
Same cross-section during maximum tension on the cables; the rod is angled 90◦ and the 

external silicone walls are folded inward. 
 

An inverse relationship is found [6] between frequency of pulsation and the 

average speed of the robot in that, fast pulsation causes inflation of the mantle to become 

less effective at refilling the mantle cavity with fluid thereby resulting in reduced thrust 

generation. Their experiments also show that when pulsing at a frequency of 1.5 pps, the 

soft robot expels water at a maximum jet velocity of 53 cm/s and moves at a maximum 

speed of 4 cm/s, compared to 1.26m/s jet velocity and 18cm/s maximum travel speed of 

actual octopuses pulsing at a frequency of 1.67pps. The main limiting factor presented is 

the passive inflation of the mantle chamber during the refill phase which introduces 

inefficiency due to the loss in forward thrust caused by inflow of fluid through the nozzle. 
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E. Lee [26] presents the design of a flexible, biomimetic, micro-robotic fish that 

leverages the energy saving characteristic of fish. The body of the fish is made of soft 

material and embedded with electromagnets (Figure. 2.5). Triggering the electromagnets 

that correspond to particular muscle groups propagates patterns of muscle activity. The 

biomimetic fish has piezoelectric polymer sensors on its body surface to measure the 

local fluid flow pressure. It automatically turns off the muscle actuators when it senses 

vortices in the surrounding fluid so that its body wave can be passively produced by 

interaction with the oncoming flow of water. The robot fish saves energy firstly by 

operating at its natural frequency to minimize energy consumption and also by storing the 

power generated for positive work as elastic energy and then utilizing it later for negative 

work. Further, the electromagnets of the fish can enable reconfiguration to accomplish 

certain collaborative tasks by physically connecting with others. 

 
Figure. 2.5: Schematic of a soft biomimetic micro-robotic fish [26] 

 
X. Deng and S. Avadhanula [7] discuss the design, fabrication, and force 

measurement of a centimeter scale micro-underwater vehicle that is an artificial replica of 

a boxfish. In spite of the fact that such tiny underwater microrobots have limited payload 
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capacity and slower swimming speed, they are cost-effective in their fabrication and 

deployment, highly maneuverable and very attractive for missions in underwater 

environments which are inaccessible by larger size underwater microrobots. In particular 

recent research has found that a major reason for the hydrodynamic stability of boxfish is 

there boxy shape. It enables them to efficiently keep to their swimming trajectory and 

near zero turning radius even in turbulent waters by changing the flow of water around 

them thereby setting up counter-rotating vortices which in effect act as self-correcting 

forces [27].  

In [7] a micro-robotic fish with a rigid body propelled by an oscillating tail fin and 

steered by a pair of independent side fins developed (Figure. 2.6). The prototype boxfish 

has a body length of 12mm with a 10mm long tail fin and weighs 1 gram. PZT actuators 

independently control and amplify the oscillation of the fins by driving four-bar 

mechanisms. It is observed that with a 150V peak-to-peak sinusoidal voltage input with a 

frequency of 6Hz, the forces generated by the tail fin are quite large with amplitude 

almost equal to the weight of the fish, but the mean force is only about 10% of the robots’ 

weight. 

 
 

Figure. 2.6: The boxfish prototype [7] 
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2.3 PROPULSION SYSTEMS FOR SMALL, COMPACT, LOW-SPEED 

MANEOUVERING AUVs 

2.3.1 SYNTHETIC VORTEX-RING JET THRUSTERS 

The idea behind this propulsion scheme stems from the pulsed jet propulsion 

method used by sea creatures such as salp, squid and jellyfish, which propel themselves 

by pulsing water out of a cavity in their body. The concept of these thrusters is similar to 

that presented in [6] but their physical construction and actuation methods are different. 

These jet thrusters consist of a cylindrical chamber with a synthetic vibrating membrane 

at one end and an orifice at the other. Water is drawn into the chamber from around the 

orifice during the membrane’s downstroke and ejected through the same orifice during 

the upstroke, creating a vortex ring [2], [11], [28]. A sequence of vortex rings results 

from periodic vibration of the membrane, creating a jet-like structure (Figure. 2.7). A 

propulsive force is generated as a result of transferral of net momentum to the fluid due to 

the vortex rings fluid structure. 

   

Figure. 2.7: An illustration of synthetic jet actuator operation [2], [11]  
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Synthetic jet thruster prototypes have been designed and built to study the flow 

patterns created and measure the forces produced by the jets [2], [11], [29]. The main 

parts of the mechanism are: an orifice plate, a fluid chamber, a flexible membrane and an 

actuator. The membrane is a thin rubber sheet and is attached to the actuator via a metal 

disk glued to the membrane’s underside. Different actuators can be used with these jet 

thrusters including solenoid valves and voice coil actuators. In [2] voice coil actuators are 

used that allow a large degree of control in driving the membrane.  

For a fixed mechanical implementation with an automated experimental 

apparatus, average thrust force measurements and a genetic algorithm are used to find an 

optimal set of actuator parameters such as the frequency, amplitude and velocity profile 

of the membrane’s movement [2]. It is found that the maximum propulsive force that can 

be produced by the synthetic jet is approximately 0.25N using maximum power. Also, it 

is found that thrust increases proportionally with frequency and that the optimal 

waveform to send to the synthetic jet thruster is one that causes the membrane to pull 

fluid in quickly and push it out slowly [2]. The sucking effect is predicted to cause a drop 

in the overall thrust produced by these thrusters but the magnitude of this reduction is 

difficult to model or quantify [2], [11]. 

Overall, these actuators are desirable in many ways: they are relatively simple and 

compact mechanical structures, they can be installed in small AUVs in such a way that 

there are no appendages protruding into the surrounding flow and have been shown to be 

a valid approach for underwater vehicles for tracking slow moving sea creatures that 

swim at speeds between 2 and 10 cm/s. However they have several downsides as well, 
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including: that they are fairly inefficient since the loss in forward thrust force caused by 

the inflow of fluid through the orifice is difficult to predict and they provide forces 

primarily in one direction and hence are usually paired.  

2.3.2 THE COANDA JET DEVICE 

The coanda effect is the tendency of a high pressure fluid jet to be attracted to and 

attach itself to a nearby curved surface. When a nearby wall does not allow the 

surrounding fluid (essentially the same substance) to be to be entrained towards the jet, 

the jet moves towards the wall instead. This effect is mainly used for air jet control 

applications such as increase of the aerodynamic lift of aircrafts and increase of the throw 

of ceiling mounted diffusers in air conditioning, but is also applied to water such as in 

oscillatory flow meters, automobile windshield washers and for debris separation in 

hydropower screens.  

 
 

Figure. 2.8: An Illustration of the basic coanda jet device shape and geometry [1]  
 

For the Coanda Jet Device (CJD) (Figure. 2.8), a high pressure water jet is 

supplied through a nozzle inlet and depending on which of the two control ports C1, C2 is 

open, the water jet attaches itself to either wall and then exits through either exit [1], [5], 

[9]. The Coanda effect is utilized at the control ports to switch the direction of the water 
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jet between the available exits. A prototype CJD is fabricated for static force performance 

evaluation using a TCS M400K micropump and an MLP 10N load cell and the average 

force measured to be 0.125N.  

Two other experiments are also performed [1], [5] to evaluate the dynamic force 

performance and speed response of the CJD in comparison to a conventional propeller-

type thruster, with a solenoid actuator used to operate the control ports of the CJD. The 

CJD and propeller-type thruster are activated, allowed to reach steady state, then a 

change of direction is commanded for “direct” and “indirect” force measurement setups. 

Despite the introduction of reaction effects due to the spring-back of the solenoid valve’s 

return spring, it is observed that the CJD provided comparable rise time, improved 

settling time and reduced reaction forces when compared to a conventional propeller-type 

thruster [1], [5]. 

Further, a prototype test vehicle (Figure. 2.9) with a nested structure CJD actuator 

system (for 2 DOF motion) is fabricated and tested [1] while operating the vehicle in a 

tethered setup. Two different sets of experiments are carried out to characterize the 

forward motion and maneuvering characteristics of the test vehicle respectively. The 

vehicle achieves a steady-state forward velocity of approximately 0.13m/s and a yaw rate 

of approximately 1rad/s [1]. Also in [5] a full 4DOF vehicle design (Figure. 2.10), with 

the CJD device miniaturized and incorporated into it, is constructed and presented with 

some preliminary performance metrics. 
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Figure. 2.9: Nested coanda jet device actuator and first generation prototype test vehicle 
[1]  

 

 
Figure. 2.10: Second generation prototype AUV: CJD system imbedded into the hull of 

the vehicle [5]  
 

The performance of the test vehicle presented in [1], [5], [9] with the nested CJD 

mechanism used for propulsion and maneuvering is quite compelling for low-speed 

precise maneuverability using high-speed switching of water jets. Also, the CJD system 

imposes minimal reaction forces and moments when reversing flow and can be wholly 

encapsulated in a compact, smooth, streamlined hull while still allowing the pumps and 

valves to access the ambient fluid [1], [5], [9]. Still, this mechanism has a number of 
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limitations including mechanical complexity in construction and the inability to provide 

bidirectional thrust for every degree of freedom. 

In conclusion, having gone over the modes of operation and applications of 

various types of AUVs in use and under research to-date, the proposed syringe-plunger 

propulsion system presented in this thesis offers many advantages, particularly for the 

small, compact, slow moving precision AUVs in comparison to the propulsion 

mechanisms presented above for the same. 
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CHAPTER 3: THE SYRINGE-PLUNGER PROPULSION MECHANISM 

3.1 OVERVIEW 

            
 

Figure 3.1: Schematic illustration of the proposed syringe-plunger propulsion system 
 

The propulsion mechanism proposed in this work (Figure 3.1) consists of a 

syringe and a plunger attached to a linear stepper motor actuator. The linear actuator is 

used to move the syringe plunger up and down inside the syringe barrel, thereby drawing 

in and pushing out fluid (water) through the syringe orifice. Solenoid valves are used to 

create different intake and outflow orifices and to manage the flow of water at each 

orifice.  

Linear actuators are actuators that create motion in a straight line. Electro-

mechanical linear actuators, such as stepper motors, operate by converting the rotary 
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motion of an electric motor to linear displacement through a threaded shaft. The electric 

motor is mechanically connected to rotate a lead screw. 

   

Figure 3.2: (a) Travelling-screw linear actuator; (b) Travelling-nut linear actuator 
 

A travelling-screw linear actuator (Figure 3.2.a) has the lead screw passing 

entirely through the motor. Restraining the lead screw from spinning causes the motor to 

move up and down the lead screw. This type is used for the direct thrust measurement 

experiments, described in Section 3.2, as it facilitates placement of the force sensors used 

to determine the resultant force output of the propulsion system. On the other hand, a 

travelling-nut linear actuator (Figure 3.2.b) has the motor permanently attached to one 

end of the lead screw. As the motor spins the lead screw, restraining the lead nut from 

spinning causes it to travel up and down the lead screw. This type is used for the test 

vehicle experiments, described on Chapter 5, as it enables installation of the propulsion 

mechanism in the vehicle, while allowing for attachment of the other components 

necessary for the experiment. 

Connecting a linkage, i.e. a load (the plunger in this case), to the motor and lead 

nut respectively converts the rotary motion of the lead screw to usable linear 

displacement. Stepper motor linear actuators are relatively cheap and used mostly for 

applications that require repeatability, automation, fine resolution and high accuracy. 

(a) lead screw (b) 

lead nut 
lead screw 
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They are chosen for use in this work primarily for this reason, to facilitate determination 

of the speed and displacement of the plunger in the syringe barrel.  

The efficacy of the proposed propulsion system design was assessed via two 

phases of experiments:  

1. Direct thrust measurement experiments to determine the net propulsive force 

output of the mechanism. 

2. Experiments with the mechanism installed in a test vehicle to evaluate and model 

the resultant propulsive force produced and estimate the speed performance 

characteristics achievable by a vehicle employing the propulsion system. 

3.2 DIRECT THRUST MEASUREMENT EXPERIMENTS 

These experiments are performed to determine the net propulsive force of the 

syringe-plunger mechanism for two different experimental setups. They are performed 

for various actuation sequences where the speed of the plunger movement in the syringe 

is varied for a fixed mechanical implementation, i.e. fixed syringe orifice, syringe barrel 

size, plunger diameter, water control volume and solenoid valve geometry. The plunger is 

rigidly attached to the motor and therefore is pulled up and pushed down the syringe 

barrel when the motor moves during the upstroke and downstroke actions respectively. 

For these direct thrust experiments the linear stepper motor is controlled using the 

XMOS microcontroller and a stepper motor driver. Square wave signal commands of 

50% duty cycle are sent from the XMOS microcontroller, via the motor driver, to the 

motor to control its direction of movement, linear displacement and speed. A LabView 
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software program and the NI DAQ device are used to obtain voltage measurements from 

the load cell when force is applied to it. 

3.2.1 EXPERIMENTAL SETUP 1 

Figure 3.3 shows a schematic of the first experimental setup (Figure 3.4) of the 

syringe-plunger mechanism, set up to draw and push out water from the same orifice 

during the plunger upstroke and downstroke respectively. This setup only produces net 

thrust in one direction. These experiments are performed to determine the net propulsive 

force of the syringe-plunger mechanism and also to compare the results with those of the 

synthetic jet thruster systems [2], [11] where a synthetic vibrating membrane is used to 

draw and push out water into and out of a cylindrical chamber through a single orifice. 

 

Figure 3.3: Schematic illustration of experimental setup 1  
 

The apparatus used for these experiments comprises of the following hardware 

and software components: 

 A travelling-screw linear stepper motor actuator (NEMA 17, 0.4A Bipolar, 12V) 
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Figure 3.4: An illustration of experimental setup 1 

 Stepper motor driver (Sparkfun EasyDriver stepper motor driver) 

 Syringe barrel and Plunger (60ml size) 

 XMOS XK-1A microcontroller and xTIMEcomposer Studio Development 

Environment/Software 

 Force Sensitive Resistor, FSR (0.5" diameter, sensing area) 

 Flexiforce Pressure, FFP Sensor, (piezoresistive FSR sensor, 0-25lbs sensing 

range)  

 A force sensing load cell (FC22 Compression Load Cell, 0-10 lbf/0-44.48N force 

range) 

 12V and 5V DC power adaptors 

 A Data Acquisition (DAQ) device (model: NI DAQ USB-6008) 

 LabView software 

 2 Normally-closed Solenoid valves, 12V 6W 

 2 Single-side stable TTL (Transistor–transistor logic) relays, TF2-5V 
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The actuator housing and sensor attachment plate are fabricated from clear plastic, 

impact-resistant polycarbonate round tubes of different wall thicknesses and different 

inner and outer diameter sizes and an unpolished (mill) finish multipurpose aluminum 

(Alloy 6061), 1/4" thick, 12"x12" bar.  

 

Figure 3.5: An illustration of the actuator housing parts 
 

Three force sensors (Figure 3.6) are evaluated for tests with this initial setup. 

These include: the Force Sensitive Resistor (FSR) sensor, the Flexiforce Pressure (FFP) 

sensor and the force sensing compression load cell. FFP sensors have greater accuracy 

than FSR sensors of about ±3% while the force sensing load cell has superior accuracy 

and higher reliability than both the FFP and FSR sensors. The results presented in Section 

3.3 of this chapter are obtained using the FC22 force sensing compression load cell. 

 

Figure 3.6: From left to right: The FSR sensor; The FFP sensor; The FC22 Load cell 
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The load cell has a ratiometric voltage output span of up to 5V and is first 

calibrated to obtain an equation describing the relationship between the voltage output in 

Volts and the applied force in Newtons. This is done by measuring and recording the 

voltage outputs from the load cell when known force values/weights are applied to it and 

then plotting the Force (N) vs. Voltage Output (V) data. Next, the curve fitting function 

in MATLAB is used to find the equation relating the Voltage Output (V) to Force (N). 

This equation (Equation 3.1) is used to determine the force measurements from the 

voltage readings obtained from the load cell during experiments. 

𝐹 (𝑁) = 4.4036𝑉 − 0.00137   (3.1) 

3.2.2 EXPERIMENTAL SETUP 2 

 

Figure 3.7: Schematic illustration of experimental setup 2 
 

Figure 3.7 provides an illustration of the second direct force experimental setup, 

set up to draw and push out water from two different orifices consecutively during the 

plunger upstroke and downstroke. 
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In this second setup, two solenoid valves are attached to the end of the syringe to 

create different intake and outflow orifices. The control ports C1 and C2 are used to 

manage the flow of water at the inlet and exit orifices. The control ports C1 and C2 are 

operated by activating two independent normally-closed solenoid valves. During the 

plunger upstroke, control port C1 is opened (control port C2 must remain closed) and 

water is drawn into the syringe barrel through the inlet orifice. Opening of control port C2 

(with control port C1 now closed) during the plunger downstroke, allows the fluid to be 

pushed out through the exit orifice. Off-the-shelf solenoid valves (Figure 3.8) with a 

response time of 20ms are used. By responding to signal commands from the XMOS 

microcontroller, two independent single-side stable TTL relays are used to open and 

close the solenoid valves as required during the experiments. 

          

Figure 3.8: Left: Normally-closed Solenoid Valve; Right: 5V TTL Relays  
 
3.3 FORCE MODEL 

The force output model of the direct dynamic thrust measurement experiments is 

produced based on simple fluid mechanics principles and several assumptions outlined 

below. 

ASSUMPTIONS: 

 Inviscid and incompressible fluid (i.e. constant mass density ρ). 
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 Minor pipe losses due to elbows and small contractions and expansions at the 

syringe exit orifice and valve inlet and outlet orifices are neglected. 

 Frictional losses due to plunger movement in the syringe barrel are considered 

negligible. 

 Reaction effects due to spring back of solenoids are neglected. (Setup 2) 

3.3.1 EXPERIMENTAL SETUP 1 

 

Figure 3.9: Schematic illustration of the free body force diagram for setup 1 thrust 
measurement experiments. 

(left: Plunger Upstroke; right: Plunger Downstroke) 

In general, by use of the continuity equation (Equation 3.2) and the conservation 

of linear momentum principle (Equation 3.3) for open systems, the theoretical resultant 

net output force FNET, of the propulsion mechanism can be found. In addition, for this 

experimental setup, the line of action of the resultant forces on the system due to the 

plunger upstroke (FDWN) and downstroke (FUP) is parallel and coincident to the force due 

to gravity (Equation 3.4) acting on the system. This is taken into account while 

calculating the resultant net output force FNET, of the mechanism as shown in the free 

body force for this experimental setup (Figure 3.9) and Equation 3.5.  
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This ensures complete modelling of the resultant net output force FNET, of the 

syringe-plunger propulsion mechanism in comparison to synthetic jet propulsion systems 

[2], [11] where only the force produced during the out-stroke motion of the synthetic 

membrane is modelled and the obvious reduction of thrust due to the suction effect of the 

membrane upstroke is neglected. 

��̇� = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
�̇�𝑖𝑛𝑙𝑒𝑡 = �̇�𝑒𝑥𝑖𝑡

  �                  (3.2) 

�̇�(𝑉𝑒𝑥𝑖𝑡 − 𝑉𝑖𝑛𝑙𝑒𝑡) = ∑𝐹         (3.3) 

𝐹𝐺 = 𝑊𝑠𝑦𝑠 = 𝑚𝑔              (3.4) 

𝐹𝑇,1 = 𝐹𝑁𝐸𝑇,1 = |𝐹𝑈𝑃| − |𝐹𝐷𝑊𝑁|            (3.5) 

where: 

𝐹𝑈𝑃  =  𝐹𝑅𝑈𝑃 = resultant thrust force on the system due to plunger downstroke 

𝐹𝐷𝑊𝑁  =  𝐹𝑅𝐷𝑊𝑁 = resultant thrust force on the system due to plunger upstroke 

 FT = resultant net thrust force on the system 

�̇� = mass flow rate 

V = fluid velocity 

F = resultant force 

FG = force due to gravity 

g = acceleration due to gravity 

3.3.2 EXPERIMENTAL SETUP 2 

For the experiments with the second setup (Figure 3.10), the line of action of the 

resultant forces on the system due to the plunger upstroke (FDWN) and downstroke (FUP) is 

perpendicular to the force due to gravity acting on the system. Therefore here, the effect 
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of the gravitational force on these resultant forces on the system is considered negligible. 

The net thrust output (FNET,2) is obtained by combining the FDWN and FUP forces on the 

system as shown in equation 3.6. 

𝐹𝑇,2 = 𝐹𝑁𝐸𝑇,2 = |𝐹𝑈𝑃| + |𝐹𝐷𝑊𝑁|           (3.6) 

 

Figure 3.10: Schematic illustration of the free body force diagram for the setup 2 thrust 
measurement experiments. 

(left: Plunger Upstroke; right: Plunger Downstroke) 

3.4 EXPERIMENTAL RESULTS AND DISCUSSION 

The direct thrust measurement experiments described in Section 3.2 above are 

performed for various actuation sequences where the linear speed of the plunger 

movement is varied from 0.25cm/s to 0.893cm/s by changing the frequency of the signals 

sent from the microcontroller. This is done to determine the influence of the type of flow 

(as described by the Reynolds number) through the syringe and valve orifices on the 

thrust output of the mechanism. Specifically, experiments for three different actuation 

sequences/cases are carried out.  

1. CASE 1: Equal plunger upstroke and downstroke speed. 
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2. CASE 2: Plunger upstroke speed is faster than the downstroke speed. The 

upstroke speed is kept constant at 0.781cm/s while the downstroke speed is 

increased from 0.25cm/s to 0.625cm/s for each consecutive set of experiments. 

3. CASE 3: Plunger downstroke speed faster than the upstroke speed. The 

downstroke speed is kept constant at 0.893cm/s while the upstroke speed is 

increased from 0.25cm/s to 0.781cm/s for each consecutive set of experiments. 

The disparity in the maximum upstroke and downstroke plunger speeds for cases 

2 and 3 above is due to hardware failures and challenges with the linear actuator during 

the course of these experiments. For each set of experiments the force measurement data 

obtained is evaluated using the trapezoidal rule for numerical integration and Equations 

3.2 – 3.6 to determine the resultant thrust due to plunger upstrokes and downstrokes and 

therefore the resultant net thrust output of the propulsion mechanism.  

The resultant net thrust output results for each actuation case for both 

experimental setups and for plunger speeds from 0.25cm/s to 0.893cm/s are presented in 

Figure 3.11 and Figure 3.12 respectively. The thrust output results for the CASE 3 

experiments are normalized for a downstroke plunger velocity of 0.781cm/s. This is done 

by using Equations 3.2 and 3.3 to determine the difference in the theoretical thrust output 

for CASE 3 with a downstroke speed of 0.781cm/s instead of 0.893cm/s. 

For both experimental setups it is observed that more net thrust output from the 

propulsion mechanism is generally achieved by actuation sequences that have the plunger 

upstroke speed being faster than the downstroke speed, i.e. CASE 2. Additionally, for 

setup 2, for plunger speeds between 0.25cm/s and 0.625cm/s, it is observed that for both 
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CASES 2 and 3 the greater the difference between the upstroke and downstroke speeds 

the higher the net thrust produced. 

 

Figure 3.11: Experimental Setup 1: Net Thrust Output Results 
 
 

 

Figure 3.12: Experimental Setup 2: Net Thrust Output Results 
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The difference in the net thrust output of CASES 2 and 3 is in line with fluid 

dynamics principles [30], [31] that pressure and energy losses (Δp) in fluid flow in pipes 

increase as the velocity of flow (U) increases and the flow becomes turbulent (Equations 

3.7 and 3.8). For setup 1 in particular, the amount of positive net thrust is mainly due to 

how much thrust is produced by the downstroke movement of the plunger. The type of 

flow through the syringe orifice is determined by the Reynolds number (Equation 3.9). 

Laminar flow: Re < 2300 

Transition flow: 2300 < Re < 4000                               (3.7) 

Turbulent flow: 4000 < Re 

and 

Laminar flow: Δp ∝ U 

Transition flow: Δp ∝ U>2.0                                     (3.8) 

Turbulent flow: Δp ∝ U1.7-2.0 

𝑅𝑒 =
𝑉𝑓𝐷
𝜈

                                                             (3.9) 

where:  

 Vf = fluid velocity; D = the diameter of the syringe orifice 

ν = fluid kinematic viscosity 

The Reynolds number range for the flow of water through the syringe orifice for 

the plunger velocities between 0.25cm/s to 0.781cm/s is 453.81 to 2836.31, i.e. laminar to 

transition flow. Higher downstroke plunger speeds cause the flow of water being pushed 

out of the syringe orifice to be increasingly more turbulent, resulting in higher energy 

losses in the flow and reduced thrust output.  
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Further, preliminary investigations are performed to demonstrate that the 

proposed mechanism can provide enough propulsive force for an arbitrary, small 

underwater vehicle operating at low speed. The experimental net thrust output results 

obtained in both setups is compared to the axial drag force FD (Equation 3.10) that would 

act on such a vehicle, with its shape approximated as a smooth sphere. Drag force is the 

measure of the resistance to motion of a vehicle while it is moving through a fluid and is 

typically expressed in terms of the drag coefficient, CD (Equation 3.11).  

𝐹𝐷 = 1
2� 𝐶𝐷𝜌𝐴𝑝𝑉𝑣2                (3.10) 

𝐶𝐷 = 𝑓(𝑅𝑒, 𝑒);      𝑅𝑒 = 𝑉𝑣𝐷
𝜈

                    (3.11) 

where:  

AP = projected cross-sectional area normal to the direction of the drag force 

e = surface roughness 

ρ = mass density of fluid 

Vv = vehicle velocity 

1/2ρVv
2 = equivalent dynamic pressure 

D = the diameter D of the sphere 

ν = fluid kinematic viscosity 

For flow over smooth rigid bodies, the type of flow is considered laminar for 

Reynolds numbers less than 105 and turbulent flow Reynolds numbers above 106 [30]–

[32]. At low speeds between 2cm/s and 10cm/s the flow around such a vehicle is laminar 

with Reynolds number between 4980 and 24900. For this range of Reynolds numbers, the 
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drag coefficient is (Equation 3.11)  0.45 and the drag force (Equation 3.10) on the vehicle 

increases from 0.0044N to 0.11N.  

Taking the results for CASE 2, setup 1 (Figure 3.11), with plunger speeds of 

0.781cm/s and 0.625cm/s for the upstroke and downstroke respectively, the thrust output 

of the mechanism is 2.6694N. This thrust is much greater than the drag of the spherical 

vehicle mentioned above for the range of speeds under consideration and hence indicates 

that the propulsion mechanism can deliver enough thrust to drive such a vehicle. For 

CASE 2, setup 2 (Figure 3.12), with plunger speeds of 0.781cm/s and 0.625cm/s for the 

upstroke and downstroke respectively, the thrust output of the mechanism is 0.01458N. 

This thrust is greater than the drag of the spherical vehicle mentioned above for operating 

speeds up to approximately 4cm/s and indicates that the propulsion mechanism can 

deliver enough thrust to drive the vehicle at this speed. 

In comparison to synthetic vortex-ring jet thrusters [2] and the coanda jet device 

[1], it is observed from the results above that setup 1 of the syringe-plunger propulsion 

mechanism can provide much higher propulsive force than either of them at lower cost 

and power consumption. The propulsive forces achieved by setup 2 of the syringe-

plunger propulsion mechanism are considerably lower. This can be attributed firstly to 

force measurement error due possibly to the setup design, i.e. symmetry of the placement 

of the load cell, the cantilever beam and the valve attachments to the syringe. Also, the 

reduced net thrust output from setup 2 suggests negation of the assumption in Section 3.3 

that the pipe losses due to the elbow connections between the syringe exit orifice and the 

valves are negligible. However the positive results from the evaluation described above 
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with the arbitrary 0.25m diameter spherical vehicle allow for advancement to the 

installation of the syringe-valve setup in a proof-of-concept test vehicle for further 

assessment. 

Also, research shows that data in research papers indicates a huge disparity in 

forces which points to a greater calibration issue with the force sensors in use. Universal 

calibration and an understanding of the uncertainty analysis involved in force sensing are 

essential for experimental work and comparison of results across research groups [33], 

[34]. 
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CHAPTER 4: TEST VEHICLE MODELLING 

4.1 TEST VEHICLE DESIGN 

A surface vehicle is built at the University of Denver Unmanned Systems 

Research Institute (DU2SRI) to physically test the performance of the syringe-plunger 

propulsion mechanism prototype, with the solenoid valves used to operate the control 

ports for production of continuous thrust. The mechanism is installed in the test vehicle 

and various experiments are performed to evaluate and enable modelling of the resultant 

force and speed performance characteristics achievable by employing the propulsion 

mechanism. The experiments are performed for various actuation sequences where the 

speed of the plunger movement in the syringe is varied for a fixed mechanical 

implementation, i.e. fixed syringe orifice and barrel size, plunger diameter, water control 

volume,  solenoid valve geometry and vehicle inflow and outflow nozzles. 

To ensure ease of modelling and testing, a simple, elliptically shaped, positively 

buoyant (floating), barge-like design is used. The test vehicle is designed using 

SolidWorks 3D CAD software and produced using an FDM 3D printing machine. Figure 

4.1 provides an illustration of the test vehicle shape and the coordinate system employed 

for modelling the vehicle’s dynamics.  
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Figure 4.1: An illustration of the test vehicle shape and coordinate system 

 
After several design iterations of the test vehicle to ensure optimum installation of 

the propulsion mechanism in the vehicle while maintaining a smooth outer shape, a final 

workable design is achieved. An illustration of the test vehicle prototype is provided in 

Figure 4.2. This first generation test vehicle is designed for one degree of freedom (DOF) 

movement to simplify the dynamics and control of the vehicle. Hence, the propulsion 

system is installed in the vehicle such that it provides thrust in the x-direction.  

 

Figure 4.2: A solid model illustration of the first generation test vehicle 
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4.2 TEST VEHICLE KINEMATICS AND DYNAMICS 

4.2.1 ASSUMPTIONS 

An accurate model must first be derived to describe the maneuvering and motion 

control of the vehicle to achieve realistic results. With the movement of the vehicle 

confined to a maximum of 2DOF (i.e. the 1-2 plane) the following initial assumptions are 

made to accomplish this:  

 The vehicle behaves as a rigid body. 

 The earth's rotation is negligible as far as acceleration components of the vehicle's 

center of mass are concerned.  

 The primary external forces that act on the vehicle include propulsion forces Fx 

and Fy, and hydrodynamic forces related to added mass (aij) and pressure drag.  

4.2.2 EQUATIONS OF MOTION 

Rotational and translational Equations of Motion (EOM) are developed by [17], 

[35], [36] using a Newton-Euler approach and Euler angle transformations. Incorporating 

weight/buoyancy forces they derive the following EOM for a full six degree of freedom 

(DOF) model for underwater vehicles:  

SURGE EQUATION OF MOTION 
 

m[u̇r − vrr + wrq − xG(q2 + r2) + yG(pq − ṙ) + zG(pr + q̇)] + (W − B) sin θ = Xf 
 

SWAY EQUATION OF MOTION 
 

m[v̇r + urr − wrp + xG(pq + ṙ) − yG(p2 + r2) + zG(qr − ṗ)] − (W − B) cosθ sinϕ = Yf 
 

HEAVE EQUATION OF MOTION 
 

m[ẇr − urq + vrp + xG(pr − q̇) + yG(qr + ṗ) − zG(p2 + q2)] − (W − B) cosθ cosϕ = Zf 
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ROLL EQUATION OF MOTION 

 
Ixṗ + �Iz − Iy�qr + Ixy(pr − q̇) − Iyz(q2 − r2) − Ixz(pq + ṙ) + m[yG(ẇr − urq + vrp) − zG(v̇r + urr −
wrp−yGW−yBBcosθcosϕ+zGW−zBBcosθsinϕ=Kf  
 

PITCH EQUATION OF MOTION 
 

Iyq̇ + (Ix − Iz)pr − Ixy(qr + ṗ) + Iyz(pq − ṙ) + Ixz(p2 − r2) − m[xG(ẇr − urq + vrp) − zG(u̇r − vrr +
wrq+xGW−xBBcosθcosϕ+zGW−zBBsinθ=Mf  
 

YAW EQUATION OF MOTION 
 

Izṙ + �Iy − Ix�pq − Ixy(p2 − q2) − Iyz(pr + q̇) + Ixz(qr − ṗ) + m[xG(v̇r + urr − wrp) − yG(u̇r − vrr +
wrq−xGW−xBBcosθsinϕ−yGW−yBBsinθ=Nf  
 

Equations (4.1) [17], [35], [36] 

where:  

W = weight 

B = buoyancy 

I = mass moment of inertia terms 

ur, vr, wr = component velocities for a body fixed system with respect to the water 

p, q, r = component angular velocities for a body fixed system 

xB, yB, zB = position difference between geometric center and center of buoyancy 

xG, yG, zG = position difference between geometric center and center of gravity 

Xf, Yf, Zf, Kf, Mf, Nf = sums of all external forces (body fixed directions) 

Also, the three world coordinate frame translation rates are obtained from the 

body coordinate frame translation rates by use of Equation 4.2.1. 

�
�̇�
�̇�
�̇�
� = [𝑹] �

𝑢
𝑣
𝑤
�     (4.2.1) 

where, [R] is the body to world rotation matrix [17], [35], [36]. [R] is an orthogonal 

matrix hence, [R]-1 = [R]T. 
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[𝑅] = �
𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜓 − 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜓 + 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜓
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜓 + 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜓 𝑐𝑜𝑠 𝜙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜓 − 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜓
−𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃

�  

(4.2.2) 

The three world coordinate frame Euler angle rotation rates are obtained from body 

coordinate frame rotation rates by use of Equation 4.3.1. 

�
�̇�
�̇�
�̇�
� = [𝑻] �

𝑝
𝑞
𝑟
�             (4.3.1) 

where, [T] is the body to world translation matrix [17], [35], [36]. [T] is not an 

orthogonal matrix hence, [T]-1 ≠ [T]T. 

[𝑇] = �
1 𝑠𝑖𝑛 𝜙 𝑡𝑎𝑛 𝜃 𝑐𝑜𝑠 𝜙 𝑡𝑎𝑛 𝜃
0 𝑐𝑜𝑠 𝜙 −𝑠𝑖𝑛 𝜙
0 𝑠𝑖𝑛 𝜙 𝑠𝑒𝑐 𝜃 𝑐𝑜𝑠 𝜙 𝑠𝑒𝑐 𝜃

�                                        (4.3.2) 

4.2.3 EXTERNAL FORCES AND MOMENTS ON VEHICLE 

A. DRAG 

Drag force FD, represents the resistance encountered by bodies moving through 

fluids. It explains the need to supply power to keep ground, air, surface and underwater 

vehicles in motion. As mentioned in Section 3.3, this force is typically expressed in terms 

of the drag coefficient CD, defined as, 

𝐶𝐷 =
𝐹𝐷

1
2� 𝜌𝐴𝑃𝑉2

= 𝑓(𝑅𝑒𝐿 , 𝑒)                                       (4.4) 

ReL is a dimensionless number that represents the ratio of inertial to viscous fluid forces 

and helps predict the type of flow around different rigid body shapes moving through 

fluids . It is given by the equation 
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𝑅𝑒𝐿 =
𝑉𝐿
𝜈

                                                                (4.5) 

where, ν represents the fluid kinematic viscosity (m2/s). Because of its importance, drag 

force, specifically the drag coefficient CD, and its behavior is well documented in Fluid 

Dynamics literature for a large number of configurations/rigid bodies shapes and flow 

conditions, see e.g. [30]–[32]. 

B. ADDED MASS AND ADDED MASS COEFFICIENTS 

Added mass can be interpreted as a particular volume of fluid particles that are 

accelerated with a body as it moves through a fluid. The added-mass coefficients for 

translation generally differ depending on the direction of the body motion. One 

convenient feature of the added-mass coefficients is their symmetry where, aij = aji [37]. 

Thus there are twenty-one independent added-mass coefficients and this number is 

substantially reduced if the body is symmetrical about one or more axes. The test vehicle 

used in this work is assumed to be top-bottom (x-y plane) and port-starboard (x-z plane) 

symmetric [35], [36], hence its added mass matrix reduces to (Equation 4.6). 

𝑀𝐴 = �𝐴11 𝐴12
𝐴21 𝐴22

� = �
𝑎11 ⋯ 𝑎16
⋮ ⋱ ⋮
𝑎61 ⋯ 𝑎66

� =

⎣
⎢
⎢
⎢
⎢
⎡
𝑎11 0 0 0 0 0
0 𝑎22 0 0 0 𝑎26
0 0 𝑎33 0 𝑎35 0
0 0 0 𝑎44 0 0
0 0 𝑎53 0 𝑎55 0
0 𝑎62 0 0 0 𝑎66⎦

⎥
⎥
⎥
⎥
⎤

 (4.6) 

where:  

A11 = 3x3 added mass matrix; A22  = 3x3 added inertia tensor matrix 

A12 and A21 = 3x3 added static moments matrices  

aij = added-mass coefficients 
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In many situations especially those involving elongated or cylindrical rigid 

bodies, three-dimensional added-mass coefficients can be approximated by strip theory 

synthesis, in which the flow at each section can be assumed to be locally two-

dimensional [37].  

Therefore, for the test vehicle the sum of the external forces and moments [35], 

[36] are simplified for 2DOF motion and expressed as 

𝐹𝑑𝑟𝑎𝑔,𝑖 = 1
2� 𝐶𝐷,𝑖𝜌𝐴𝑃,𝑖𝑉𝑖2 

∑𝑋𝑓 = 𝑎11�̇� − 𝑎22𝑣𝑟 − 𝑎62𝑟𝑟 − 𝐹𝑑𝑟𝑎𝑔,1 + 𝐹𝑋   (4.7) 

∑𝑌𝑓 = 𝑎22�̇� + 𝑎62�̇� + 𝑎11𝑢𝑟 − 𝐹𝑑𝑟𝑎𝑔,2 + 𝐹𝑌   (4.8) 

∑𝑁𝑓 = 𝑎26�̇� + 𝑎66�̇� − (𝑎11 − 𝑎22)𝑢𝑣 + 𝑎62𝑢𝑟 + 𝐹𝑌𝑙       (4.9) 

where:  

i = directions 1,2 

4.2.4 HORIZONTAL PLANE SIMPLICATIONS 

For motion in the horizontal (1-2) plane only, the six degrees of freedom EOM 

(Equations 4.1) are first simplified by neglecting all of the vertical components i.e. wr, p, 

q, φ, θ, and further by assuming the following: 

 The origin of the body-fixed coordinate system is located at the center of mass of 

the vehicle. 

 The vehicle is symmetric in its inertial properties.  
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∴ 𝑀𝑅𝐵 = �𝑚𝐼3𝑥3 0
0 𝐼𝑆

� =

⎣
⎢
⎢
⎢
⎢
⎡
𝑚 0 0 0 0 0
0 𝑚 0 0 0 0
0 0 𝑚 0 0 0
0 0 0 𝐼𝑥𝑥 0 0
0 0 0 0 𝐼𝑦𝑦 0
0 0 0 0 0 𝐼𝑧𝑧⎦

⎥
⎥
⎥
⎥
⎤

 

where: 

MRB = Inertia mass matrix;   

m = Rigid body mass 

I3x3  = Identity matrix; IS = Inertia tensor matrix 

As a result, the simplified EOM that model the test vehicle’s surge, sway and yaw 

dynamics are:  

𝑚[�̇� − 𝑣𝑟] = 𝑎11�̇� − (𝑎22𝑣𝑟 + 𝑎62𝑟𝑟) − 𝐹𝑑𝑟𝑎𝑔,1 + 𝐹𝑋  ...surge 

𝑚[�̇� + 𝑢𝑟] = 𝑎22�̇� + 𝑎62�̇� + 𝑎11𝑢𝑟 − 𝐹𝑑𝑟𝑎𝑔,2 + 𝐹𝑌               ...sway 

𝐼𝑍𝑍�̇� = 𝑎26�̇� + 𝑎66�̇� − (𝑎11 − 𝑎22)𝑢𝑣 + 𝑎62𝑢𝑟 + 𝐹𝑌𝑙     ...yaw 

where:  

u = component body-fixed linear velocity in the 1 direction (surge)  

v = component body-fixed linear velocity in the 2 direction (sway)  

r = component body-fixed angular velocity in the 6 direction (yaw) = yaw rate 

Izz = rotational mass moment of inertia about the z axis 

FX = external propulsion force in the 1 direction 

FY = external propulsion force in the 2 direction 

FY.l = external turning moment about the 6 direction 

Only Izz is considered because the vehicle has a symmetrical structure and only 

translates in the horizontal plane, rotating only along the z axis. Also a26, a62, which are 
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crossflow added mass coefficients, are neglected since the vehicle is considered to have a 

uniform cross-section over its length. 

Therefore the final rigid body dynamics model for the test vehicle for 2DOF, 

obtained from simplification of equations 4.1 – 4.9, becomes: 

�̇� =
𝐹𝑋 + (𝑚 − 𝑎22)𝑣𝑟 − 𝐹𝑑𝑟𝑎𝑔,1

(𝑚 − 𝑎11)                                                 (4.10) 

�̇� =
𝐹𝑌 − (𝑚− 𝑎11)𝑢𝑟 − 𝐹𝑑𝑟𝑎𝑔,2

(𝑚 − 𝑎22)                                                 (4.11) 

�̇� =
𝐹𝑌𝑙 − (𝑎11 − 𝑎22)𝑢𝑣

(𝐼𝑍𝑍 − 𝑎66)                                                               (4.12) 

�̇� = 𝒖𝑐𝑜𝑠𝜓 − 𝒗𝑠𝑖𝑛𝜓                                                                       (4.13) 

�̇� = 𝒖𝑠𝑖𝑛𝜓 + 𝒗𝑐𝑜𝑠𝜓                                                                       (4.14) 

�̇� = 𝑟                                                                                                   (4.15) 

where:  

�̇� = component global linear velocity in the 1 direction  

�̇� = component global linear velocity in the 2 direction  

�̇� = component global angular velocity in the 6 direction (yaw) = yaw rate 

The above simplified equations are linearized and reduced to the Linear Time Invariant 

(LTI) form for use in a Simulink controller design model. 

4.3 LINEARIZATION OF THE MATHEMATICAL MODEL 

The linearization of the mathematical rigid body dynamics model (Equations 4.10 

– 4.15) is required for easier integration of the equations of motion and is based upon the 

small perturbations theory and steady state conditions [38]. 
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In steady state conditions: 

�̇�𝟎 = 𝟎;  �̇�𝟎 = 𝟎;  �̇�𝟎 = 𝟎 

𝒖 = 𝒖𝟎;  𝒗 = 𝒗𝟎;  𝒓 = 𝒓𝟎                                             (4.16)  

The variables are then replaced by the superposition of a steady state value and a 

small perturbation (increment Δ): 

�̇� = �̇�𝟎 + ∆�̇�;  �̇� = �̇�𝟎 + ∆�̇�;  �̇� = �̇�𝟎 + ∆�̇� 

𝒖 =  𝒖𝟎 + ∆𝒖;  𝒗 =  𝒗𝟎 + ∆𝒗;  𝒓 =  𝒓𝟎 + ∆𝒓                             (4.17)  

The linearization procedure further involves replacing the variables in their 

incremental form within the EOM while neglecting the products of the small 

perturbations and is completed by rewriting the EOM in a simply incremental form by 

subtracting the steady state components. 

The equations 4.10 – 4.15 above can then be represented as: 

(𝑚 − 𝑎11)∆�̇� =  𝐹𝑋 − (𝑎22 − 𝑚)( 𝑣0∆𝑟 + 𝑟0∆𝑣) − 𝐷1𝑢0∆𝑢                                 (4.18) 

(𝑚 − 𝑎22)∆�̇� =  𝐹𝑌 − (𝑚 − 𝑎11)( 𝑢0∆𝑟 + 𝑟0∆𝑢) − 𝐷2𝑣0∆𝑣                                 (4.19) 

(𝐼𝑍𝑍 − 𝑎66)∆�̇� =  𝐹𝑌. 𝑙 − (𝑎11 − 𝑎22)( 𝑢0∆𝑣 + 𝑣0∆𝑢)                                       (4.20) 

where:  

Di = drag force component in the i direction = 𝜌𝐴𝑃,𝑖𝐶𝐷,𝑖 

i = directions 1,2 

In state space form: 

�̇� = 𝐴𝒙 + 𝐵𝒖                   (4.21) 

where, 𝒙 (the state vector) = [∆𝑢  ∆𝑣  ∆𝑟]𝑇   𝑎𝑛𝑑    

𝒖 (𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟) = [𝐹𝑋  𝐹𝑌]𝑇     
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𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −𝐷1𝑢0 𝑚1

� −(𝑎22 − 𝑚)𝑟0 𝑚1
� −(𝑎22 − 𝑚)𝑣0 𝑚1

�

−𝑚1𝑟0 𝑚2� −𝐷2𝑣0 𝑚2
� −𝑚1𝑢0 𝑚2�

−(𝑎11 − 𝑎22)𝑣0 𝑚3
� −(𝑎11 − 𝑎22)𝑢0 𝑚3

� 0
⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 𝐵 =

⎣
⎢
⎢
⎡
1 𝑚1� 0

0 1 𝑚2�

0 𝑙 𝑚3� ⎦
⎥
⎥
⎤
 ;  𝑚1 = (𝑚 − 𝑎11) ;   𝑚2 = (𝑚 − 𝑎22) ;   𝑚3 = (𝐼𝑍𝑍 − 𝑎66) 

where A is the state matrix and B is the input matrix.
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CHAPTER 5: TEST VEHICLE EXPERIMENTS 

As mentioned in the previous chapters, the proposed syringe-plunger propulsion 

mechanism is installed in a test vehicle for further evaluation. 

5.1 EXPERIMENTAL SETUP 

       

 

 

Figure 5.1(a): Clockwise from top-left: A solid model illustration of the first generation 
test vehicle; Experimental setup (full side view); Experimental setup (top side view); Test 

vehicle in the water tank; 
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Figure 5.1(b): Experimental setup (showing the syringe, plunger and valves in the test 
vehicle) 

 
5.1.1 VEHICLE APPARATUS OPERATION 

 

Figure 5.2: Free body force diagram for the experiments with the test vehicle  
 

The XMOS microcontroller is used to send commands to the valve relays, motor 

driver, WiFly module and ultrasonic distance sensor. The valve relays open and close the 

solenoid valves as required during the experiments. For each set of experiments, square 

wave signal commands of 50% duty cycle and particular frequency are sent from the 

XMOS microcontroller via the stepper motor driver to the linear stepper motor actuator 
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to control its direction of movement, linear displacement and speed. The plunger is 

rigidly attached to the motor’s lead nut and therefore is pulled up and pushed down the 

syringe barrel when the lead nut moves during the upstroke and downstroke actions 

respectively.  

During the upstroke motion of the plunger, commands are sent to valve relays 1 

and 2 to open control port C1 of valve 1 and close port C2 of valve 2 respectively. Water 

is drawn into the syringe barrel through the vehicle’s inflow nozzle and port C1. 

Subsequently, during the downstroke motion of the plunger, commands are sent to valve 

relays 1 and 2 to close control port C1 and open port C2 respectively. Water is pushed out 

of the syringe barrel through the vehicle’s outflow nozzle and port C2. Repeated upstroke 

and downstroke motions of the plunger, causing water to be drawn into and pushed out of 

the syringe, result in forward propulsion of the vehicle by the induced forces as illustrated 

in Figure 5.2. 

A WiFly wireless radio is connected and programmed to communicate with the 

XMOS microcontroller to allow the user to remotely operate the system, i.e. the motor, 

valve relays and ultrasonic sensor, as required during experiments. A remote system is 

required because external cable connection would interfere with the vehicle dynamics 

and movement as well as the authenticity of the sensor measurements. The ultrasonic 

distance sensor is used to return position data (in mm) and the time elapsed between 

subsequent position measurements (in milliseconds) as the vehicle moves forward in the 

water tank. The position data indicates the vehicle’s position in the tank relative to the 

end of the tank where an artificial wall/barrier is placed (Figure 5.3). 
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Figure 5.3: The test vehicle in the water tank (full view) 
 
5.1.2 VEHICLE APPARATUS COMPONENTS AND SOFTWARE 

The apparatus used for the experiments with the test vehicle comprises of the 

following hardware and software components: 

 Haydon Kerk linear stepper motor actuator (NEMA 8, 2.5V 0.49A Bipolar, part 

No: E21H4U-2.5-900) 

 Haydon Kerk linear stepper motor actuator (NEMA 14, 2.33V 2A Bipolar, double 

stack, part no.: E35M4AG-2.33-900) 

 Pololu DRV8825 Stepper Motor Driver (Bipolar Microstepping, 8.2–45V, 2.2A) 

 Probotix Stepper Motor Driver (Bipolar Microstepping Chopper driver, 8–32V, 

0.5-2.5A current limiting) 

 Syringe barrel and Plunger (10ml and 60ml size) 

 XMOS XK-1A microcontroller and xTIMEcomposer Studio Development 

Environment/Software 

 Arduino Uno ATmega328 microcontroller board and Arduino programming 

platform 

Artificial wall indicating end 
of tank 

53 



 
 2 Normally-closed Solenoid valves (12V 6W) 

 2 Single-side stable TTL (Transistor–transistor logic) relays (TF2-5V) 

 2 Sparkfun Beefcake Relay Control Kits (5V) 

 Sparkfun WiFly GSX module 

 Parallax PING)))TM Ultrasonic Distance Sensor (range: 2 cm to 3 m) 

 One 22.2V, two 12V and one 5V DC power supply batteries 

 2’ x 2’ x 6’ Oblong Water tank 

5.2 VEHICLE APPARATUS AS A MECHATRONIC SYSTEM 

The experimental setup for the test vehicle (Figure 5.1) can be divided into 3 

categories: 

1. The mechanical subsystem 

2. The electrical subsystem 

3. The software and communication subsystem 

In the following, the design, fabrication and assembly of each of these are 

discussed as well as the challenges involved in getting each subsystem, and finally the 

vehicle setup to function properly. 

5.2.1 THE MECHANICAL SUBSYSTEM 

This part of the apparatus consists mainly of the test vehicle body, the linear 

stepper motor actuator, the syringe barrel and plunger, the motor lead screw and nut and 

the mounting plate.  

The test vehicle body and plunger are designed using SolidWorks 3D CAD 

software and produced using an FDM 3D printing machine. Several iterations of the test 
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vehicle design, two versions are shown in Figure 5.4, are done to ensure optimum 

installation of the propulsion mechanism, including the solenoid valves, in the test 

vehicle while maintaining a smooth outer body surface.  

 

Figure 5.4(a): Test vehicle SolidWorks design, Version 1 
 

 

Figure 5.4(b): Test vehicle SolidWorks design, Version 2 

55 



 
With the main aim to keep the overall weight of the test vehicle and the power 

requirements of the propulsion system as low as possible, to start with, a small (NEMA 8, 

43g, 2.45W) linear stepper motor actuator is used (Figure 5.5). However despite the 

motor’s high load capacity and with the maximum possible water control volume used, 

the thrust produced can only move the vehicle forward at a speed of approximately 

0.5cm/s. Therefore, the motor is replaced with a faster one to increase the mass flow rate 

of the water and as a result the thrust output of the system. This faster motor (NEMA 14, 

240g, 9.1W) is however bigger, heavier and has higher power consumption and thus 

leads to a number of system/apparatus design changes. 

 

Figure 5.5: Initial apparatus with small motor, 10ml syringe and plastic mounting plate   
 

Three iterations of the plunger size and design (Figure 5.6) are done to ensure 

rigidity of its linkage to the motor’s lead nut and to allow an increase of the water control 

volume drawn into and out of the syringe during operation. Increase in the water control 

volume results in increase of the maximum mass flow rate and hence the thrust output of  

56 



 

  

 

Figure 5.6: Plunger SolidWorks designs, Clockwise: Versions 1 – 3 
 
the system. Also, the length of the motor’s lead screw restricts the water volume drawn 

and ejected during operation and is therefore trimmed in-line with the changes to the 

plunger size and design. 

Two different design materials are used to fabricate the mounting plate (Figure 

5.5 and Figure 5.1). Both cases are designed using SolidWorks 3D CAD software. The 

first design is initially implemented with the small size motor and is fabricated from a 

light-weight, machinable, high strength plastic. It is observed though that with the larger 

motor mounted on the plate, this material flexes a lot when the system is in operation and 

the motor is pulling and pushing the plunger. This flexing translates to a considerable loss 

in the thrust achievable with each plunger movement. To counter this, the second design 

is fabricated from metal, specifically an aluminum (Alloy 6061) 1/8" thick bar, which is 

more rigid.  
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Further, since the experimental setup is top-heavy, more so with the bigger motor, 

additional ballast weights are added inside the test vehicle together with the power supply 

batteries to balance the vehicle in the water tank. In addition, during operation it is 

observed that the propulsion forces acting at the front and back of vehicle are slightly 

skewed and cause the vehicle to veer from the expected straight line trajectory. For this 

reason, parallel rails are installed along the length of the water tank (Figure 5.1.b) to keep 

the vehicle in a straight forward track. This also ensures that the signals from the 

ultrasonic distance sensor mounted at the front of the vehicle are orthogonal to the wall at 

the end of the tank and therefore provide an accurate distance measurement. To keep the 

vehicle from stalling even when it bumps into the rails in the tank as it moves forward, 

four rollers are fabricated and mounted onto the sides of the vehicle body. 

5.2.2 THE ELECTRICAL SUBSYSTEM 

 

Figure 5.7: A schematic of the test vehicle electrical circuit 
 

The electrical subsystem is comprised of the circuit shown in Figure 5.7. The 

ports A-G of the XMOS XK-1A microcontroller are one bit general-purpose digital 
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input/output ports. These I/O ports provide output signals at 3.3V with a maximum 

current draw of 200mA.  

Relays are electrically operated switches used where it is necessary to control a 

high-power component/circuit with a low-power signal while ensuring complete 

electrical isolation between the control and controlled circuits. In this case, the low-power 

signals are those from the microcontroller (3.3V each) and the high-power components 

are the normally-closed solenoid valves which require 12V to open/operate. A high signal 

from the microcontroller to the relays causes them to close the high-power circuit which 

in turn opens the valves. A low signal from the microcontroller causes the relays to open 

the high-power circuit and close the valves. 

 Initially the system consists of the microcontroller, the linear stepper motor, the 

stepper motor driver, the 2 Single-side stable TTL relays (TF2-5V: 5V, 16mA) (Figure 

5.8) and the 2 solenoid valves. Both relays/solenoid valves are supplied by the same 12V 

(2200mAh) battery while the stepper motor is supplied by a separate 12V (2200mAh) 

battery. A control program is used to test the operation of the motor and valves and to 

determine the actual speed and load capacity of the motor with the apparatus design.  

              

Figure 5.8: Left: Single-side stable TTL relays (TF2-5V); Right: Sparkfun Beefcake Relay 
Control Kit (5V) 
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 The basic system is improved in several ways to make it more robust. The power 

supply to each of the relays is decoupled so they are each supplied by separate 12V 

batteries to make certain that they each receive the maximum possible power to operate 

the valves. Also, a Bipolar Junction Transistor (BJT) circuit is used in between the XK-

1A output ports and the relays to amplify the voltage of the signal being received by the 

relays.  

Finally, a new set of valves and different types of relays is assessed and 

ultimately, a pair of a different type of relay (Figure 5.8) (2 Sparkfun Beefcake Relay 

Control Kits) and a replacement pair of valves are chosen for testing with the 

microcontroller. These relays have higher power capacity plus better isolation capability 

and it is observed that with this new set of components the system operates smoothly. 

 Another challenge encountered with this system is observed with the 

implementation of the larger motor mentioned in section 5.2.1 above with the Pololu 

DRV8825 Stepper Motor Driver (Figure 5.9). The motor-lead nut-plunger subsystem 

vibrates during operation, making a kicking sound and is also observed to be missing 

steps during operation as the plunger moves up and down the syringe barrel. 

             

Figure 5.9: Left: Pololu DRV8825 Stepper Motor Driver; Right: Probotix Stepper Motor 
Driver 

60 



 
Again, several steps are taken and tests done to troubleshoot this issue and it is 

resolved by implementing a different stepper motor driver (Figure 5.9), the Probotix 

Stepper Motor Driver, which has a higher power capacity and better capability at 

chopping/limiting the motor current.  

5.2.3 THE SOFTWARE AND COMMUNICATION SUBSYSTEM 

This part of the apparatus consists mainly of the XMOS XK-1A microcontroller 

and xTIMEcomposer Studio Development Environment/Software, the Sparkfun WiFly 

GSX module and the Parallax PING)))TM Ultrasonic Distance Sensor. 

The XMOS XK-1A microcontroller and XMOS Development 

Environment/Software are used as the primary embedded controller and programming 

software in this work. XMOS technology is chosen for use in this project as it is the main 

platform in use for unmanned vehicles and systems research by the DU2SRI group. The 

XMOS microcontrollers are able to run the complex computational tasks required for 

intelligent, autonomous behavior while at the same time monitoring several sensor 

systems by using event-driven multi-threaded processors [39]. 

The XK-1A is a low cost development board that comprises a single XS1-L1 

device, 128Kbytes SPI interface to FLASH memory, 24 I/O pins and is clocked at 

20MHz by a crystal oscillator on the board [40]. The XK-1A board can be powered from 

a USB connection using an XTAG-2 debug adapter or by an external 5V power supply 

(Figure 5.10). It is programmed through the XTAG-2 in an Eclipse-based environment 

known as xTIMEcomposer Studio supplied by XMOS. 
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Figure 5.10: XK-1A board and XTAG-2 debug adapter 
 

The WiFly Wi-Fi module is connected and programmed to communicate with the 

XK-1A microcontroller board to allow the user to remotely operate the motor, valve 

relays and ultrasonic distance sensor as required during experiments. The user interface 

can be setup via a TELNET connection to the WiFly’s IP address and port. Figure 5.11 

shows the user interface. The information returned to the user through this interface for 

this experiments includes: position data (in mm) and the time elapsed between 

subsequent measurements (in milliseconds) from the ultrasonic distance sensor, the state 

and direction of movement of the linear stepper motor actuator (and plunger) as well as 

the speed of the plunger for both the upward and downward  strokes. 

A single I/O pin is used to trigger an ultrasonic burst (well above human hearing) 

from the PING)))TM sensor (Figure 5.12) and then "listen" for the echo return pulse when 

the ultrasonic signal reaches the wall. The sensor is programmed to measure the time 

required for the echo return and then return this value to the microcontroller as a variable-
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width pulse via the same I/O pin. This time data is the converted in the XC program into 

position data (in mm) by incorporating the speed of sound in air. 

 

Figure 5.11: Left: Sparkfun WiFly GSX module;   Right: The user interface 
 

 

Figure 5.12: Parallax PING)))TM Ultrasonic Distance Sensor 
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CHAPTER 6: TEST VEHICLE EXPERIMENTAL AND SIMULATION 

RESULTS 

As described in Section 5.1, for these experiments the microcontroller is used to 

send commands to the valve relays, motor driver, WiFly and ultrasonic distance sensor.  

Signal commands of particular frequency are sent from the XK-1A 

microcontroller via the motor driver to the motor to control its direction of movement, 

linear speed and linear displacement. Experiments are performed for various actuation 

sequences where the linear speed of the plunger movement is varied from 1.191cm/s to 

2.680cm/s by changing the frequency of the signals sent from the microcontroller. This is 

done to determine the influence of the type of flow (as described by the Reynolds 

number), through the vehicle inflow and outflow nozzles, on the thrust output of the 

mechanism and vehicle speed. As in the direct thrust measurement experiments discussed 

in Chapter 3, experiments for three different actuation sequences/cases are carried out.  

1. CASE 1: Equal plunger upstroke and downstroke speed. 

2. CASE 2: Plunger upstroke speed faster than the downstroke speed. The upstroke 

speed is kept constant at 2.680cm/s while the downstroke speed is increased from 

1.191cm/s to 2.382cm/s for each consecutive set of experiments. 

3. CASE 3: Plunger downstroke speed faster than the upstroke speed. The 

downstroke speed is kept constant at 2.382cm/s while the upstroke speed is 

increased from 1.191cm/s to 2.085cm/s for each consecutive set of experiments. 
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The disparity in the maximum upstroke and downstroke plunger speeds for cases 

2 and 3 above is due to hardware failures and challenges with the linear actuator during 

the course of these experiments. Each experiment begins with the test vehicle positioned 

at one end of the testing tank. Once the water in the tank has completely settled, the linear 

actuator, valves and ultrasonic distance sensor are activated to run continuously. The 

plunger starts to move upwards and then downwards drawing and pushing 20ml of water 

into and out of the syringe barrel.  

These actions provide propulsive forces, as described in Section 5.1.1, to the 

vehicle causing it to move forward. The vehicle gains momentum and accelerates and 

once it gets to two-thirds of the way along the tank the actuator (i.e. plunger) and valves 

are powered off/stopped. The ultrasonic sensor is left running to keep collecting position 

and time data until the vehicle comes to a forced stop at the far end of the tank and then is 

also deactivated. This marks the end of the experiment. The experimental data is 

extracted from the user interface and initially saved in MS Excel for processing. All 

experiments are run/conducted at least four times.  

In the following, plots of the average vehicle position vs. time curves (with one 

standard deviation error bars) for all the experiments are presented. 
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Average Vehicle Position vs. Time Curves (with the actuator running) 

 

 
Figure 6.1 (a): CASE 1 Experiments:  Average vehicle position vs. time curve 

 
Figure 6.1 (b): CASE 2 Experiments:  Average vehicle position vs. time curve 

 
Figure 6.1 (c): CASE 3 Experiments:  Average vehicle position vs. time curve 
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6.1 DATA ANALYSIS 

Data analysis for each experiment begins with plotting the vehicle’s the raw 

position data against time for each of the runs. Next, linear interpolation in Matlab is 

performed on each of the four or more data sets at the sampling time of 0.5s and the 

average vehicle position vs. time curve is obtained for each experiment. As an example, 

Figure 6.2(a) shows a plot of the average vehicle position vs. time curve for the 

experiment where the plunger speed is 2.085cm/s for both the upstroke and downstroke. 

Next, the velocity profile, Figure 6.2(b), is plotted from differentiation of the 

average vehicle position data obtained above with respect to time. This plot is erratic as it 

shows the fluctuation in the velocity of the vehicle every 0.5s. Therefore, for useful 

analysis this initial velocity profile plot is smoothed by considering the change in the 

vehicle’s velocity every 2s instead, i.e. after every three data points. Figure 6.3 shows this 

velocity plot for the portion of the experiment when the actuator is running.  

 
Figure 6.2(a): Average vehicle position vs. time curve: Plunger speed = 2.085cm/s for 

both Upstroke and Downstroke 
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Figure 6.2(b): Vehicle velocity curve: Plunger speed = 2.085cm/s for both Upstroke and 

Downstroke 
 

 
Figure 6.3: Vehicle velocity curve (smoothed): Plunger speed = 2.085cm/s for both 

Upstroke and Downstroke 
 

For 1 DOF motion, the rigid body dynamics model equations 4.10 – 4.15 in 

Section 4.2.4 for the vehicle reduces to Equation 6.1 and 6.2 below. 

�̇� =
𝐹𝑋 − 𝐹𝑑𝑟𝑎𝑔,𝑥

(𝑀 − 𝑎11)                                                                         (6.1) 

�̇� = 𝒖                                                                                             (6.2) 
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𝐹𝑑𝑟𝑎𝑔,𝑥 = 1

2� 𝐶𝐷𝜌𝐴𝑃,𝑥𝑉𝑣2                                                            (6.3) 

where:  

u = component body-fixed linear velocity in the x direction 

FX = external propulsion force in the x direction 

𝐹𝑑𝑟𝑎𝑔,𝑥 = drag force on the vehicle in the x direction 

M = total mass of the vehicle 

a11 = added-mass coefficient 

�̇� = component global linear velocity in the 1 direction  

AP,x = projected cross-sectional area normal to the direction of the drag force 

ρ = mass density of water at room temperature 

Vv = vehicle velocity;   CD = drag coefficient 

Equations 6.1 – 6.3 are used at this point to create a non-linear dynamics 

simulation model in Simulink (Figure 6.4) with the experimental velocity and 

acceleration data to model the resultant constant propulsive force, FX produced by the 

mechanism for each experiment. This is done by combining the maximum drag force 

achieved and the force due to acceleration (𝒎�̇�) at the point when the propulsion system 

is powered off and the test vehicle starts to decelerate. This model is then used to 

estimate the speed performance of the test vehicle. Example calculations for the 

2.085cm/s upstroke, 2.085cm/s downstroke experiment are presented below. 

Vv = 1.78cm/s;  ρ = 998.2kg/m3;  CD = 0.4; AP,1 = 0.0176m2;  FD = 0.0011N 

�̇� ≈0;  M = 3.69kg;  a11 = 1.3717kg;  m = 2.3183kg;  𝒎�̇� = 𝟎 

∴ FX = 0.0011N 
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Figure 6.4: SIMULINK Non-linear test vehicle dynamics model 
 

The position and velocity profiles of the vehicle for the constant force, FX = 

0.0011N, model obtained from simulation are shown alongside the plots produced from 

the experimental data in Figures 6.5(a and b).  

 

Figure 6.5(a): Position  profile of the vehicle for the constant force model:  
Plunger speed = 2.085cm/s for both Upstroke and Downstroke 
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Figure 6.5(b): Velocity profile of the vehicle for the constant force model:  

Plunger speed = 2.085cm/s for both Upstroke and Downstroke 
 
 From Figure 6.5(a) it is observed that the vehicle’s position plot obtained from the 

experimental data follows the simulated curve fairly closely, with the simulated curve 

being within one standard deviation of the experimental data plot. This presents a good 

basis for evaluation and implies that the effect of the rails in the water tank as well as the 

rollers attached on the test vehicle body on the movement of the vehicle and 

measurement of its position in the tank during experiments is minimal. Also, as shown in 

Figure 6.5(b), the simulated velocity curve for the vehicle is generally within one 

standard deviation of the experimental data plot. 

In the following, the test vehicle position and velocity profile curves showing the 

simulation constant force models for all the experiments are presented (Figures 6.6 – 6.8). 

A similar trend as with the plots in Figure 6.5 (a and b) above is observed. The analysis 

outlined above is done for all the experiments and in the end enables comparison of the 

resultant constant thrust output of the propulsion mechanism as well as the speed of the 

vehicle for each of the three actuation cases tested. This comparison is presented in 

graphical form in Figure 6.9(a) and Figure 6.9(b). 
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CASE 1 EXPERIMENTS 

Test Vehicle Position and Velocity profile curves: Showing the Constant Force Models 

 
Figure 6.6 (a.1): Position plot: Plunger Speed = 1.191cm/s both Up and Down 

 
Figure 6.6 (a.2): Velocity plot: Plunger Speed = 1.191cm/s both Up and Down 

 
Figure 6.6 (b.1): Position plot: Plunger Speed = 1.489cm/s both Up and Down 
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Figure 6.6 (b.2): Velocity plot: Plunger Speed = 1.489cm/s both Up and Down 

 
Figure 6.6 (c.1): Position plot: Plunger Speed = 1.787cm/s both Up and Down 

 
Figure 6.6 (c.2): Velocity plot: Plunger Speed = 1.787cm/s both Up and Down 
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Figure 6.6 (d.1) Position plot: Plunger Speed = 2.085cm/s both Up and Down 

 
Figure 6.6 (d.2): Velocity plot: Plunger Speed = 2.085cm/s both Up and Down 

 
Figure 6.6 (e.1): Position plot: Plunger Speed = 2.382cm/s both Up and Down 
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Figure 6.6 (e.2): Velocity plot: Plunger Speed = 2.382cm/s both Up and Down 

 
Figure 6.6 (f.1): Position plot: Plunger Speed = 2.68cm/s both Up and Down 

 
Figure 6.6 (f.2): Velocity plot: Plunger Speed = 2.68cm/s both Up and Down 
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CASE 2 EXPERIMENTS 

Test Vehicle Position and Velocity profile curves: Showing the Constant Force Models

 
Figure 6.7 (a.1): Position plot: Plunger Speed = 2.68cm/s Up and 1.191cm/s Down 

 
Figure 6.7 (a.2): Velocity plot: Plunger Speed = 2.68cm/s Up and 1.191cm/s Down 

 
Figure 6.7 (b.1): Position plot: Plunger Speed = 2.68cm/s Up and 1.489cm/s Down 
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Figure 6.7 (b.2): Velocity plot: Plunger Speed = 2.68cm/s Up and 1.489cm/s Down 

 
Figure 6.7 (c.1): Position plot: Plunger Speed = 2.68cm/s Up and 1.787cm/s Down 

 
Figure 6.7 (c.2): Velocity plot: Plunger Speed = 2.68cm/s Up and 1.787cm/s Down 
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Figure 6.7 (d.1): Position plot: Plunger Speed = 2.68cm/s Up and 2.085cm/s Down 

 
Figure 6.7 (d.2): Velocity plot: Plunger Speed = 2.68cm/s Up and 2.085cm/s Down 

 
Figure 6.7 (e.1): Position plot: Plunger Speed = 2.68cm/s Up and 2.382cm/s Down 
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Figure 6.7 (e.2): Velocity plot: Plunger Speed = 2.68cm/s Up and 2.382cm/s Down 

 
CASE 3 EXPERIMENTS 

Test Vehicle Position and Velocity profile curves: Showing the Constant Force Models

 
Figure 6.8 (a.1): Position plot: Plunger Speed = 1.191cm/s Up and 2.382cm/s Down 

 
Figure 6.8 (a.2): Velocity plot: Plunger Speed = 1.191cm/s Up and 2.382cm/s Down 
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Figure 6.8 (b.1): Position plot: Plunger Speed = 1.489cm/s Up and 2.382cm/s Down 

 
Figure 6.8 (b.2): Velocity plot: Plunger Speed = 1.489cm/s Up and 2.382cm/s Down 

 
Figure 6.8 (c.1): Position plot: Plunger Speed = 1.787cm/s Up and 2.382cm/s Down 
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Figure 6.8 (c.2): Velocity plot: Plunger Speed = 1.787cm/s Up and 2.382cm/s Down 

 
Figure 6.8 (d.1): Position plot: Plunger Speed = 2.085cm/s Up and 2.382cm/s Down 

 
Figure 6.8 (d.2): Velocity plot: Plunger Speed = 2.085cm/s Up and 2.382cm/s Down 
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The vehicle speed comparison is done at 40s for all of the experiments since that 

is how long the fastest experiment ran before the actuator system was stopped. Both the 

thrust output and vehicle speed results for the CASE 3 experiments are normalized for a 

downstroke plunger velocity of 2.680cm/s. This is done by using Equations 3.2 and 3.3 to 

determine the difference in the theoretical thrust output for CASE 3 with a downstroke 

speed of 2.68cm/s instead of 2.382cm/s. 

 

Figure 6.9(a): Resultant Constant Thrust Output Results 
 

 

Figure 6.9(b): Vehicle Speed Results 
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The results presented in Figure 6.9(a) and Figure 6.9(b) show that for plunger 

speeds between 1.191cm/s and 2.085cm/s, higher propulsion forces and vehicle speeds 

can be achieved with actuation sequences where the plunger upstroke and downstroke 

speeds are different compared to those where both plunger strokes have equal speed. The 

time required for single cycles (one plunger upstroke and downstroke) for CASES 2 and 

3 is less than that required for CASE 1 experiments (Table 6.1). Thus CASES 2 and 3 

correspond to more plunger cycles at a time compared to CASE 1.  

Plunger Speed 
(cm/s) 

Single Cycle time (sec): 
CASE 1 

Single Cycle time (sec): 
CASES 2 and 3 

1.191 7.0000 5.1944 
1.489 5.7000 4.5444 
1.787 4.8333 4.1111 
2.085 4.2143 3.8016 
2.382 3.7500 3.5694 
2.680 3.3889  

 
Table 6.1: Cycle times for the various actuation cases. 

 
Additionally, the highest thrust output of the syringe-plunger propulsion 

mechanism and fastest test vehicle speeds are achieved with actuation sequences that 

have the plunger upstroke speed being slower than the downstroke speed (CASE 3). This 

can be attributed to smoother movement of the vehicle for these actuation sequences, 

Figure 6.1(c), which allows the vehicle to speed up faster and attain higher speeds. For 

the range of plunger speeds between 1.191cm/s and 2.085cm/s, the highest thrust output 

is 0.0016N and for this propulsive force the maximum speed attainable with the test 

vehicle used here is 2.13cm/s. Results are also presented for plunger speeds above 
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2.085cm/s and these show that even higher thrust output (0.0019N) is feasible. The 

corresponding maximum vehicle speed is 2.3cm/s. 

While the above results are a good indication of the operation and viability of the 

syringe-plunger propulsion mechanism for small, low-speed, precision maneuvering 

underwater vehicles, there are various possible sources of error during testing. These 

include: vibrations due to the plunger movement in the syringe, the actuator direction 

change delay, valve switching (i.e. reaction forces due to spring back of the solenoids), 

non-uniformity of the flow of water into and out of the syringe, static friction of the 

rollers on the vehicle on the rails in the tank and ultrasonic distance sensor error/sensor 

reading error. 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

In this chapter the results of this thesis are concluded and recommendations for 

future work are made based on the main experimental results presented in Section 3.4 and 

Section 6.1 and from the project as a whole.  

7.1 CONCLUSIONS 

The core focus of this thesis is on the design and evaluation of a simple and low 

cost propulsion system prototype suitable for small, compact, low-speed maneuvering 

underwater vehicles. The primary contribution of this work has been the design of a 

propulsion system comprising primarily of a syringe and a plunger driven by a linear 

actuator that uses different intake and outflow nozzles to provide continuous propulsive 

force. The propulsion system provides low thrust, can enable low-speed maneuverability 

and allows for imbedding in the body of a vehicle for a smooth streamlined outer shape 

with no appendages. 

The propulsion system design and the two main tests conducted to assess its 

viability are presented and discussed. First, thrust measurement experiments are done to 

determine the direct propulsive force output of the mechanism. It is shown that in the 

case of a single inflow and outflow orifice, the syringe-plunger system can provide much 

higher direct propulsive force in comparison to other functionally similar propulsion 

mechanisms presented in related research. In the case of different inflow and outflow 
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orifices it is found that the syringe-plunger system, though capable of providing 

continuous thrust has much lower net propulsive force output. 

Next, a test vehicle is designed and built and the propulsion mechanism installed 

in it to facilitate testing, evaluation and modelling of the propulsive force output of the 

mechanism as well as the vehicle speed achievable by employing the propulsion system. 

Based on the experimental results and observations it is found that the syringe-plunger 

system is a viable propulsion mechanism for small, compact, low-speed underwater 

vehicles. It is capable of providing low enough continuous thrust to enable the low-

speeds desirable for precision maneuvering and inspection tasks. Also, it is promising to 

know that even more thrust can be achieved through the combined use of a greater 

water/fluid control volume and faster plunger speeds. 

Finally, through the design, assembly and testing course of this project it is found 

that though the proposed syringe-plunger propulsion mechanism is fairly simple in 

design, the overall experimentation process of the physical mechatronic system is rather 

complicated. However in retrospect, this provided valuable insight about the physical 

real-world system, its complexity and the challenges involved that could not have been 

discerned with simulation. 

7.2 RECOMMENDATIONS FOR FUTURE WORK 

The design and analysis presented in this work for a propulsion mechanism for 

slow moving underwater vehicles can serve as a proof-of-concept for future research in 

the field of underwater robotics. It can also provide some useful insight into the areas of 

consideration and the challenges involved with underwater vehicles and systems research 
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for further work on AUVs at the University of Denver Unmanned Systems Research 

Institute (DU2SRI). 

Several developments can be made to this research. First, Computational Fluid 

Dynamics (CFD) simulations, such as with ANSYS or ABAQUS CFD software, can be 

done to refine and validate the propulsion system and test vehicle design. This may result 

in faster design development and cost effectiveness. Second, design and implementation 

of a breakout PCB incorporating all the required connections can help provide easier 

access to the various parts of the apparatus by reducing the number of wires and make the 

system more versatile.  

Also, the use of different, more flexible and robust actuators (e.g. pneumatic or 

hydraulic actuators) and sturdier valves may help minimize some of the mechanical and 

electrical failures and issues. Lastly, the design of a more streamlined and neutrally 

buoyant test vehicle with the propulsion system fully imbedded in it will better allow for 

implementation of multi-DOF maneuverability. 
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